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ABSTRACT 

In this paper, a symbolic dynamical model of the average queue size of the random early 

detection (RED) algorithm is proposed. The conditions on both the system parameters and the 

initial conditions that the average queue size of the RED algorithm would converge to a fixed point 

are derived. These results are useful for network engineers to design both the system parameters and 

the initial conditions so that internet networks would achieve a good performance. 
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I. INTRODUCTION 

There is no doubt that internet networks play an important role in our daily life. However, as 
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the traffic of internet networks grows rapidly, congestion problems become very serious. Poor 

managements of internet networks will result to partly or fully inaccessible networks and hence 

degrade general performances of networking applications [1]-[6]. To address this issue, various 

approaches have been proposed. The commonest approach to address the congestion problems is 

via active queue management (AQM) mechanisms, in which the RED algorithm is a widely 

deployed algorithm for AQM mechanisms [1]-[6]. 

The goal of the RED algorithm is to detect an early sign of the congestion and provide a 

feedback by either dropping or marking segments of messages so that the congestion can be 

avoided. Although the RED algorithm is conceptually simple, the interaction between the 

transmission control protocol (TCP) and the RED algorithm at the router’s gateway is actually 

governed by a first order piecewise nonlinear difference equation, in which, complex behaviors, 

such as limit cycle behaviors and chaotic behaviors, could be exhibited. For the commonest 

operation, the average queue size of the RED algorithm is required to converge to a fixed point and 

these complex behaviors degrade general performances of network applications [1]-[6]. As these 

complex behaviors depend on both the system parameters and the initial conditions of the nonlinear 

difference equation, network engineers require to design both the system parameters and the initial 

conditions of the nonlinear difference equation so that the average queue size of the RED algorithm 

would converge to a fixed point. Nevertheless, no result has been reported on characterizing the 

conditions on both the system parameters and the initial conditions of the nonlinear difference 

equation that the average queue size of the RED algorithm would converge to a fixed point. This 

paper is to address this issue. 

The outline of this paper is as follows. The working principles of the TCP and the RED 

algorithm are reviewed in Section II, while nonlinear behaviors of the average queue size of the 

RED algorithm are reviewed in Section III. In Section IV, a symbolic dynamical model is proposed 

as well as the conditions on both the system parameters and the initial conditions of the nonlinear 

difference equation that the average queue size of the RED algorithm would converge to a fixed 
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point are derived. Finally, a conclusion is drawn in Section V. 

 

II. REVIEW ON WORKING PRINCIPLES OF TCP AND RED ALGORITHM 

This section describes a brief summary of the working principles of the TCP and the RED 

algorithm. For interested readers, please refer to the details in [1]-[6]. 

A. Working principles of TCP 

The transmission rate of a TCP connection is controlled by the size of the congestion window 

at the sender end, denoted as cwnd . The cwnd  size determines the number of segments of 

messages to be sent to the receiver end. The cwnd  size is adjusted to maximize the utilization of 

the link and to avoid the congestion. To adjust the cwnd  size, TCP congestion control algorithms 

employ the following four phases: the slow start phase, the congestion avoidance phase, the fast 

retransmit phase and the fast recovery phase. 

The description of the slow start phase is as follows. When a new connection is first 

established, the cwnd  size at the sender end is initialized to the size of one segment of messages. 

Upon a receipt of every segment of messages, a packet of an acknowledgement (ACK) is sent to the 

TCP sender by the TCP receiver. Upon a receipt of every packet of an ACK at the sender end, the 

TCP sender increases the cwnd  size by the size of one segment of messages. Two segments of 

messages can now be sent. When both segments of messages are acknowledged, the cwnd  size is 

increased to the size of four segments of messages. These procedures are iterated in an exponential 

manner and the TCP sender opens up the window size exponentially, that is, 1→2→4→8,…, etc. 

When the cwnd  size exceeds a threshold, denoted as ssthresh, the TCP sender enters the 

congestion avoidance phase. During the congestion avoidance phase, the cwnd  size is 

incremented by the size of one segment of messages per a round trip time regardless of the number 

of the packets of an ACK has been received. Hence, the TCP sender opens up the window size 

linearly, that is, 1→2→3→4,…, etc, until it reaches the receiver’s advertised window size, denoted 

as rwnd . 



International Journal of Bifurcation and Chaos 

 4

The description of the fast retransmit phase is as follows. A retransmission timer is set every 

time when the TCP sender sends a packet of messages. A packet loss is detected by the timeout 

mechanism if the timer expires before receiving the packet of an ACK. In this case, the TCP sender 

adjusts the ssthresh and switches back to the slow start phase. In the congestion avoidance phase, 

upon receiving an out of order segment of messages, the TCP receiver generates a packet of an 

ACK and is immediately followed by a duplicate packet of an ACK. When three duplicate packets 

of an ACK have been received by the TCP sender, it is assumed that a segment of messages has 

been lost. The TCP sender halves the cwnd  size and retransmits the lost segment of messages 

without waiting the expiration of a retransmission timer. 

The description of the fast recovery phase is as follows. Until the retransmitted segment of 

messages is received, the TCP receiver will continue to receive the out of order segments of 

messages and generate the duplicate packets of an ACK to the TCP sender. After the fast retransmit 

phase sends the missing segment of messages, the TCP sender increases the cwnd  size whenever 

each duplicate packet of an ACK is received. Each duplicate packet of an ACK is an indication that 

one packet of messages has reached the TCP receiver and the number of outstanding packets of 

messages has decreased by one. Therefore, the TCP sender is allowed to increment the cwnd  size. 

The TCP sender switches back to the congestion avoidance phase when the retransmitted segment 

of messages is received and a nonduplicate packet of an ACK is sent to the TCP sender. 

