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Abstract—Anomaly detection is widely used in a broad range of
domains from cybersecurity to manufacturing, finance, and so on.
Deep learning based anomaly detection has recently drawn much
attention because of its superior capability of recognizing complex
data patterns and identifying outliers accurately. However, deep
learning models are typically iteratively optimized in a central
server with input data gathered from edge devices, and such
data transfer between edge devices and the central server impose
substantial overhead on the network and incur additional latency
and energy consumption. To overcome this problem, we propose
a fully-automated, lightweight, statistical learning based anomaly
detection framework called LightESD. It is an on-device learning
method without the need for data transfer between edge and
server, and is extremely lightweight that most low-end edge
devices can easily afford with negligible delay, CPU/memory
utilization, and power consumption. Yet, it achieves highly
competitive detection accuracy. Another salient feature is that it
can auto-adapt to probably any dataset without manually setting
or configuring model parameters or hyperparameters, which is
a drawback of most existing methods. We focus on time series
data due to its pervasiveness in edge applications such as IoT.
Our evaluation demonstrates that LightESD outperforms other
SOTA methods on detection accuracy, efficiency, and resource
consumption. Additionally, its fully automated feature gives it
another competitive advantage in terms of practical usability
and generalizability.

Index Terms—Extreme studentized deviate, anomaly detection,
on-device learning, periodicity detection, edge computing

I. INTRODUCTION

The inception of research in outlier detection can be dated to

as early as 1852 when Benjamin Peirce came up with Peirce’s
Criterion [1] to detect and remove outliers from numerical

data. Since then, research in this area has grown remarkably

and has now become ubiquitous in almost every domain, such

as cybersecurity, transportation, manufacturing, finance, and

computer networks.

With the rapid development of edge computing, a large

number of applications that require real-time response have

been moving to edge devices. The concern pertaining to

cyber attacks, fault diagnosis, and other similar data analytics

has also urged development of anomaly detection for edge

computing. Traditional machine learning-based methods [2],

[3] have seen a recent trend of being replaced by deep

∗Corresponding author.

learning-based methods [4]–[7], due to the latter’s state-of-

the-art (SOTA) performance in detection accuracy. However,

deep learning models typically require intensive training and

a large amount of data; as a result, a central server or cloud is

often deployed which collects data from edge devices and then

performs model training [6]. This entails data transfer over the

network and adds substantial network traffic and overhead, as

well as incurs large delay. An alternative is to train the model

offline at a central server using all the historical data, and then

deploy the model at edge devices for inference only. However,

this approach is not able to keep up with new data and can

lead to the problem of concept drift [8].

In this paper, we propose a fully-automated, lightweight,

statistical learning-based anomaly detection framework called

LightESD, for detecting anomalies directly at the edge site.

It is extremely lightweight with little resource consumption

and little training overhead that almost all edge devices can

afford (we have quantified these in our evaluation). A salient

feature of LightESD is that it is a weight-free, unsupervised

model, meaning that it stores no weights. This enables it to

auto-adapt to any data to learn the underlying patterns on

the fly in a fully unsupervised manner, without the need for

manual pre-processing or hyperparameter-tuning to “match”

any specific dataset. Thus, it is much favorable for practical

adoption, and has good generalizability over different data.

Another important feature of LightESD is that it is non-
parametric, meaning that it does not make any distributional

or functional-form assumptions of the observed (original)

data, whereas many other statistic approaches do. This also

contributes to its good generalizability. Note that being non-
parametric is not equivalent to being weight-free; for example,

SVM [9], [10] with RBF-kernel is non-parametric but has

weights.1

This paper focuses on time series which pervades in numer-

ous application domains (such as Edge) that have temporal

properties. The main contributions of this paper are:

1Support vector coefficients (which are dual coefficients) are learnt from
training data and stored in the memory for making predictions. Hence
whenever we have another dataset, the model needs to be retrained and the
coefficients (weights) need to be replaced. However, our proposed approach
auto-adapts to any underlying data to make predictions on the fly, without
explicit training or the need for storing any coefficients/weights.
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1) We propose LightESD, an anomaly detection framework

for time series, that realizes on-device learning and suits

deployment on edge devices. LightESD is weight-free,

non-parametric, unsupervised, and can auto-adapt to per-

haps any univariate time series regardless of the under-

lying distribution, seasonality, or trend, without manual

pre-processing or hyperparameter-tuning.

