1,479 research outputs found

    Integrative Genomic Data Mining for Discovery of Potential Blood-Borne Biomarkers for Early Diagnosis of Cancer

    Get PDF
    Background: With the arrival of the postgenomic era, there is increasing interest in the discovery of biomarkers for the accurate diagnosis, prognosis, and early detection of cancer. Blood-borne cancer markers are favored by clinicians, because blood samples can be obtained and analyzed with relative ease. We have used a combined mining strategy based on an integrated cancer microarray platform, Oncomine, and the biomarker module of the Ingenuity Pathways Analysis (IPA) program to identify potential blood-based markers for six common human cancer types. Methodology/Principal Findings: In the Oncomine platform, the genes overexpressed in cancer tissues relative to their corresponding normal tissues were filtered by Gene Ontology keywords, with the extracellular environment stipulated and a corrected Q value (false discovery rate) cut-off implemented. The identified genes were imported to the IPA biomarker module to separate out those genes encoding putative secreted or cell-surface proteins as blood-borne (blood/serum/plasma) cancer markers. The filtered potential indicators were ranked and prioritized according to normalized absolute Student t values. The retrieval of numerous marker genes that are already clinically useful or under active investigation confirmed the effectiveness of our mining strategy. To identify the biomarkers that are unique for each cancer type, the upregulated marker genes that are in common between each two tumor types across the six human tumors were also analyzed by the IPA biomarker comparison function. Conclusion/Significance: The upregulated marker genes shared among the six cancer types may serve as a molecular tool to complement histopathologic examination, and the combination of the commonly upregulated and unique biomarkers may serve as differentiating markers for a specific cancer. This approach will be increasingly useful to discover diagnostic signatures as the mass of microarray data continues to grow in the โ€˜omicsโ€™ era

    Multianalyte Tests for the Early Detection of Cancer: Speedbumps and Barriers

    Get PDF
    It has become very clear that a single molecular event is inadequate to accurately predict the biology (or pathophysiology) of cancer. Furthermore, using any single molecular event as a biomarker for the early detection of malignancy may not comprehensively identify the majority of individuals with that disease. Therefore, the fact that technologies have arisen that can simultaneously detect several, possibly hundreds, of biomarkers has propelled the field towards the development of multianalyte-based in vitro diagnostic early detection tests for cancer using body fluids such as serum, plasma, sputum, saliva, or urine. These multianalyte tests may be based on the detection of serum autoantibodies to tumor antigens, the presence of cancer-related proteins in serum, or the presence of tumor-specific genomic changes that appear in plasma as free DNA. The implementation of non-invasive diagnostic approaches to detect early stage cancer may provide the physician with evidence of cancer, but the question arises as to how the information will affect the pathway of clinical intervention. The confirmation of a positive result from an in vitro diagnostic cancer test may involve relatively invasive procedures to establish a true cancer diagnosis. If in vitro diagnostic tests are proven to be both specific, i.e. rarely produce false positive results due to unrelated conditions, and sufficiently sensitive, i.e. rarely produce false negative results, then such screening tests offer the potential for early detection and personalized therapeutics using multiple disease-related targets with convenient and non-invasive means. Here we discuss the technical and regulatory barriers inherent in development of clinical multianalyte biomarker assays

    Clinical Utility of Microarrays: Current Status, Existing Challenges and Future Outlook

    Get PDF
    Microarray-based clinical tests have become powerful tools in the diagnosis and treatment of diseases. In contrast to traditional DNA-based tests that largely focus on single genes associated with rare conditions, microarray-based tests are ideal for the study of diseases with underlying complex genetic causes. Several microarray based tests have been translated into clinical practice such as MammaPrint and AmpliChip CYP450. Additional cancer-related microarray-based tests are either in the process of FDA review or under active development, including Tissue of Tumor Origin and AmpliChip p53. All diagnostic microarray testing is ordered by physicians and tested by a Clinical Laboratories Improvement Amendment-certified (CLIA) reference laboratory. Recently, companies offering consumer based microarray testing have emerged. Individuals can order tests online and service providers deliver the results directly to the clients via a password-protected secure website. Navigenics, 23andMe and deCODE Genetics represent pioneering companies in this field. Although the progress of these microarray-based tests is extremely encouraging with the potential to revolutionize the recognition and treatment of common diseases, these tests are still in their infancy and face technical, clinical and marketing challenges. In this article, we review microarray-based tests which are currently approved or under review by the FDA, as well as the consumer-based testing. We also provide a summary of the challenges and strategic solutions in the development and clinical use of the microarray-based tests. Finally, we present a brief outlook for the future of microarray-based clinical applications

    Clinical application of high throughput molecular screening techniques for pharmacogenomics.