B. Working principles of RED algorithm 

The RED algorithm is a gateway based algorithm for AQM mechanisms. It estimates the 

congestion level by monitoring and updating the average queue size. In order to maintain a 

relatively small average queue size rather than waiting for buffer overflows, it drops a packet of 

messages with a certain probability to provide an early sign of the congestion when the average 

queue size exceeds a threshold. Denote the minimum queue threshold, the maximum queue 

threshold, the maximum packet drop probability, the average queue size and the drop probability at 

the k P

th
P iteration 0≥∀k  as minq , maxq , maxp , ( )kq  and ( )kp , respectively. The drop 
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probability depends on the average queue size and it is governed by the following equation: 

( ) ( )( )
( )

( ) ( )
( )⎪

⎪
⎩

⎪⎪
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Denote the exponential average weight of the RED algorithm as w . The average queue size at the 

1+k P

th
P iteration is governed by an exponential law and it depends on both the average queue size 

and the drop probability at the k P

th
P iteration 0≥∀k  as follows: 

( ) ( ) ( ) ( )( )kpwGkqwkq +−=+ 11  , 

in which 
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where the capacity of the link between two routers, the packet size, the number of TCP connections, 

a constant between 1 and 
3
8  as well as the round trip propagation delay are denoted as C , M , 

N , K  and d , respectively. 

It is trivial to see that the dynamical model of the average queue size can be further 

represented by a first order piecewise nonlinear difference equation as follows: 

( )
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kq  0≥∀k . 

Due to the physical nature of both the parameters and the variables of the RED algorithm, it is 

assumed that all the parameters ( minq , maxq , maxp , w , C , M , N , K , d  and rwnd ) are 

nonnegative and real-valued. Also, it is assumed that 10 max ≤≤ p , maxmin qq < , ( ) 00 ≥q  and 

10 << w . 

In this model, the dynamics of the average queue size of the RED algorithm at the gateway is 

considered. The first order piecewise nonlinear dynamical model reflects the TCP congestion 
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control mechanism and takes into account the slow start phase and timeout events. 

 

III. NONLINEAR BEHAVIORS OF AVERAGE QUEUE SIZE OF RED ALGORITHM 

It is well known that the average queue size of the RED algorithm could exhibit a bifurcation 

behavior. Figure 1 shows the bifurcation diagram as w  varies when 1=N , 
2
3

=K , 

61054.1 ×=C , 0228.0=d , 4000=M , 1000=rwnd , 5min =q , 15max =q , 1.0max =p , 

( ) 00 =q  and ( ) 00 =p . Figure 2 shows the frequency spectrum of the steady state drop probability, 

the steady state phase diagram, the steady state drop probability and the steady state average queue 

size when 22.0=w , while Figure 3, Figure 4 and Figure 5 show the corresponding numerical 

computer simulation results when 23.0=w , 25.0=w  and 275.0=w , respectively. It can be seen 

from Figure 1 to Figure 5 that as w  increases, the steady state drop probability and the steady state 

average queue size exhibit the limit cycle and the random like chaotic behaviors consecutively. 

When 27.0≥w , the steady state drop probability at some time instants is equal to one. Hence, it 

can be seen from Figure 5 that there are two straight lines, one located at ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

=  

and another one located at ( ) 1=kp , exhibited on the steady state phase diagram. On the other hand, 

when 27.0<w , it can be seen from Figure 3 that there is only one single straight line, located at 

( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , exhibited on the steady state phase diagram. The importance of observing 

the above nonlinear phenomena is that network engineers could design both the system parameters 

and the initial conditions so that the average queue size of the RED algorithm would not exhibit 

these nonlinear behaviors. 



International Journal of Bifurcation and Chaos 

 7

 

Figure 1. Bifurcation diagram as w  varies. 
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Figure 2. 22.0=w . (a) Frequency spectrum of the steady state drop probability. (b) Steady state 

phase diagram. (c) Steady state drop probability. (d) Steady state average queue size. 
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Figure 3. 23.0=w . (a) Frequency spectrum of the steady state drop probability. (b) Steady state 

phase diagram. (c) Steady state drop probability. (d) Steady state average queue size. 
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Figure 4. 25.0=w . (a) Frequency spectrum of the steady state drop probability. (b) Steady state 

phase diagram. (c) Steady state drop probability. (d) Steady state average queue size. 
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Figure 5. 275.0=w . (a) Frequency spectrum of the steady state drop probability. (b) Steady state 

phase diagram. (c) Steady state drop probability. (d) Steady state average queue size. 

 

IV. SYMBOLIC DYNAMICAL MODEL AND CONDITIONS FOR EXHIBITING FIXED 

POINT BEHAVIORS 

A. Symbolic dynamical model 

It is obvious to see that different values of ( )kq  corresponds to different dynamical 

equations. To analyze the behaviors of the average queue size of the RED algorithm, the set of 

( )kq  is partitioned into fifteen different subsets, denoted as iS  for 15,,1L=i . These subsets are 

represented by fifteen different symbols, denoted as ( )ksi  for 15,,1L=i  and 0≥∀k , in which 

only one symbol is activated in each subset. That is, if ( ) iSkq ∈ , then ( ) 1=ksi  and ( ) 0=ks j  for 

ij ≠  and 0≥∀k . Denote ( ) ( ) ( )[ ]Tksksk 151 L=s  0≥∀k , where the superscript T  denotes 

the transpose operator. The model of the average queue size of the RED algorithm can be analyzed 

via a symbolic dynamical model, where symbolic dynamics is a system dynamics in which some 

signals in the system are multileveled. The dynamics of the average queue size of the RED 

algorithm in each subset is as follows: 

A.1 Dynamics of the average queue size in the first subset 

If ( ) min0 qkq <≤  and ( )
w

M
CdrwndNwq

kq
w

rwndN
M
Cdw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

11

min

, then ( ) 0=kp , 
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( ) ( ) ( ) ⎟
⎠
⎞

⎜
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⎛ −+−=+

M
CdrwndNwkqwkq 11  and ( ) 01 =+kp . Denote ( ) 11 =ks  and ( ) 0=ks j  for 

1≠j . 