2) We propose a new evaluation metric, ADCompScore, that

allows for comparison of edge anomaly detection models

in a holistic manner. To the best of our knowledge, this

is the first attempt to develop a new metric to understand

not only the anomaly detection performance but also the

computational power and resource usage, using a single

numeric value which allows for quick decision-making

regarding the feasibility of deploying anomaly detection

algorithms on edge devices.

3) We evaluate LightESD using both synthetic and real-

world datasets and demonstrate its superior overall per-

formance compared to SOTA methods, in terms of both

anomaly detection and feasibility for on-device training

and edge deployment.

The rest of this paper is organized as follows. Section II

discuss related work as the background. Section III presents

the proposed LightESD approach. Section IV describes our

experiments and comprehensive evaluation of the proposed

method in comparison with other methods. Section V con-

cludes with future directions.

II. RELATED WORK

Statistical methods for anomaly detection. These have

been the go-to approaches for a long time, such as ARIMA

and linear regression. While they require minimal effort for the

model to learn from data, they hinge on the normality assump-

tion that the underlying data must conform to a Gaussian or

Gaussian-like distribution [11], which often does not hold in

real-world data or cannot characterize multi-modal distribution

encountered in some datasets [12]. This makes such models,

in their standalone form, unsuitable for detecting anomalies in

real-world data.

Machine Learning and Deep Learning based anomaly
detection. Some of the commonly used machine learning-

based methods include distance based techniques [13], density-

based techniques [2], tree-based techniques [3], Bayesian

networks [14], and clustering techniques [15]. Most machine

learning-based anomaly detection methods have been super-

seded by deep learning-based approaches owing to the latter’s

much better anomaly detection performance. Indeed, recent

advances in deep learning (DL) have created a hype of using

DL in nearly all tasks including anomaly detection. Unsu-

pervised DL architectures include those based on deviation

networks [16], adversarial learning such as f-AnoGAN [17]

and TadGAN [5], an other variants. While deep learning-based

methods can achieve good performance, they often come with

a large memory and computational footprint, which can pose

a bottleneck for deployment on edge devices.

Anomaly Detection for the Edge. While there exist several

papers that discuss the hardware-implementation of neural

network-based anomaly detection approaches like ANNet [6],

LightLog [4], and others, all of them adopt the approach

of training a model at a central server and then deploying

(“implementing”) it on the device hardware. On the other hand,

ONLAD [18] proposes to develop an OS-ELM [19] based

approach to detect anomalies, which can be directly trained

and deployed at an edge site. Since [18] attempts to solve the

same challenge as we do, we compare it with our proposed

approach in Section IV-B.

Some of the recent works, like that of Bayesian Random

Vector Functional Link AutoEncoder with Expectation Propa-

gation (EPBRVFL-AE) [20], take a distributed approach to

training their proposed anomaly detection schemes. While

taking a distributed or federated learning-based approach

might seem intuitive, such a direction can increase the overall

communication overhead in a network, thereby degrading the

network’s efficiency. Moreover, such approaches still require a

central server and a communication network which are not al-

ways available especially in rural or challenging environments,

which is where our work fits in.

III. THE LIGHTESD FRAMEWORK

LightESD stands for Lightweight Extreme Studentized De-
viate test. In a nutshell, it works as follows. A time series Yt

can be decomposed additively as

Yt = Tt +
k∑

i=1

Si
t +Rt (1)

where Tt, S
i
t and Rt represent the trend, the i-th seasonal,

and the residual components, respectively, and there are a

total of k ≥ 1 seasonal components. LightESD first detects

all the different seasonal periodicities in the input time series,

i.e., to determine Si
t , where it uses Welch’s Periodogram

Method with a PSD-locating technique improved by us (Sec-

tion III-A). Second, it extracts the trend component Tt us-

ing RobustTrend and FastRobust-STL decomposition methods,

and then removes both the detected trend and seasonality

components, to extract the residual Rt (Section III-B). Third,

LightESD detects anomalies based on the residual—which is

a statistically correct (because the residuals follow a normal

or approximately-normal distribution) and much more reliable

method than detecting based on original signals—using a

generalized ESD test with our improvement in robustness

(Section III-C). Note that, our choice of the above methods

is based on careful contemplation and trial experiments. We

explain our choice below when we describe those methods.