    Get PDF
    Genetic analysis is one of the fastest-growing areas of clinical diagnostics. Fortunately, as our knowledge of clinically relevant genetic variants rapidly expands, so does our ability to detect these variants in patient samples. Increasing demand for genetic information may necessitate the use of high throughput diagnostic methods as part of clinically validated testing. Here we provide a general overview of our current and near-future abilities to perform large-scale genetic testing in the clinical laboratory. First we review in detail molecular methods used for high throughput mutation detection, including techniques able to monitor thousands of genetic variants for a single patient or to genotype a single genetic variant for thousands of patients simultaneously. These methods are analyzed in the context of pharmacogenomic testing in the clinical laboratories, with a focus on tests that are currently validated as well as those that hold strong promise for widespread clinical application in the near future. We further discuss the unique economic and clinical challenges posed by pharmacogenomic markers. Our ability to detect genetic variants frequently outstrips our ability to accurately interpret them in a clinical context, carrying implications both for test development and introduction into patient management algorithms. These complexities must be taken into account prior to the introduction of any pharmacogenomic biomarker into routine clinical testing

    Modeling Oncogenic Signaling in Colon Tumors by Multidirectional Analyses of Microarray Data Directed for Maximization of Analytical Reliability

    Get PDF
    Clinical progression of colorectal cancers (CRC) may occur in parallel with distinctive signaling alterations. We designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence.Studies were performed on normal mucosa, adenoma, and carcinoma samples obtained during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a pathologist to control the relative cell type content. The measurements were done using Affymetrix GeneChip HG-U133plus2, and probe set data was generated using two normalization algorithms: MAS5.0 and GCRMA with least-variant set (LVS). The data was evaluated using pair-wise comparisons and data decomposition into singular value decomposition (SVD) modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Expressional profiles obtained in 105 samples of whole tissue sections were used to establish oncogenic signaling alterations in progression of CRC, while those representing 40 microdissected specimens were used to select differences in KEGG pathways between epithelium and mucosa. Based on a consensus of the results obtained by two normalization algorithms, and two probe set sorting criteria, we identified 14 and 17 KEGG signaling and metabolic pathways that are significantly altered between normal and tumor samples and between benign and malignant tumors, respectively. Several of them were also selected from the raw microarray data of 2 recently published studies (GSE4183 and GSE8671).Although the proposed strategy is computationally complex and laborโ€“intensive, it may reduce the number of false results

    Improving the prediction accuracy in classification using the combined data sets by ranks of gene expressions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The information from different data sets experimented under different conditions may be inconsistent even though they are performed with the same research objectives. More than that, even when the data sets were generated from the same platform, the data agreement may be affected by the technical variation among the laboratories. In this case, it is necessary to use the combined data set after adjusting the differences between such data sets, for detecting the more reliable information.</p> <p>Results</p> <p>The proposed method combines data sets posterior to the discretization of data sets based on the ranks of the gene expression ratios, and the statistical method is applied to the combined data set for predictive gene selection. The efficiency of the proposed method was evaluated using five colon cancer related data sets, which were experimented using cDNA microarrays with different RNA sources, and one experiment utilized oligonucleotide arrays. NCI-60 cell lines data sets were used, which were performed with two different platforms of cDNA microarrays and Affymetrix HU6800 oligonucleotide arrays. The combined data set by the proposed method predicted the test data sets more accurately than the separated data sets did. The biological significant genes were detected from the combined data set, which were missed on the separated data sets.</p> <p>Conclusion</p> <p>By transforming gene expressions using ranks, the proposed method is not influenced by systematic bias among chips and normalization method. The method may be especially more useful to find predictive genes from data sets which have different scale in gene expressions.</p

    Colon cancer subtypes: Concordance, effect on survival and selection of the most representative preclinical models