Proof: 

It is obvious to see that if ( ) min0 qkq <≤ , then ( ) 0=kp . Hence, we have 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−=+

M
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, 

we have ( ) ( ) min10 q
M
CdrwndNwkqw <⎟

⎠
⎞

⎜
⎝
⎛ −+−≤ . This implies that ( ) min10 qkq <+≤ . Hence, we 

have ( ) 01 =+kp . This completes the proof.  

A.2 Dynamics of the average queue size in the second subset 

If ( ) min0 qkq <≤  and ( )
w

M
CdrwndNwq

kq
−

⎟
⎠
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⎜
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( ) 11 =+kp . This completes the proof.  

A.3 Dynamics of the average queue size in the third subset 

If ( ) min0 qkq <≤  and ( )
w
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Denote ( ) 13 =ks  and ( ) 0=ks j  for 3≠j . 

Proof: 

It is obvious to see that if ( ) min0 qkq <≤ , then ( ) 0=kp . Hence, we have 
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A.4 Dynamics of the average queue size in the fourth subset 
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It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
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( ) minmin

max

minmax1 q
M
Cd

kp
NKwqkp

p
qqw <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−  

and 

( ) ( )
( )

01 min
max

minmax ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−

M
Cd

kp
NKwqkp

p
qqw . 

Hence we have 

( ) ( )
( ) minmin

max

minmax10 q
M
Cd

kp
NKwqkp

p
qqw <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−≤ , 
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( ) ( )
( ) min

max
minmax

min

10 q
M
Cd

p
qq
qkq

NKwkqw <

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−≤  and ( ) min10 qkq <+≤ . Consequently, we have 

( ) 01 =+kp . This completes the proof.  

A.5 Dynamics of the average queue size in the fifth subset 

Denote 

( ) ( )( ) ( )( ) ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

≥⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−−
≡ 011: 2

1

maxmin2
3

max

minmax
5 kpq

M
wCdqwwNKkp

p
qqwkpP  and 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∈+
−

=≡ 5min
max

minmax
5  and : Pkpqkp

p
qqkqkqQ . If ( ) maxmin qkqq <≤ , 

( ) min

2

max

minmax q
Cd

MNK
p

qqkq +⎟
⎠
⎞

⎜
⎝
⎛−

≤  and ( ) 5Qkq ∈ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , 

( ) ( ) ( )
( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−=+
M
Cd

p
qq
qkq

NKwkqwkq

max
minmax

min

11  and ( ) 11 =+kp . Denote ( ) 15 =ks  and 

( ) 0=ks j  for 5≠j . 

Proof: 

It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= . Since 

( ) min

2

max

minmax q
Cd

MNK
p

qqkq +⎟
⎠
⎞

⎜
⎝
⎛−

≤ , this implies that ( ) 2

max
minmax

min ⎟
⎠
⎞

⎜
⎝
⎛≤

−
−

Cd
MNKp

qq
qkq , ( )

2

⎟
⎠
⎞

⎜
⎝
⎛≤

Cd
MNKkp , 

( )kp
MN

K
Cd

≤  and 
( )

0≥−
K

Cd
kp

MN . Hence, we have 

( ) ( ) ( )
( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−=+
M
Cd

p
qq
qkq

NKwkqwkq

max
minmax

min

11 . 
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As ( ) 5Qkq ∈ , we have ( ) 5Pkp ∈ . In other words, we have 

( )( ) ( )( ) ( ) ( )( ) 011
2
1

maxmin2
3

max

minmax ≥⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−− kpq
M

wCdqwwNKkp
p

qqw . 

This implies that 

( )( ) ( )
( )

( ) 011
maxmin

max

minmax ≥−−−++
−− q

M
wCdqw

kp
wNKkp

p
qqw , 

( ) ( )
( ) maxmin

max

minmax1 q
M
Cd

kp
NKwqkp

p
qqw ≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
− , 

( ) ( )
( ) max

max
minmax

min

1 q
M
Cd

p
qq
qkq

NKwkqw ≥

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−  and ( ) max1 qkq ≥+ . Hence, we have ( ) 11 =+kp . 

This completes the proof.  

A.6 Dynamics of the average queue size in the sixth subset 

Denote 
( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−−

≥⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−−

≡
011 and

011:

2
1

maxmin2
3

max

minmax

2
1

minmin2
3

max

minmax

6

kpq
M

wCdqwwNKkp
p

qqw

kpq
M

wCdqwwNKkp
p

qqwkp
P  

and ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∈+
−

=≡ 6min
max

minmax
6  and : Pkpqkp

p
qqkqkqQ . If ( ) maxmin qkqq <≤ , 

( ) min

2

max

minmax q
Cd

MNK
p

qqkq +⎟
⎠
⎞

⎜
⎝
⎛−

≤  and ( ) 6Qkq ∈ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , 

( ) ( ) ( )
( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−=+
M
Cd

p
qq
qkq

NKwkqwkq

max
minmax

min

11  and 
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( )

( ) ( )
( )

max
minmax

min

max
minmax

min

1

1 p
qq

q
M
Cd

p
qq
qkq

NKwkqw

kp
−

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

=+ . 

Denote ( ) 16 =ks  and ( ) 0=ks j  for 6≠j . 