A. Improved Periodicity Detection

Time series data often exhibit a recurring pattern at regular

time intervals like weekly, monthly, or yearly, which is called

the seasonality of a time series. We detect seasonality by first

computing a periodogram, which is an estimate of the power

spectral density (PSD) of a signal, and then analyzing the
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Algorithm 1: Improved Period Detection

Input: Y : Time series

Output: prd: Array of detected periods

1 for i = 1 to 100 do
2 Y ′ ← permutation(Y )
3 freq, pow ← Welch(Y ′)
4 pmax ← max(pow)
5 max power.add(pmax)

6 max power ←
sort(max power, ascending = true)

7 index ← 0.99× len(max power)
8 thresh ← max power[index]
9 freq, pow ← Welch(Y )

10 prd ← −1, temp psd ← −1
11 for j = 1 to len(pow)− 1 do
12 if (pow[j] > thresh) and (pow[j] > pow[j − 1])

and (pow[j] > pow[j + 1]) then
13 if (pow[j] > temp psd) then

14 prd.add(

⌊
1

freq[j]

⌋
)

15 temp psd ← pow[j]

16 if (prd == −1) then
17 prd ← 1 // Nonseasonal

18 return prd

periodogram to find out the dominant frequencies that generate

the highest PSD estimates above a designated threshold. There

are both parametric and non-parametric methods to estimate

PSD, where parametric methods assume an underlying data

distribution which may not hold. Therefore, we take a non-

parametric approach.

1) Welch’s Periodogram Method: Among the few non-

parametric methods that can compute the Periodogram for

a time series, we choose Welch’s method [21] as it outputs

the most reliable PSD estimates, even from noisy data. This

method first splits the signal into K data segments of length

L, which are overlapped by D points (D/L ranges from 0 to

0.5). This can reduce the effect of noise on PSD estimation,

unlike Bartlett’s method which has no overlapping. Second,

each of the K overlapping segments is applied a time window

that is either quadratic (1 − t2, t ∈ [−1, 1]) or triangular

(1 − |t|, t ∈ [−1, 1]). Third, a periodogram is generated for

each window by first computing the discrete Fourier transform

(DFT) [22] and then the squared magnitude of the DFT output.

Finally, the individual periodograms are averaged to reduce the

variance of individual power measurements.

2) Improved Periodicity Detection: From the obtained pe-

riodogram, we need to find the significant PSD peaks which

correspond to the different periods (seasonalities), if they exist.

Although Welch’s method reduces noise to some extent via

overlapping segments, it is fairly primitive and the remaining

noise in time series still creates many spurious PSD peaks in

the resulting periodogram. Therefore, we improve a periodicity

detection approach AutoPeriod [23] to filter out those spurious

peaks. Specifically, we first permute the original time series

for 100 times and compute the periodogram for each permuted

sequence using the Welch’s method. In each iteration, the

random permutation destroys all the temporal correlations as

well as the second and higher-order central moments of the

original time series, and thereby convert the time series into

pure noise. Among all the PSD values generated from each

noise series using the Welch’s method, we take the maximum

PSD value and add it into a vector. After that, the vector

containing the 100 PSD values is ordered in an ascending

manner, and the PSD value at the 99th index is selected as the

threshold value (basically it calculates the 99-th percentile).

The reason for choosing this particular value as the threshold

is that 99% of the PSD values come from the permuted version

of the original time series (noise), which always lie below

the 99-th percentile value (also known as the threshold PSD

value). So any PSD estimate lying above this threshold is

significant, at 99% confidence, while those lying below are

just PSD estimate from pure noise which we disregard.

Our contribution to this period detection algorithm is that,

unlike [23] which takes all the PSD values and has a high

space complexity of O(N), our proposed periodicity detection

method selects significant peaks only (since a peak represents

a cyclic event) which has a space complexity of merely O(1).
In other words, as the length of the time series increases,

the space consumed by [23] increases approximately propor-

tionally as it considers all the significant values whereas our

method remains constant. For time complexity, both [23] and

our approach are at the same level O(N logN), due to the

usage of Fast Fourier Transform.

The above procedure is presented in Algorithm 1 and the

outcome is illustrated in Fig. 1 using the Numenta Anomaly

Benchmark (NAB) dataset [24]. We have considered other

approaches that detect periodicities, such as AutoAI-TS [25],

where the latter uses pre-defined schemes only (like hourly /

daily / weekly periodicities) to detect periodicities (seasonali-

ties) in the time domain (whereas we detect in the frequency

domain). This has the limitation of not being able to detect

periods that are not in the manually pre-defined set.

B. Residuals Extraction

To extract the residuals Rt, we use RobustTrend [26] if the

time series is nonseasonal (aperiodic) where our Algorithm 1

will return prd = 1. Otherwise, if the series is seasonal,

we use FastRobust-STL [27] to extract both the seasonality

and the residuals. There are four reasons why we choose

RobustTrend [26] for decomposing aperiodic time series and

why FastRobust-STL [27] for seasonal series: (1) these two

methods can model both abrupt and slow-changing trend

components, (2) they are robust to outliers and noise, (3)

FastRobust-STL is able to handle multiple seasonalities and

can decompose much faster than other comparable methods,

and (4) both approaches are free from assumption of any

particular distribution and are non-parametric.
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(a) Seasonal periods are correctly detected.

