7,686 research outputs found

    Analysis of Multiple Flows using Different High Speed TCP protocols on a General Network

    Full text link
    We develop analytical tools for performance analysis of multiple TCP flows (which could be using TCP CUBIC, TCP Compound, TCP New Reno) passing through a multi-hop network. We first compute average window size for a single TCP connection (using CUBIC or Compound TCP) under random losses. We then consider two techniques to compute steady state throughput for different TCP flows in a multi-hop network. In the first technique, we approximate the queues as M/G/1 queues. In the second technique, we use an optimization program whose solution approximates the steady state throughput of the different flows. Our results match well with ns2 simulations.Comment: Submitted to Performance Evaluatio

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented

    Modeling the interaction between TCP and Rate Adaptation

    Get PDF
    In this paper, we model and investigate the interaction between the TCP protocol and rate adaptation at intermediate routers. Rate adaptation aims at saving energy by controlling the offered capacity of links and adapting it to the amount of traffic. However, when TCP is used at the transport layer, the control loop of rate adaptation and one of the TCP congestion control mechanism might interact and disturb each other, compromising throughput and Quality of Service (QoS). Our investigation is lead through mathematical modeling consisting in depicting the behavior of TCP and of rate adaption through a set of Delay Differential Equations (DDEs). The model is validated against simulation results and it is shown to be accurate. The results of the sensitivity analysis of the system performance to control parameters show that rate adaptation can be effective but a careful parameter setting is needed to avoid undesired disruptive interaction among controllers at different levels, that impair QoS

    Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model

    Get PDF
    This paper studies the bifurcation and chaos phenomena in averaged queue length in a developed Transmission Control Protocol (TCP) model with Random Early Detection (RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network systems that lead to degradation of the network performance. The TCP/RED model used is a model validated previously. In our study, only the average queue size k q − is considered, and the results are based on analytical model rather than actual measurements. The instabilities in the model are studied numerically using the conventional nonlinear bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm is derived to prevent the observed bifurcation and chaos regardless of the selected parameters. Our modification is for the simple scenario of a single RED router carrying only TCP traffic. The algorithm neither compromises the throughput nor the average queuing delay of the system

    Symbolic dynamical model of average queue size of random early detection algorithm

    Get PDF
    In this paper, a symbolic dynamical model of the average queue size of the random early detection (RED) algorithm is proposed. The conditions on both the system parameters and the initial conditions that the average queue size of the RED algorithm would converge to a fixed point are derived. These results are useful for network engineers to design both the system parameters and the initial conditions so that internet networks would achieve a good performance

    Design and performance evaluation of a state-space based AQM

    Full text link
    Recent research has shown the link between congestion control in communication networks and feedback control system. In this paper, the design of an active queue management (AQM) which can be viewed as a controller, is considered. Based on a state space representation of a linearized fluid flow model of TCP, the AQM design is converted to a state feedback synthesis problem for time delay systems. Finally, an example extracted from the literature and simulations via a network simulator NS (under cross traffic conditions) support our study
    corecore