Proof: 

It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= . Since 

( ) min

2

max

minmax q
Cd

MNK
p

qqkq +⎟
⎠
⎞

⎜
⎝
⎛−

≤ , this implies that ( ) 2

max
minmax

min ⎟
⎠
⎞

⎜
⎝
⎛≤

−
−

Cd
MNKp

qq
qkq , ( )

2

⎟
⎠
⎞

⎜
⎝
⎛≤

Cd
MNKkp , 

( )kp
MN

K
Cd

≤  and 
( )

0≥−
K

Cd
kp

MN . Hence, we have 

( ) ( ) ( )
( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−=+
M
Cd

p
qq
qkq

NKwkqwkq

max
minmax

min

11 . 

As ( ) 6Qkq ∈ , we have ( ) 6Pkp ∈ . In other words, we have 

( )( ) ( )( ) ( ) ( )( ) 011
2
1

minmin2
3

max

minmax ≥⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−− kpq
M

wCdqwwNKkp
p

qqw  

and 

( )( ) ( )( ) ( ) ( )( ) 011
2
1

maxmin2
3

max

minmax <⎟
⎠
⎞

⎜
⎝
⎛ −−−++

−− kpq
M

wCdqwwNKkp
p

qqw . 

This implies that 

( )( ) ( )
( )

( ) 011
minmin

max

minmax ≥−−−++
−− q

M
wCdqw

kp
wNKkp

p
qqw  

and 

( )( ) ( )
( )

( ) 011
maxmin

max

minmax <−−−++
−− q

M
wCdqw

kp
wNKkp

p
qqw , 

as well as 
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( ) ( )
( ) minmin

max

minmax1 q
M
Cd

kp
NKwqkp

p
qqw ≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−  

and 

( ) ( )
( ) maxmin

max

minmax1 q
M
Cd

kp
NKwqkp

p
qqw <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
− . 

Hence, we have 

( ) ( )
( ) maxmin

max

minmax
min 1 q

M
Cd

kp
NKwqkp

p
qqwq <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−≤ , 

( ) ( )
( ) max

max
minmax

min
min 1 q

M
Cd

p
qq
qkq

NKwkqwq <

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−≤  and ( ) maxmin 1 qkqq <+≤ . Consequently, we 

have ( ) ( )

( ) ( )
( )

max
minmax

min

max
minmax

min

max
minmax

min

1

11 p
qq

q
M
Cd

p
qq
qkq

NKwkqw

p
qq

qkqkp
−

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

=
−
−+

=+ . This 

completes the proof.  

A.7 Dynamics of the average queue size in the seventh subset 

If ( ) maxmin qkqq <≤ , ( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛>  and ( )

w
qkq
−

<≤
1

0 min , then 

( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , ( ) ( ) ( )kqwkq −=+ 11  and ( ) 01 =+kp . Denote ( ) 17 =ks  and ( ) 0=ks j  

for 7≠j . 

Proof: 

It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= . Since 

( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛> , this implies that ( ) 2

max
minmax

min ⎟
⎠
⎞

⎜
⎝
⎛>

−
−

Cd
MNKp

qq
qkq , ( )

2

⎟
⎠
⎞

⎜
⎝
⎛>

Cd
MNKkp , 
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( )kp
MN

K
Cd

>  and 
( )

0<−
K

Cd
kp

MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As ( )
w

qkq
−

<≤
1

0 min , 

we have ( ) ( ) min10 qkqw <−≤ , ( ) min10 qkq <+≤  and ( ) 01 =+kp . This completes the proof.  

A.8 Dynamics of the average queue size in the eighth subset 

If ( ) maxmin qkqq <≤ , ( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛>  and ( )

w
qkq
−

≥
1

max , then 

( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , ( ) ( ) ( )kqwkq −=+ 11  and ( ) 11 =+kp . Denote ( ) 18 =ks  and ( ) 0=ks j  

for 8≠j . 

Proof: 

It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= . Since 

( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛> , this implies that ( ) 2

max
minmax

min ⎟
⎠
⎞

⎜
⎝
⎛>

−
−

Cd
MNKp

qq
qkq , ( )

2

⎟
⎠
⎞

⎜
⎝
⎛>

Cd
MNKkp , 

( )kp
MN

K
Cd

>  and 
( )

0<−
K

Cd
kp

MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As ( )
w

qkq
−

≥
1

max , we 

have ( ) ( ) max1 qkqw ≥− , ( ) max1 qkq ≥+  and ( ) 11 =+kp . This completes the proof.  

A.9 Dynamics of the average queue size in the ninth subset 

If ( ) maxmin qkqq <≤ , ( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛>  and ( )

w
qkq

w
q

−
≥>

− 11
minmax , then 

( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= , ( ) ( ) ( )kqwkq −=+ 11  and ( ) ( ) ( )
max

minmax

min11 p
qq

qkqwkp
−

−−
=+ . Denote 

( ) 19 =ks  and ( ) 0=ks j  for 9≠j . 

Proof: 

It is obvious to see that if ( ) maxmin qkqq <≤ , then ( ) ( )
max

minmax

min p
qq
qkqkp

−
−

= . Since 

( ) min
max

minmax
2

q
p

qq
Cd

MNKkq +
−

⎟
⎠
⎞

⎜
⎝
⎛> , this implies that ( ) 2

max
minmax

min ⎟
⎠
⎞

⎜
⎝
⎛>

−
−

Cd
MNKp

qq
qkq , ( )

2

⎟
⎠
⎞

⎜
⎝
⎛>

Cd
MNKkp , 

( )kp
MN

K
Cd

>  and 
( )

0<−
K

Cd
kp

MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As 
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( )
w

qkq
w

q
−

≥>
− 11

minmax , we have ( ) ( ) minmax 1 qkqwq ≥−> , ( ) minmax 1 qkqq ≥+>  and 

( ) ( ) ( ) ( )
max

minmax

min
max

minmax

min 111 p
qq

qkqwp
qq

qkqkp
−

−−
=

−
−+

=+ . This completes the proof.  