(b) Non-seasonality also detected (not fooled by noise).

Fig. 1: Illustration of our periodicity detection result on NAB

[24]: (a) NYC Taxi dataset (seasonal), (b) UPS Tweets dataset

(nonseasonal).

1) Nonseasonal Series: In this case, we use RobustTrend
to de-trend and extract residuals. In order to extract the trend

from the time series in a reliable way, it is important to

mitigate the negative impact of noise and outliers. This is

achieved by minimizing the Huber Loss of the residual signal,

combined with first and second order difference regularization,

as follows:

argmin
t

hγ(y − t) + λ1||D(1)t||1 + λ2||D(2)t||1 (2)

where hγ(.) is the Huber Loss, D(1) is the first-order differ-

ence matrix, D(2) is the second-order difference matrix, and

λ1 and λ2 control the amount of the regularization.

The optimization problem (2) can be solved using Al-
ternate Direction Method of Multipliers (ADMM) based on

Majorization-Maximization [28], to estimate the trend t∗ = Tt.

Then the residuals are extracted by Rt = Yt − Tt.

2) Seasonal Series: In this case, we use FastRobust-STL
[27] which first extracts the trend using a robust sparse model.

In order for accurate estimation of the trend component, first

we need to remove noise and the adverse effect of the different

seasonalities (note that this is different from estimating the

different seasonal components), as well as to take into account

possible outliers. To remove noise, a bilateral filter [29] is

used to denoise the time series. To remove the influence of

seasonal components on trend extraction, a seasonal differ-

encing operation is carried out, which refers to the difference

between the outputs of the bilateral filter for every timestep t
and that for t−T , where T is the largest seasonal period (i.e.,

T = max(prd)) in the time series.

Then, the trend is extracted by formulating an objective

function that minimizes the least absolute deviation (LAD)

of the smoothed (de-noised) and seasonal-differenced signal,

in order to make the trend extraction robust to large outliers;

the objective is further combined with L1-regularizations to

capture both abrupt and slow trend changes.

Then, after extracting and removing the trend, in order

to estimate the multiple seasonal components, an improved

version [27] of a non-local seasonal filter [30] is used to extract

the different seasonal components present in the time series.

Finally, the residual component is extracted by subtracting

the trend and the multiple seasonal components from the

original time series, as Rt = Yt − Tt −
∑k

i=1 S
i
t .

C. Anomaly Detection based on Residuals

The rationale that we perform anomaly detection based

on residuals instead of original data, is that such residuals

as we extracted above, are unimodal and follow an approx-

imately Gaussian distribution. This stems from the fact that

trend-adjusted series (time series with its trend removed) are

stationary and have been empirically shown to follow an

approximately-Gaussian distribution [12]. This is an impor-

tant property that makes our anomaly detection much more

accurate than other anomaly detection methods when the

original data distribution is not Gaussian-like or unimodal. For

example, using any real-world data (which may have multiple

mode(s)) directly for detecting anomalies, can result in many

of the anomalies not being detected at all [12].

A classical approach to outlier detection is to conduct a

hypothesis test at a certain significance level to decide whether

to reject the null hypothesis (a data point in question is not
an outlier). Some of the most common statistical methods

including Pierce’s Criterion [31] and the Tietjen Moore Test

[32] take this approach. However, these methods have various

drawbacks such as being not scalable to large datasets or

requiring prior knowledge of the exact number of outliers in

the data. In LightESD, we propose a method based on an

improvement to the generalized Extreme Studentized Deviate

(ESD) test [33].

