19,567 research outputs found

    Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Get PDF
    Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM) classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying) based signals propagating through an AWGN (Additive White Gaussian Noise) channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR) values up to -50 dB

    Towards Faster Spectrum Sensing Techniques in Cognitive Radio Architectures

    Get PDF
    AbstractIn the recent years, the subject of spectrum sensing techniques has been well studied in research community, highly motivated by the emergence of cognitive radio architectures. But in practice, given the complexity of proposed spectrum sensing techniques, the implementation of cognitive radio has become a tedious task. Unlike many papers in the literature, this paper focuses on implementation aspects of spectrum sensing. Especially, we attempt to reduce the time taken for spectrum sensing based on adaptive FFT approach employing statistical analysis. The first step of the many spectrum techniques is to obtain the FFT of input samples. Most of the existing spectrum analyzers like Tektronix RSA6000, Rohde & Schwarz FSVR etc employ detection and estimations algorithms based on the FFTs of the acquired samples. In this paper, we propose an algorithm to vary the FFT-size to obtain the spectrum information at a faster rate, applicable to cognitive radio environment. FFT size would be varied in accordance with statistical information obtained from the prediction engines. The proposed Adaptive FFT algorithm is studied as applied to the well known energy detection technique. Finally an implementation is carried out on USRP based on GNU Radio platform

    Smart Sensing and Performance Analysis for Cognitive Radio Networks

    Get PDF
    Static spectrum access policy has resulted in spectrum scarcity as well as low spectrum utility in today\u27s wireless communications. To utilize the limited spectrum more efficiently, cognitive radio networks have been considered a promising paradigm for future network. Due to the unique features of cognitive radio technology, cognitive radio networks not only raise new challenges, but also bring several fundamental problems back to the focus of researchers. So far, a number of problems in cognitive radio networks have remained unsolved over the past decade. The work presented in this dissertation attempts to fill some of the gaps in the research area of cognitive radio networks. It focuses primarily on spectrum sensing and performance analysis in two architectures: a single cognitive radio network and multiple co-existing cognitive radio networks. Firstly, a single cognitive radio network with one primary user is considered. A weighted cooperative spectrum sensing framework is designed, to increase the spectrum sensing accuracy. After studying the architecture of a single cognitive radio network, attention is shifted to co-existing multiple cognitive radio networks. The weakness of the conventional two-state sensing model is pointed out in this architecture. To solve the problem, a smart sensing model which consists of three states is designed. Accordingly, a method for a two-stage detection procedure is developed to accurately detect each state of the three. In the first stage, energy detection is employed to identify whether a channel is idle or occupied. If the channel is occupied, received signal is further analyzed at the second stage to determine whether the signal originates from a primary user or an secondary user. For the second stage, a statistical model is developed, which is used for distance estimation. The false alarm and miss detection probabilities for the spectrum sensing technology are theoretically analyzed. Then, how to use smart sensing, coupled with a designed media access control protocol, to achieve fairness among multiple CRNs is thoroughly investigated. The media access control protocol fully takes the PU activity into account. Afterwards, the significant performance metrics including throughput and fairness are carefully studied. In terms of fairness, the fairness dynamics from a micro-level to macro-level is evaluated among secondary users from multiple cognitive radio networks. The fundamental distinctions between the two-state model and the three-state sensing model are also addressed. Lastly, the delay performance of a cognitive radio network supporting heterogeneous traffic is examined. Various delay requirements over the packets from secondary users are fully considered. Specifically, the packets from secondary users are classified into either delay-sensitive packets or delay-insensitive packets. Moreover, a novel relative priority strategy is designed between these two types of traffic by proposing a transmission window strategy. The delay performance of both a single-primary user scenario and a multiple-primary user scenario is thoroughly investigated by employing queueing theory

    Novel evaluation framework for sensing spread spectrum in cognitive radio

    Get PDF
    The cognitive radio network is designed to cater to the optimization demands of restricted spectrum availability. A review of existing literature on spectrum sensing shows that there is still a broader scope for its improvement. Therefore, this paper introduces an efficient computational framework capable of evaluating the effectiveness of the spread spectrum concept in the context of cognitive radio network in a more scalable and granular way. The proposed method introduces a dual hypothesis using a different set of dependable parameters to emphasize the detection of optimal energy for a low signal quality state over the noise. The proposed evaluation framework is benchmarked using a statistical analysis method not present in any existing approaches toward spread spectrum sensing. The simulated outcome of the study exhibits that the proposed system offers a significantly better probability of detection than the current system using a simplified evaluation scheme with multiple test parameters

    A statistical approach to spectrum sensing using bayes factor and p-Values

    Get PDF
    The sensing methods with multiple receive antennas  in the Cognitive Radio (CR) device, provide a promising solution for reducing the error rates in the detection of the Primary User (PU) signal. The received Signal to Noise Ratio at the CR receiver is enhanced using the diversity combiners. This paper proposes a statistical approach based on minimum Bayes factors and p-Values as diversity combiners in the spectrum sensing scenario. The effect of these statistical measures in sensing the spectrum in a CR environment is investigated. Through extensive Monte Carlo simulations it is shown that this novel statistical approach based on Bayes factors provides a promising solution to combine the test statistics from multiple receiver antennas and can be used as an alternative to the conventional hypothesis testing methods for spectrum sensing. The Bayesian results provide more accurate results when measuring the strength of the evidence against the hypothesis

    Sensitive White Space Detection with Spectral Covariance Sensing

    Full text link
    This paper proposes a novel, highly effective spectrum sensing algorithm for cognitive radio and whitespace applications. The proposed spectral covariance sensing (SCS) algorithm exploits the different statistical correlations of the received signal and noise in the frequency domain. Test statistics are computed from the covariance matrix of a partial spectrogram and compared with a decision threshold to determine whether a primary signal or arbitrary type is present or not. This detector is analyzed theoretically and verified through realistic open-source simulations using actual digital television signals captured in the US. Compared to the state of the art in the literature, SCS improves sensitivity by 3 dB for the same dwell time, which is a very significant improvement for this application. Further, it is shown that SCS is highly robust to noise uncertainty, whereas many other spectrum sensors are not

    Spectrum Sensing Algorithms for Cognitive Radio Applications

    Get PDF
    Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies
    • …
    corecore