A.10 Dynamics of the average queue size in the tenth subset 

If ( ) maxqkq ≥ , 
Cd

MNK
≤1  and ( )

w
M
CdNKwq

kq
w

NK
M
Cdw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

11

min

, then ( ) 1=kp , 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11  and ( ) 01 =+kp . Denote ( ) 110 =ks  and ( ) 0=ks j  for 

10≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )
Cd

MNKkp ≤=1 , this implies 

that 
( )kp

MN
K

Cd
≤  and 

( )
0≥−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11 . 

As ( )
w

M
CdNKwq

kq
w

NK
M
Cdw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

11

min

, we have ( ) ( ) min10 q
M
CdNKwkqw <⎟

⎠
⎞

⎜
⎝
⎛ −+−≤ , 

( ) min10 qkq <+≤  and ( ) 01 =+kp . This completes the proof.  

A.11 Dynamics of the average queue size in the eleventh subset 

If ( ) maxqkq ≥ , 
Cd

MNK
≤1  and ( )

w
M
CdNKwq

kq
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥
1

max

, then ( ) 1=kp , 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11  and ( ) 11 =+kp . Denote ( ) 111 =ks  and ( ) 0=ks j  for 

11≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )
Cd

MNKkp ≤=1 , this implies 

that 
( )kp

MN
K

Cd
≤  and 

( )
0≥−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11 . 

As ( )
w

M
CdNKwq

kq
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥
1

max

, we have ( ) ( ) max1 q
M
CdNKwkqw ≥⎟

⎠
⎞

⎜
⎝
⎛ −+− , ( ) max1 qkq ≥+  and 
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( ) 11 =+kp . This completes the proof.  

A.12 Dynamics of the average queue size in the twelfth subset 

If ( ) maxqkq ≥ , 
Cd

MNK
≤1  and ( )

w
M
CdNKwq

kq
w

M
CdNKwq

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥>
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

11

minmax

, then 

( ) 1=kp , ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11  and 

( )
( ) ( )

max
minmax

min1
1 p

qq

q
M
CdNKwkqw

kp
−

−⎟
⎠
⎞

⎜
⎝
⎛ −+−

=+ . 

Denote ( ) 112 =ks  and ( ) 0=ks j  for 12≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )
Cd

MNKkp ≤=1 , this implies 

that 
( )kp

MN
K

Cd
≤  and 

( )
0≥−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −+−=+

M
CdNKwkqwkq 11 . 

As ( )
w

M
CdNKwq

kq
w

M
CdNKwq

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥>
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

11

minmax

, we have 

( ) ( ) minmax 1 q
M
CdNKwkqwq ≥⎟

⎠
⎞

⎜
⎝
⎛ −+−> , 

( ) minmax 1 qkqq ≥+>  and ( ) ( ) ( ) ( )
max

minmax

min

max
minmax

min
1

11 p
qq

q
M
CdNKwkqw

p
qq

qkqkp
−

−⎟
⎠
⎞

⎜
⎝
⎛ −+−

=
−
−+

=+ . 

This completes the proof.  

A.13 Dynamics of the average queue size in the thirteenth subset 

If ( ) maxqkq ≥ , 1<
Cd

MNK  and ( )
w

qkq
−

<≤
1

0 min , then ( ) 1=kp , ( ) ( ) ( )kqwkq −=+ 11  and 

( ) 01 =+kp . Denote ( ) 113 =ks  and ( ) 0=ks j  for 13≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )kp
Cd

MNK
=<1 , this implies 

that 
( )kp

MN
K

Cd
>  and 

( )
0<−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As 
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( )
w

qkq
−

<≤
1

0 min , we have ( ) ( ) min10 qkqw <−≤ , ( ) min10 qkq <+≤  and ( ) 01 =+kp . This 

completes the proof.  

A.14 Dynamics of the average queue size in the fourteenth subset 

If ( ) maxqkq ≥ , 1<
Cd

MNK  and ( )
w

qkq
−

≥
1

max , then ( ) 1=kp , ( ) ( ) ( )kqwkq −=+ 11  and 

( ) 11 =+kp . Denote ( ) 114 =ks  and ( ) 0=ks j  for 14≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )kp
Cd

MNK
=<1 , this implies 

that 
( )kp

MN
K

Cd
>  and 

( )
0<−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As ( )

w
qkq
−

≥
1

max , 

we have ( ) ( ) max1 qkqw ≥− , ( ) max1 qkq ≥+  and ( ) 11 =+kp . This completes the proof.  

A.15 Dynamics of the average queue size in the fifteenth subset 

If ( ) maxqkq ≥ , 1<
Cd

MNK  and ( )
w

qkq
w

q
−

≥>
− 11

minmax , then ( ) 1=kp , ( ) ( ) ( )kqwkq −=+ 11  

and ( ) ( ) ( )
max

minmax

min11 p
qq

qkqwkp
−

−−
=+ . Denote ( ) 115 =ks  and ( ) 0=ks j  for 15≠j . 

Proof: 

It is obvious to see that if ( ) maxqkq ≥ , then ( ) 1=kp . Since ( )kp
Cd

MNK
=<1 , this implies 

that 
( )kp

MN
K

Cd
>  and 

( )
0<−

K
Cd

kp
MN . Hence, we have ( ) ( ) ( )kqwkq −=+ 11 . As 

( )
w

qkq
w

q
−

≥>
− 11

minmax , we have ( ) ( ) minmax 1 qkqwq ≥−> , ( ) minmax 1 qkqq ≥+>  and 

( ) ( ) ( ) ( )
max

minmax

min
max

minmax

min 111 p
qq

qkqwp
qq

qkqkp
−

−−
=

−
−+

=+ . This completes the proof.  