1) Generalized Extreme Studentized Deviate Test: The ESD

test [33] enhances the standard Grubb’s Test [34] in that ESD

can find up to a user-specified maximum, say amax, of outliers

in a series of data points, whereas Grubb’s Test can only find

a single outlier. However, both ESD and Grubb’s Test assume

normality of the input data which often does not hold, while

our method does not make that assumption. ESD runs amax
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iterations and, in each iteration, it tests if a single outlier exists

by comparing a test statistic R with a critical value λ. The test

statistic R is defined as

R = max
i

( |Yi − μ|
σ

)
, i = 1, ..., n (3)

where μ and σ are the mean and standard deviation, respec-

tively, of the input data Y of length n. The critical value λ is

defined with respect to a significance level α, as

λ =
tn−l−2,p × (n− l − 1)√

(n− l)× (t2n−l−2,p + n− l − 2)
(4)

where p = 1− α
2 ×(n−l), l is the iteration index ranging from

0 to amax − 1, and n is the current length of the series. The

value of t(.,.) can be looked up in the two-tailed T-Distribution
table. If R > |λ|, we reject the null hypothesis that Yi∗ is not

an outlier, where i∗ is the index i that yields R as in (3). Then

we remove this outlier Yi∗ from Y , decrement n by 1, and

move to the next iteration (increment l by 1). Otherwise, no

outlier is detected in this iteration and the algorithm continues

to the next iteration until l reaches amax.
2) Improvement to ESD: Besides that we do not make the

normality assumption of observed data that ESD makes when

it operates on the observed data in a standalone form, we also

identify that ESD test is vulnerable to deviant points: the test

statistic R used by ESD in (3) will break down when the series

Y contains a small fraction of, or even just a single, very large

outlier. To address this issue, we redefine the test statistic R
as

Rrobust = max
i

( |Yi − median(Y )|
S(Y )

)
, i = 1, .., n (5)

S(Y ) = mediani (median |Yi − Y |) . (6)

That is, we replace μ and σ as in (3) with median and a

robust estimator S [35], respectively. This is important and

implies that the finite sample breakdown point [36] will now

change from 1/(n + 1) to �n
2 �/n. What this means is that

our method is able to tolerate 50%, in the asymptotic case, of

all the values to be arbitrarily large. Therefore, our method is

far more robust than the original ESD since outliers can never

exceeds 50% (otherwise they would not be called “outliers”).

Moreover, it is also worth noting that we choose the robust

statistic S over Median Absolute Deviation (MAD) as used by

[12], even though both can achieve asymptotic 50% toleration

of outliers. The rationale is that the statistic S does not make

the assumption of symmetric distribution that MAD requires

[37], and S is more efficient than MAD when dealing with

Gaussian distributions [35].

D. Putting All Together

The entire anomaly detection process is summarized in

Algorithm 2. At Line 6, amax is set to 10% of the total

number of data points since a real-world dataset typically

contains less then 4-5% of anomalies. Importantly, note that

this value is highly insensitive to different datasets since it

is an upper bound to the number of anomalies rather than

the exact quantity. The runtime complexity of Algorithm 2 is

O(N logN), owing to Algorithm 1. The space complexity of

Algorithm 2 is O(N), since in the worst case scenario, the

detected anomalous time indices can grow as a fraction of the

length of the entire time series being analyzed.

Algorithm 2: LightESD: The complete procedure

Input: Y : Time Series

Output: anomalies: the corresponding indices

Initialize: outlier index ← []

1 period ← ImprovedPeriodDetection(Y )
// Algorithm 1

2 if period == 1 then
3 residual ← Y − RobustTrend(Y )

4 else
5 residual ← FastRobustSTL(Y, period)

6 amax ← 0.1× len(Y )
7 outliers ← ImprovedESD(α = 0.05, residual, amax)
8 outlier index ← outliers.index
9 if (outliers[1] == True) and (outliers[2] == False)

then
10 outliers[1] = False

11 outlier index.pop(1)

12 if (outliers[n] == True) and
(outliers[n− 1] == False) then

13 outliers[n] = False

14 outlier index.pop(n)

15 anomalies ← outlier index
16 return anomalies

IV. PERFORMANCE EVALUATION

A. Experiment Setup

We used a single board computer, Hardkernel Odroid XU4

(OS: Ubuntu 22.04, CPU: Samsung Exynos 5422 Cortex A15
2.0 GHz and Cortex-A7 Octacore CPU, RAM: 2 GB LPDDR3
PoP stacked), as our experimental machine to emulate an edge

device, that is capable of on-device training and deployment

of anomaly detection models. See Fig. 2 for the setup.

Datasets. We evaluate our proposed LightESD framework

on both synthetic and real-world datasets. We carefully syn-

thesize two types of datasets that emulate different real-world

univariate time series, as follows:

1) Seasonal data (with both trend and seasonality) (ST D):

Yt = κ · t2 + β · sin( 2πt
30.5

) + γ · εt (7)

where κ, β, γ are drawn randomly from [0.001,0.01],

[1.3e+04, 1.5e+04], and [1.5e+03, 3.0e+03], respectively,

and εt ∼ N(0, 1) is gaussian white noise. The period is

30.5 (days) to emulate a monthly seasonality.