    Get PDF
    Multiple gene-expression-based subtypes have been proposed for the molecular subdivision of colon cancer in the last decade. We aimed to cross-validate these classifiers to explore their concordance and their power to predict survival. A gene-chip-based database comprising 2,166 samples from 12 independent datasets was set up. A total of 22 different molecular subtypes were re-trained including the CCHS, CIN25, CMS, ColoGuideEx, ColoGuidePro, CRCassigner, MDA114, Meta163, ODXcolon, Oncodefender, TCA19, and V7RHS classifiers as well as subtypes established by Budinska, Chang, DeSousa, Marisa, Merlos, Popovici, Schetter, Yuen, and Watanabe (first authors). Correlation with survival was assessed by Cox proportional hazards regression for each classifier using relapse-free survival data. The highest efficacy at predicting survival in stage 2-3 patients was achieved by Yuen (p = 3.9e-05, HR = 2.9), Marisa (p = 2.6e-05, HR = 2.6) and Chang (p = 9e-09, HR = 2.35). Finally, 61 colon cancer cell lines from four independent studies were assigned to the closest molecular subtype. ยฉ 2016 The Author(s)

    Scoping for RNA biomarkers in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a major health problem worldwide and a significant issue in New Zealand. Treatment for patients with CRC is morbid and costly, involving a combination of surgery, radiotherapy and chemotherapy. Although most patients will benefit from these forms of treatment, a significant proportion will suffer recurrence(s) and eventual death. Despite increased understanding of the molecular events underlying CRC development, established molecular techniques have only produced a limited number of biomarkers suitable for use in routine clinical practice to predict risk, prognosis and response to treatment. Recent rapid technological developments, however, have made genomic sequencing of CRC more economical and efficient, creating the potential to discover genetic biomarkers that have greater diagnostic, prognostic and therapeutic capabilities for the management of CRC. Translating potential gene biomarkers from genome-wide expression studies into clinical utility has typically relied on PCR-based technology and immunohistochemistry. These methods have technical limitations associated with them that are exacerbated by tumour heterogeneity. This makes validation and translation of biomarkers into clinical use difficult. This thesis utilised a novel RNA in-situ hybridisation assay, RNAscope, to investigate the RNA expression of two candidate prognostic gene markers in CRC patients. To circumvent tumour heterogeneity issues, and to improve reproducibility amongst gene expression studies, I adopted a gene selection process using copy number alterations as a criterion. Results showed RNAscope was able to measure the intra-tumoural gene expression of two potential candidate gene markers (GFI1 and TNFRSF11A) in archival formalin-fixed paraffin embedded CRC samples. Reduced gene expression levels was significantly associated with poor prognostic clinicopathological features that was similar to results shown previously by The Cancer Genome Atlas (TCGA) Network. RNAscope has the capability to produce quantitative gene expression levels at a cell-specific level. To test this feature, RNAscope was combined with an image analysis platform (ImageJ) to quantify GFI1 and TNFRSF11A mRNA expression levels. Results showed cell-specific data could be produced allowing cell-type determination of gene expression levels. Compatibility of a variety of image analysis platforms with RNAscope was further investigated with histological and cell monolayer preparations, showing all image analysis platforms were suitable for the RNAscope assay. The limited literature available on the potential candidate gene biomarker, TNFRSF11A, in CRC prompted the investigation of the functional role of TNFRSF11A in an in vitro model. Reduced TNFRSF11A mRNA expression levels were hypothesized to increase proliferation and migration of CRC cells. Transfection of CRC cells with siRNA achieved a reduction in gene expression levels, however, results from the cell based functional assays did not conclusively support the initial hypothesis. An alternative hypothesis is that the results were representative of the molecular subtype for that cell line. Further work will be required to determine the functional role of TNFRSF11A in colorectal tumorigenesis, which may involve replicating the heterogeneous nature of CRC with an array of cell lines representing various molecular subtypes. Results from this thesis demonstrate the utility of RNAscope for assessing potential RNA biomarkers and investigating their role in tumorigenesis. Incorporating RNAscope with image analysis methods provides quantified data which could be clinically useful for setting diagnostic thresholds in companion diagnostics, particularly for the administration of immunotherapies. Furthermore, performing RNAscope on specimens that can be processed through whole slide scanners with or without computational modelling will allow spatio-temporal investigations of RNA within tissue at a single cell level. Such studies will lead to a better understanding of colorectal cancer development to more effectively discover and translate new gene biomarkers into clinical practice

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify โ€œat riskโ€ individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine
    • โ€ฆ
    corecore