( )kq  could be switched among these fifteen subsets according to the value of ( )ks . Denote 

wA −≡1 , [ ]1111 ⎟
⎠
⎞

⎜
⎝
⎛ −≡

M
CdrwndNwB , ( )( )

( )
[ ]111

max
minmax

min
2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

≡
M
Cd

p
qq
qkq

NKwkqB , 
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[ ]0003 ≡B , [ ]1114 ⎟
⎠
⎞

⎜
⎝
⎛ −≡

M
CdNKwB , [ ]0005 ≡B  and 

( )( ) ( )( )[ ]54321 BBBBBB kqkq ≡′ , 

then the dynamics of the averages queue size of the RED algorithm can be represented by 

( ) ( ) ( )kukqAkq +=+1 , where ( ) ( )( ) ( )kkqku sB′= . This model can be represented via a closed loop 

feedback system having a linear time-invariant plant with the four state space constants A , 1, 1 

and 0, and a positive nonlinear feedback system with its input-output relationship governed by 

( ) ( )( ) ( )kkqku sB′= . 

This proposed symbolic dynamical model is useful for designing both the system parameters 

and the initial conditions so that the average queue size of the RED algorithm would converge to a 

fixed point. Also, the boundedness of the average queue size of the RED algorithm could be 

determined easily via the proposed symbolic dynamical model. As 10 << w , A  is strictly stable. 

If both the system parameters and the initial conditions is designed so that ( )ku  is bounded, then 

( )kq  is guaranteed to be bounded. 

It is worth noting that not all subsets contain a fixed point. The conditions on both the system 

parameters and the initial conditions that the average queue size of the RED algorithm would 

converge to a fixed point are derived in Section B as follows. 

B. Conditions for exhibiting fixed point behaviors 

Since the average queue size of the RED algorithm is required to converge to a fixed point, it 

is important to characterize the conditions on both the system parameters and the initial conditions 

so that the average queue size of the RED algorithm would converge to a fixed point. These 

conditions are summarized in the following lemmas: 

Lemma 1 

The fixed point of the average queue size of the RED algorithm would not be located at 

15141312109875432 SSSSSSSSSSSS UUUUUUUUUUU . 

Proof: 
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As ( ) ( )1+≠ kpkp  for ( ) 15131210875432 SSSSSSSSSSkq UUUUUUUUU∈ , the fixed 

point of the average queue size of the RED algorithm could not be located at 

15131210875432 SSSSSSSSSS UUUUUUUUU . As the dynamics of the average queue size of the 

RED algorithm for ( ) 14Skq ∈  is governed by ( ) ( ) ( )kqwkq −=+ 11 , if the fixed point is located at 

14S , then the fixed point has to be located at the origin, but it contradicts to ( ) maxqkq ≥ . Hence, the 

fixed point of the average queue size of the RED algorithm could not be located at 14S . Similarly, 

the fixed point of the average queue size of the RED algorithm could not be located at 9S . This 

completed the proof.  

Although the dynamics of the average queue size for ( ) 1161 SSSkq UU∈  is characterized, it 

is not guaranteed that ( ) 11 Skq ∈+  for ( ) 1Skq ∈ , ( ) 61 Skq ∈+  for ( ) 6Skq ∈  and ( ) 111 Skq ∈+  

for ( ) 11Skq ∈ . Further conditions are required to be imposed and the details are discussed in the 

following lemmas. 

Lemma 2 

If 00 ≥∃k  such that 

i) minq
M
CdrwndN <− , 

ii) 
2
1

≤w  and 0≥−
M
CdrwndN  

and 

iii) ( ) 101 =ks , 

then 

i) ( ) 11 =ks  0kk ≥∀ , 

ii) ( ) 0=kp  0kk ≥∀  

and 
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iii) ( )
M
CdrwndNkq −→  as +∞→k . 

Proof: 

As ( ) 101 =ks , this implies that ( ) min0 10 qkq <+≤ . Since 
2
1

≤w  and 0≥−
M
CdrwndN , we 

have ( ) 012 ≤⎟
⎠
⎞

⎜
⎝
⎛ −−

M
CdrwndNw , ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−≤⎟

⎠
⎞

⎜
⎝
⎛ −

M
CdrwndNw

M
CdrwndNw 1  and 

M
CdrwndN

w
M
CdrwndNw

−≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

1
. On the other hand, as minq

M
CdrwndN <− , we have 

⎟
⎠
⎞

⎜
⎝
⎛ −−<⎟

⎠
⎞

⎜
⎝
⎛ −−−

M
CdrwndNwq

M
CdrwndNw

M
CdrwndN min , 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−<⎟

⎠
⎞

⎜
⎝
⎛ −−

M
CdrwndNwq

M
CdrwndNw min1 , 

w
M
CdrwndNwq

M
CdrwndN

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<−
1

min

 and 

w
M
CdrwndNwq

M
CdrwndN

w
M
CdrwndNw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<−≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

11

min

. Since ( ) 101 =ks , we have 

( )
w

M
CdrwndNwq

kq
w

rwndN
M
Cdw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

11

min

0 . As ( )10 +kq  is a convex combinational of 

( )0kq  and 
M
CdrwndN − , we have ( )

w
M
CdrwndNwq

kq
w

M
CdrwndNw

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

<+≤
−

⎟
⎠
⎞

⎜
⎝
⎛ −

1
1

1

min

0 . This 

implies that ( ) 10 1 Skq ∈+ . Similarly, we have ( ) 1Skq ∈  0kk ≥∀ . As 

( ) ( ) ( )
M
CdrwndN

M
CdrwndNkqwkkq k −+⎟

⎠
⎞

⎜
⎝
⎛ +−−=+ 00 1  0≥∀k , 

we have ( )
M
CdrwndNkq −→  as +∞→k . This completes the proof.  