2) Random Walk (non-seasonal, no trend) (RW):

Yt = Yt−1 + εt (8)
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Fig. 2: The Odroid experimental setup including peripherals.

with Y0 = 1.0 and εt ∼ N (0, 1) is the gaussian

white noise, where the current value of the series is

only dependent on the previous timestep value. Note that

random walk is different from Gaussian white noise.

TABLE I: Injected anomalies by type (percentages are w.r.t.

the total no. of anomalies)

Dataset #Anom. Spikes Dips Coll. Anom.

ST D 7 43% 28.5% 28.5%
RW 9 44% 44% 12%

Each synthetic dataset has 5,000 data points. The outliers are

then injected with varying magnitudes and types as follows.

The magnitudes randomly vary from 0.5σ to 6.0σ as in [12],

where σ is the standard deviation of the dataset concerned.

The types and their respective quantities are given in Table I.

The positions of anomalies are random.

For real-world datasets, we use the Numenta Anomaly

Benchmark dataset [24] (the realKnownCause category) and

the Yahoo Anomaly Detection dataset [38] (the A1 Benchmark
category). These univariate time series datasets incorporate

complex dynamics which is hard to emulate using synthetic

data, thereby allowing us to evaluate our model’s overall

performance more comprehensively.

Baselines. We compare our proposed model with SOTA

neural network models dedicated to edge, as well as with

popular time-series anomaly detectors. We categorize the

baseline models into (a) Neural Network-based approaches,

and (b) Machine Learning-based approaches, and describe

them as follows:

a. Neural Network-based approaches. We consider two

SOTA approaches that employ neural network-based de-

tection architecture.

a.1) EPBRVFL-AE : Bayesian Random Vector Functional
Link AutoEncoder with Expectation Propagation [20]

is the latest model for detection of anomalies at the

edge in a distributed manner and is a single layered

neural network. We re-implemented EPBRVFL-AE

[20] without the expectation propagation as originally

proposed in [20], because we are only interested in de-

tecting anomalies on a single edge device without inter-

node communication overhead. From here onwards, we

refer to this re-implemented EPBRVFL-AE simply

as BRVFL-AE. All the hyperparameters are set as

proposed in the paper [20].

a.2) ONLAD [18]: A single-layer feed-forward neural

network model that was implemented directly on edge

hardware for anomaly detection. We implement three

different versions of ONLAD, each with 16, 64, and

128 neurons in the hidden layer, respectively. The

performance measures for ONLAD, as discussed in the

later sections, are averaged over all the three models.

b. Machine Learning-based approaches. We consider three

commonly used machine learning-based approaches and

describe them briefly below.

b.1) ONE-CLASS SVM (OC-SVM): First introduced by

[39] as a one-class classifier based on support vector
machine, mostly used for novelty detection. Its robust

performance of detecting novelties (anomalies), along

with very easy-to-use approach has made it one of the

top choices for anomaly detection.

b.2) LOCAL OUTLIER FACTOR (LOF): It is a density-

based machine learning approach, developed by [2].

This approach is lightweight, along with good per-

formance on detecting anomalies, thereby making it

a suitable choice for many IoT/edge applications.

b.3) ISOLATION FOREST: This is a tree-based machine

learning aproach, first proposed by [3]. A high anomaly

detection performance, with very few parameters to

save, makes it an overall excellent candidate for

anomaly detection problems.

The hyperparameters for the machine learning-based ap-

proaches (OC-SVM, LOF, and IF) are set to their default

values as by the SCIKIT-LEARN library.

While other SOTA deep learning-based anomaly detection

approaches do exist, like ANNet [6] and LightLog [4], they are

not developed to be trained directly at an edge site (device),

due to their computational and space complexities. Hence,

these models are not considered as baselines in our evaluation.

The baseline methods as well as our proposed LightESD

are all implemented in PYTHON 3.10. Moreover, we compare

the baselines against our proposed model at 95% (LightESD-

1; α = 0.05) and 99.9% (LightESD-2; α = 0.001) confidence

levels, where α is the significance level introduced in Section

III-C1.

Evaluation Metrics. For a good understanding of model

performance from different perspectives, we evaluate detec-

tion performance (Precision, Recall, and F1-score), generality,
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latency, resource utilization, and power consumption of all the

different models.

By generality, we mean the ability to maintain a consistent

performance across different types of data. For this purpose,

we use the coefficient of variation (CV) as the metric, which

is defined as the standard deviation divided by the mean of a

principal metric, chosen as the F1-score in our case.

