1,251 research outputs found

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    LightESD: Fully-Automated and Lightweight Anomaly Detection Framework for Edge Computing

    Get PDF
    Anomaly Detection is Widely Used in a Broad Range of Domains from Cybersecurity to Manufacturing, Finance, and So On. Deep Learning based Anomaly Detection Has Recently Drawn Much Attention Because of its Superior Capability of Recognizing Complex Data Patterns and Identifying Outliers Accurately. However, Deep Learning Models Are Typically Iteratively Optimized in a Central Server with Input Data Gathered from Edge Devices, and Such Data Transfer between Edge Devices and the Central Server Impose Substantial overhead on the Network and Incur Additional Latency and Energy Consumption. to overcome This Problem, We Propose a Fully Automated, Lightweight, Statistical Learning based Anomaly Detection Framework Called LightESD. It is an On-Device Learning Method Without the Need for Data Transfer between Edge and Server and is Extremely Lightweight that Most Low-End Edge Devices Can Easily Afford with Negligible Delay, CPU/memory Utilization, and Power Consumption. Yet, It Achieves Highly Competitive Detection Accuracy. Another Salient Feature is that It Can Auto-Adapt to Probably Any Dataset Without Manually Setting or Configuring Model Parameters or Hyperparameters, which is a Drawback of Most Existing Methods. We Focus on Time Series Data Due to its Pervasiveness in Edge Applications Such as IoT. Our Evaluation Demonstrates that LightESD Outperforms Other SOTA Methods on Detection Accuracy, Efficiency, and Resource Consumption. Additionally, its Fully Automated Feature Gives It Another Competitive Advantage in Terms of Practical Usability and Generalizability

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    Deep Learning for Cardiologist-level Myocardial Infarction Detection in Electrocardiograms

    Full text link
    Myocardial infarction is the leading cause of death worldwide. In this paper, we design domain-inspired neural network models to detect myocardial infarction. First, we study the contribution of various leads. This systematic analysis, first of its kind in the literature, indicates that out of 15 ECG leads, data from the v6, vz, and ii leads are critical to correctly identify myocardial infarction. Second, we use this finding and adapt the ConvNetQuake neural network model--originally designed to identify earthquakes--to attain state-of-the-art classification results for myocardial infarction, achieving 99.43%99.43\% classification accuracy on a record-wise split, and 97.83%97.83\% classification accuracy on a patient-wise split. These two results represent cardiologist-level performance level for myocardial infarction detection after feeding only 10 seconds of raw ECG data into our model. Third, we show that our multi-ECG-channel neural network achieves cardiologist-level performance without the need of any kind of manual feature extraction or data pre-processing.Comment: Accepted to the European Medical and Biological Engineering Conference (EMBEC) 202

    MBFRDH: Design of a Multimodal Bioinspired Feature Representation Deep Learning Model for Identification of Heart-Diseases

    Get PDF
    Electrocardiograms (ECGs) are generated by checking different beating patterns of heart, and are widely used for identification of multiple heart-related issues. Existing deep learning models that are proposed for ECG analysis are either highly complex, or showcase lower scalability when applied to clinical scans. To overcome these issues, this text proposes design of a novel multimodal bioinspired feature representation deep learning model for identification of heart-diseases. The proposed model initially collects large-scale ECG datasets, and extracts Fourier, Cosine, iVector, Gabor, and Wavelet components. These components are given to a Grey Wolf Optimization (GWO) based feature selection model, which assists in identification of high-inter-class variance feature sets. This is done via modelling a variance-based fitness function and fusing it with an Iterative Learning Model (ILM) that use feedback-accuracy levels for optimization of selected feature sets. The extracted features are used to incrementally train a custom 1D Binary-Augmented Convolutional Neural Network (1D BACNN) that can be trained for multiclass scenarios. The BACNN Model is trained individually for each of the heart diseases. Each BACNN categorizes input ECG samples between ‘Normal’, and ‘Heart-Disease’ categories. Due to use of this binary-type classification, the proposed model is able to achieve a consistent 99.9% accuracy for multiple heart disease sets, which is found to be higher than most of the existing multiclass techniques. The model was tested for Angina, Arrhythmia, Valve disease, and Congenital heart conditions, and was observed to achieve 3.5% higher precision, 4.9% higher accuracy, with 1.2% increase is computational delay, which makes it highly suitable for real-time clinical use cases

    Aerospace Medicine and Biology. A continuing bibliography (Supplement 226)

    Get PDF
    This bibliography lists 129 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1981
    • …
    corecore