This lemma characterizes the condition on both the system parameters and the initial 

conditions that the average queue size of the RED algorithm would converge to a fixed point in the 

first subset. It is worth noting that if the second condition in Lemma 2 is changed to 
2
1

≥w  and 

0≤−
M
CdrwndN , the same result would been obtained. However, due to the physical nature of 

( )kq , ( ) 0≥kq  0≥∀k . Since ( )
M
CdrwndNkq −→  as +∞→k , the physical nature of ( )kq  is 
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violated. Hence, this case has not been considered in Lemma 2. 

Lemma 3 

If 00 ≥∃k  such that 

i) maxq
M
CdNK ≥−  

and 

ii) ( ) 1011 =ks , 

then 

i) ( ) 111 =ks  0kk ≥∀ , 

ii) ( ) 1=kp  0kk ≥∀  

and 

iii) ( )
M
CdNKkq −→  as +∞→k . 

Proof: 

As ( ) 1011 =ks , this implies that ( ) max0 1 qkq ≥+ . Since maxq
M
CdNK ≥− , we have 

⎟
⎠
⎞

⎜
⎝
⎛ −−≥⎟

⎠
⎞

⎜
⎝
⎛ −−−

M
CdNKwq

M
CdNKw

M
CdNK max , ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−≥⎟

⎠
⎞

⎜
⎝
⎛ −−

M
CdNKwq

M
CdNKw max1  and 

w
M
CdNKwq

M
CdNK

−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥−
1

max

. As ( ) 1011 =ks , we have ( )
w

M
CdNKwq

kq
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥
1

max

0 . Since 

( )10 +kq  is a convex combinational of ( )0kq  and 
M
CdNK − , we have 

( )
w

M
CdNKwq

kq
−

⎟
⎠
⎞

⎜
⎝
⎛ −−

≥+
1

1
max

0 . This implies that ( ) 110 1 Skq ∈+ . Similarly, we have ( ) 11Skq ∈  

0kk ≥∀ .  As ( ) ( ) ( )
M
CdNK

M
CdNKkqwkkq k −+⎟

⎠
⎞

⎜
⎝
⎛ +−−=+ 00 1  0≥∀k , we have 

( )
M
CdNKkq −→  as +∞→k . This completes the proof.  

This lemma characterizes the condition on both the system parameters and the initial 

conditions that the average queue size of the RED algorithm would converge to a fixed point in the 
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eleventh subset. 

Lemma 4 

If 00 ≥∃k  such that 

i) ( ) 106 =ks , 

ii) ( ) ( )
( )

2

max
max

minmax
min

max
minmax

min0
01

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

M
Cdq

NK
p

qqq
M
Cd

p
qq
qkq

NKwkqw , 

iii) ( ) ( )
( )

2

min
max

minmax
min

max
minmax

min0
01

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+≤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

M
Cdq

NK
p

qqq
M
Cd

p
qq
qkq

NKwkqw  

and 

iv) ( ) ( )
( )

2

max

minmax
min

max
minmax

min0
01 ⎟

⎠
⎞

⎜
⎝
⎛−

+≤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−
Cd

MNK
p

qqq
M
Cd

p
qq
qkq

NKwkqw , 

then 

( ) 16 =ks  0kk ≥∀ . 

Proof: 

As ( ) 106 =ks , we have ( ) min0max 1 qkqq ≥+> . Since 

( ) ( )
( )

2

max

minmax
min

max
minmax

min0
01 ⎟

⎠
⎞

⎜
⎝
⎛−

+≤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−
Cd

MNK
p

qqq
M
Cd

p
qq
qkq

NKwkqw , 

we have ( )
2

max

minmax
min0 1 ⎟

⎠
⎞

⎜
⎝
⎛−

+≤+
Cd

MNK
p

qqqkq . As 
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( ) ( )
( )

2

max
max

minmax
min

max
minmax

min0
01

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

M
Cdq

NK
p

qqq
M
Cd

p
qq
qkq

NKwkqw  

and 

( ) ( )
( )

2

min
max

minmax
min

max
minmax

min0
01

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+≤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+−

M
Cdq

NK
p

qqq
M
Cd

p
qq
qkq

NKwkqw , 

we have ( )

2

min
max

minmax
min0

2

max
max

minmax
min 1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+≤+<

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+

M
Cdq

NK
p

qqqkq

M
Cdq

NK
p

qqq . This implies 

that ( )
2

min

max
minmax

min0

2

max

1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
≤

−
−+

<
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
M
Cdq

NKp
qq

qkq

M
Cdq

NK . This further implies that 

( )

2

min

0

2

max

1
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
≤+<

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
M
Cdq

NKkp

M
Cdq

NK . Consequently, we have 
( ) max

0
min 1

q
M
Cd

kp
NKq <−

+
≤ . 

This further implies that the convex combinational of minq  and 
( ) M

Cd
kp

NK
−

+10

 is larger than or 

equal to minq , that is ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
+−≤

M
Cd

kp
NKwqwq

1
1

0
minmin . Similarly, the convex combinational 

of maxq  and 
( ) M

Cd
kp

NK
−

+10

 is smaller than maxq , that is ( )
( ) max

0
max 1

1 q
M
Cd

kp
NKwqw <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
+− . 