The latency refers to the time taken from the model under

consideration receives an input sample till the anomaly score

is generated.

The device resource utilization is measured using an open-

source tool s-tui [40], where the CPU and memory utilization

for the processes executing the code for the anomaly detection

model(s), are measured separately.

The power consumption is measured using a wall ammeter,

in Watt (W). The power plug of the device board is plugged

into the ammeter, which in turn is plugged into the wall

power socket. By power consumption, we mean the increase

in power consumption (in %) when the code for a model is run

against an established baseline (the idle state running power),

with an LED monitor, keyboard, mouse, and a USB ethernet,

connected to the device board, as seen in Fig. 2. The idle state

running power of the experimental setup was found to be 29.8
Watt.

New metric. We also propose a new, comprehensive metric

called ADCompScore, which summarizes all the above metrics

into a single quantity, in order to provide a convenient measure

of the overall performance of an anomaly detection model, for

quick decision-making regarding the algorithm’s deployability

on an edge device. It is defined as

ADCS =
1∑
w∗

[
wf · f + wg · (1− g) + wl · (1− l)+

wc · (1− c) + wr · (1− r) + wp · (1− p)
]

(9)

where f is the F1-score, g is the model’s coefficient of

variation (CV), l is the min-max normalized latency, c is

the CPU utilization (%), r is the RAM utilization (%),

p is the increase in power consumption (%), and w∗ =
{wf , wl, wc, wr, wp, wg} are the weights associated with the

corresponding performance measures. The ADCompScore, or

ADCS in short, is in the range of [0, 1].
Except for the F1-score, all the above performance measures

are desired to be as low as possible in magnitude. Hence, we

use the complement of those performance measures in our

ADCompScore metric definition. The weights can be speci-

fied to prioritize different performance measures that tailor

to different applications or requirements. The ADCompScore
metric is defined in this general manner such that it can be

easily applied to a wide range of scenarios. In our experiment,

we have chosen to simulate the scenario where the different

performance metrics are weighted equally, as this allows

us to better understand the contribution of each individual

performance metric towards the overall score. However, the

design of this new metric incorporates flexibility by allowing

different weights to be assigned depending on the actual

situation at hand.

B. Results

1) Quantitative Performance: The comparison of the pro-

posed approach against the baseline models, on precision

and recall, which are subsumed by F1-score, is provided

in Table II. As we can observe from Table II, LightESD-1
and LightESD-2 outperform all the other baseline approaches

in terms of anomaly detection performance. The ability of

LightESD to remove multiple seasonalities (if present) and the

trend, results in a much better extraction of the residual compo-

nent which in turn allows for superior anomaly detection. In a

nutshell, LightESD implements a simple yet effective approach

to detect anomalies. Note that in the “Generality” column,

a larger mean and a smaller CV are desired. The BRVFL-

AE [20] approach comes closest to our proposed model, in

terms of the detection performance, followed by ONLAD

[18]. One of the reasons for such performance of these

neural network-based models is that, adding more number of

hidden layers may have a positive impact on their detection

performances, but increasing the number of hidden layers will

add to the training complexity, along with a significant increase

in resource utilization and power consumption, which are not

desirable for edge applications.

Fig. 3: ADCompScore of the different models.

Table III gives the performance on other metrics which

are particularly relevant to edge computing. We see that

the proposed approach, LightESD (both LightESD-1, and

LightESD-2), performs well when compared with the other

baseline methods. Note that LightESD does not need to

store any weights/coefficients for the inference stage which

is unlike the other methods, and this results in a low RAM

utilization especially when compared to SOTA methods, as

well as the lowest power consumption. SOTA approaches like

ONLAD and BRVFL-AE, need to store their weight matrices
and bias vectors, thereby adding extra overhead to memory

utilization. However, observing Table III, we also see that

both ONLAD and BRVFL-AE have better performance in

156

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 25,2023 at 14:50:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Detailed Performance Comparison on Detection

ST D RW NAB Yahoo Generality
Models Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Mean CV

OC-SVM 0.51 0.71 0.59 0.5 0.72 0.59 0.50 0.64 0.56 0.52 0.69 0.59 0.58 0.03
LOF 0.62 0.65 0.63 0.58 0.98 0.73 0.52 0.7 0.6 0.61 0.77 0.68 0.66 0.1

Iso. For. 0.50 0.47 0.48 0.50 0.75 0.6 0.50 0.73 0.59 0.54 0.83 0.65 0.58 0.12
ONLAD 0.70 0.72 0.71 0.66 0.69 0.67 0.8 0.73 0.76 0.75 0.72 0.73 0.72 0.06

BRVFL-AE 0.67 0.76 0.71 0.7 0.88 0.78 0.79 0.8 0.79 0.8 0.73 0.76 0.76 0.05
LightESD-1 0.77 0.82 0.79 0.70 0.97 0.81 0.77 0.83 0.80 0.80 0.88 0.84 0.81 0.02
LightESD-2 0.89 0.78 0.83 0.95 0.97 0.96 0.85 0.83 0.84 0.85 0.87 0.86 0.87 0.06

TABLE III: Performance Comparison on Additional Factors on SBC (single-board computer).