Since ( ) min0max 1 qkqq ≥+> , we have  ( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
++−≤

M
Cd

kp
NKwkqwq

1
11

0
0min  and 

( ) ( )
( ) max

0
0 1

11 q
M
Cd

kp
NKwkqw <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
++− . In other words, we have 
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( ) ( )
( ) max

0
0min 1

11 q
M
Cd

kp
NKwkqwq <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
++−≤ , 

( ) ( ) ( )
( ) max

0
min

max

0minmax
min 1

11 q
M
Cd

kp
NKwq

p
kpqqwq <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−
−≤ , 

( ) ( ) ( )
( )

( ) 01
1

11 minmin
0max

0minmax ≥−−−+
+

+
+−

− q
M

wCdqw
kp

NKw
p

kpqqw  

and ( ) ( ) ( )
( )

( ) 01
1

11 maxmin
0max

0minmax <−−−+
+

+
+−

− q
M

wCdqw
kp

NKw
p

kpqqw . Hence, we have 

( ) ( ) ( )( ) ( ) ( )( ) 01111 2
1

0minmin
max

2
3

0minmax ≥+⎟
⎠
⎞

⎜
⎝
⎛ −−−++

+−
− kpq

M
wCdqwwNK

p
kpqqw  

and ( ) ( ) ( )( ) ( ) ( )( ) 01111 2
1

0maxmin
max

2
3

0minmax <+⎟
⎠
⎞

⎜
⎝
⎛ −−−++

+−
− kpq

M
wCdqwwNK

p
kpqqw . This further 

implies that ( ) 60 1 Pkp ∈+  and ( ) 60 1 Qkq ∈+ . Similarly, we have ( ) 6Skq ∈  0kk ≥∀ . This 

completes the proof.  

Although Lemma 4 characterizes the conditions on ( ) 6Skq ∈  0kk ≥∀  if ( ) 60 Skq ∈ , it does 

not guarantee the existence of a fixed point. To guarantee the existence of a fixed point, the 

following lemma is required: 

Lemma 5 

Define ( )∗∗ qp ,  such that 
( )

min
max

minmax q
p

pqq
M
Cd

p
NKq +

−
=−=

∗

∗

∗ . Then 

( ) ∗

∗

∗ =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+− q

M
Cd

p
NKwqw1 . 

Proof: 

As ( ) ( ) ∗

∗∗∗∗

∗ =−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+− q

M
Cd

p
NK

M
Cd

p
NKw

M
Cd

p
NKw

M
Cd

p
NKwqw 11 , this 

completes the proof.  

Obviously, ( )∗∗ qp ,  is a fixed point based on the dynamics defined in the sixth subset. 
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However, even though there exists a fixed point, it does not guarantee that this fixed point would be 

located at 6S  and satisfy Lemma 4. Further conditions are required to be imposed and the details 

are discussed in following lemma. Denote the set ( ){ }satisfied. is 4 Lemma:60 Skq ∈≡Ω . 

Lemma 6 

If 

i) ∗≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+ q

M
Cdq

NK
p

qqqq

2

min
max

minmax
minmin ,max  

and 

ii) 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛−

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+<∗

max

2

max

minmax
min

2

max
max

minmax
min ,,min q

Cd
MNK

p
qqq

M
Cdq

NK
p

qqqq , 

then 

Ω∈∗q . 

Proof: 

Since ∗≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+ q

M
Cdq

NK
p

qqqq

2

min
max

minmax
minmin ,max  and 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛−

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+<∗

max

2

max

minmax
min

2

max
max

minmax
min ,,min q

Cd
MNK

p
qqq

M
Cdq

NK
p

qqqq , 

this implies that  maxmin qqq <≤ ∗ , min

2

max

minmax q
Cd

MNK
p

qqq +⎟
⎠
⎞

⎜
⎝
⎛−

<∗  and 

2

max
max

minmax
min

2

min
max

minmax
min

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+<≤

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

−
+ ∗

M
Cdq

NK
p

qqqq

M
Cdq

NK
p

qqq . 

This further implies that ∗q  is the fixed point in Ω . This completes the proof.  
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Although Ω∈∗q , in general it does not guarantee that ( ) Ω∈∀ 0kq  ( )0kq  would converge 

to ∗q . Further conditions are required to be imposed and the details are discussed in following 

lemma. Define a map ℜ→ΩΔ :V  such that 
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and define 
( )

( )( ) ∗

Ω∈
Δ≡Δ VkqV

kq 0
0

max . 

Lemma 7 

Suppose that ∗q  satisfies the conditions in Lemma 6, ( ) Ω∈0kq  and 0<Δ ∗V , then 

( ) ( )( ) ( )∗∗→ qpkqkp ,, . 

Proof: 

Denote ( ) ( )( ) ( )( )22 ∗∗ −+−≡ qkqpkpkV  0kk ≥∀ . Obviously, ( ) 0≥kV  0kk ≥∀ . Since ∗q  

satisfies the conditions in Lemma 6, Ω∈∗q . As 
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and 0<Δ ∗V , this implies that ( ) ( ) 01 00 <−+ kVkV  ( ) Ω∈∀ 0kq . Since ( ) Ω∈0kq , by the principle 

of the Lyapunov stability theorem, we have ( ) ( )( ) ( )∗∗→ qpkqkp ,, . This completes the proof.  

Lemma 4 to Lemma 7 characterize the conditions on both the system parameters and the 

initial conditions that the average queue size of the RED algorithm would converge to a fixed point 

in the sixth subset. As there is no fixed point in other subsets, the state vectors in these other subsets 

will not stay in these subsets. 

 

V. CONCLUSION 

This paper proposes a symbolic dynamical model of the average queue size of the RED 

algorithm and characterizes the conditions on both the system parameters and the initial conditions 

that the average queue size of the RED algorithm would converge to a fixed point. By employing 
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the symbolic dynamical system approach, both the system parameters and the initial conditions can 

be designed so that the average queue size of the RED algorithm would converge to a fixed point 

behavior. 
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