Models Latency (s) CPU Utilization (%) RAM Utilization (%) Increase in Power Consumption (%)
OC-SVM 1.34 8.35 3.87 23.8

LOF 0.4 3.6 0.01 14.7
Iso. For. 0.25 3.3 0.01 14.5
ONLAD 0.19 8.87 3.11 16.3

BRVFL-AE 0.21 10.96 5.33 17.7
LightESD-1 0.24 5.47 3.29 14.3
LightESD-2 0.24 5.47 3.29 14.3

terms of latency, and our proposed approach falls short against

the SOTA methods possibly due to the iterative nature of the

proposed LightESD algorithm. While ML-methods like the

Local Outlier Factor and Isolation Forest have very competi-

tive performances in terms of CPU and RAM utilization, they

fall short in terms of anomaly detection performance.

As we have observed so far, a model cannot perform in a

superior manner in all aspects. In order to have a holistic view

of the overall performance of all the models, we utilize the

ADCompScore evaluation metric as defined in Eq. (9). Fig. 3

provides the overall performance of the proposed LightESD

approach for both LightESD-1 and LightESD-2, as well as the

baseline methods, using our proposed ADCompScore evalua-

tion metric, where all the weights w∗ are set to 1. We can see

that, although BRVFL-AE [20] has a lower latency (as seen in

Table III) as well as a good detection performance, it falls short

in terms of the ADCompScore due to its much higher device

resource utilization. Along similar lines, machine learning

baseline methods like Isolation Forest and the Local Outlier

Factor have very competitive device resource utilization and

low power consumption, but fall short in their detection per-

formance. Fig. 3 also quantifies the percentage improvement

of the proposed, LightESD, anomaly detection model with

respect to all the baseline methods, in terms of the overall

ADCompScore. The proposed LightESD approach is able to

beat the SOTA models (BRVFL-AE and ONLAD) by a margin

of 3−6%, and the other ML-based models by more significant

margins (up to 33%). Taking into account all these factors

besides the anomaly detection performance, which are of great

importance to rapid, on-device edge learning and deployment,

LightESD is able to exceed the overall performance of the

SOTA edge anomaly detectors (like BRVFL-AE and ONLAD),

as well as popularly used ML-based detectors, thereby making

it a much desirable anomaly detection method for Edge AI

applications.

2) Effect of Significance Level: As we observe in Table

II, decreasing the significance level, α, from 0.05 to 0.001,

significantly increases the Precision of LightESD, without

notably impacting the Recall. In other words, with this change,

the proposed model is able to reduce the number of false
positives (a.k.a. false alarms) without negatively impacting

the number of false negatives (i.e., missed detection of true

anomalies), which is desirable for different kinds of problems.

V. CONCLUSION

This paper proposes an anomaly detection framework that

is able to detect anomalies directly at the edge site, without

the need for any training at a central server. Unlike many

statistical and machine learning methods, it is non-parametric

and does not require any assumption of the underlying dis-

tribution of input data. It is also weight-free and does not

require separate training and validation phases, as the model

auto-fits/adapts to the underlying data directly on the fly

to identify outlier data points. With a focus on time series

applications, the proposed approach, LightESD, can tackle

different types of data including seasonal, non-seasonal, and

random walks. Our comprehensive evaluation demonstrates

that LightESD outperforms both SOTA and other popular

anomaly detectors by clear margins, as well as mitigates false

alarms. It also generalizes much better across different datasets

both on synthetic and real-world data. Moreover, LightESD

consumes very low power and CPU/memory resources, when

compared to SOTA anomaly detection schemes for the edge.

These attributes make LightESD a desirable choice for rapid

deployment directly at the edge, and for producing near real-

time detection performance due to the low latency.
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One limitation of LightESD is that it requires a batch of

data for learning the underlying patterns, which would face

challenge when there is only a single training instance in

some circumstances. Thus in future work, we plan to enhance

LightESD from a batch learning setting to a pure online
learning setting.
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