5 research outputs found

    Nine years of plan of the day for cervical cancer:Plan library remains effective compared to fully online-adaptive techniques

    Get PDF
    Background and purpose: Since 2011, our center has been using a library-based Plan-of-the-Day (PotD) strategy for external beam radiotherapy of cervical cancer patients to reduce normal tissue dose while maintaining adequate target coverage. With the advent of fully online-adaptive techniques such as daily online-adaptive replanning, further dose reduction may be possible. However, it is unknown how this reduction relates to plan library approaches, and how the most recent PotD strategies relate to no adaptation. In this study we compare the performance of our current PotD strategy with non-adaptive and fully online-adaptive techniques in terms of target volume size and normal tissue sparing. Materials and methods: Treatment data of 376 patients treated with the PotD protocol between June 2011 and April 2020 were included. The size of the Planning Target Volumes (PTVs) was reconstructed for different strategies: full online adaptation, no adaptation, and the latest clinical version of the PotD protocol. Normal tissue sparing was estimated by the difference in margin volume to construct the PTV and the volume overlap of the PTV with bladder and rectum. Results: The current version of our PotD approach reduced the PTV margin volume by a median of 250 cm3 compared to no adaptation. Bladder-PTV overlap decreased from a median of 142 to 71 cm3, and from 39 to 16 cm3 for rectum-PTV. Fully online-adaptive approaches could further decrease the PTV volume by 144 cm3 using a 5 mm margin for residual errors. In this scenario, bladder-PTV overlap was reduced to 35 cm3 and rectum-PTV overlap to 11 cm3. Conclusion: The current version of the PotD protocol is an effective technique to improve normal tissue sparing compared to no adaptation. Further sparing can be achieved using fully online-adaptive techniques, but at the cost of a more complex workflow and with a potentially limited impact. PotD-type protocols can therefore be considered as a suitable alternative to fully online-adaptive approaches.</p

    Value of machine learning model based on MRI radiomics in predicting histological grade of cervical squamous cell carcinoma

    Get PDF
    Objective To explore the predictive value of different machine learning models based on MRI radiomics combined with clinical features for histological grade of cervical squamous cell carcinoma. Methods Clinical data of 150 patients with cervical squamous cell carcinoma confirmed by pathological biopsy were retrospectively analyzed. They were randomly divided into the training set and validation set at a ratio of 4∶1. Features were extracted from the regions of interest of T2WI fat suppression sequence (FS-T2WI) and enhanced T1WI (delayed phase). After dimensionality reduction and feature selection, logistic regression (LR), support vector machine (SVM), na&#x00EF;ve Bayes (NB), random forest (RF), Light Gradient Boosting Machine (LightGBM), K-nearest neighbor (KNN) were used to construct a radiomics model for predicting the histological grade of cervical squamous cell carcinoma. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the predictive performance of the six models. Univariate and multivariate logistic regression analyses were performed to predict the independent risk factors, and a combined model of clinical and radiomics was established. The differences of each model were compared by AUC, and the clinical value of the model was evaluated by decision curve (DCA). Results In the radiomics model, the LightGBM model had the largest AUC (0.910 in the training set, and 0.839 in the validation set). The AUC of clinical features combined with LightGBM model was the largest (0.935 in the training set, and 0.888 in the validation set), which was higher than those of clinical model (0.762 in the training set, and 0.710 in the validation set) and LightGBM radiomics model. Conclusions The LightGBM model has a high predictive value in the radiomics model. The combined model has the optimal DCA effect and the highest clinical net benefit. The combined prediction model combining radiomics and clinical features has good predictive value for cervical squamous cell carcinoma with low differentiation, providing a non-invasive and efficient method for clinical decision-making

    Statistical deformation reconstruction using multi-organ shape features for pancreatic cancer localization

    Get PDF
    Respiratory motion and the associated deformations of abdominal organs and tumors are essential information in clinical applications. However, inter- and intra-patient multi-organ deformations are complex and have not been statistically formulated, whereas single organ deformations have been widely studied. In this paper, we introduce a multi-organ deformation library and its application to deformation reconstruction based on the shape features of multiple abdominal organs. Statistical multi-organ motion/deformation models of the stomach, liver, left and right kidneys, and duodenum were generated by shape matching their region labels defined on four-dimensional computed tomography images. A total of 250 volumes were measured from 25 pancreatic cancer patients. This paper also proposes a per-region-based deformation learning using the non-linear kernel model to predict the displacement of pancreatic cancer for adaptive radiotherapy. The experimental results show that the proposed concept estimates deformations better than general per-patient-based learning models and achieves a clinically acceptable estimation error with a mean distance of 1.2 ± 0.7 mm and a Hausdorff distance of 4.2 ± 2.3 mm throughout the respiratory motion

    Statistical shape model to generate a planning library for cervical adaptive radiotherapy

    No full text
    International audienceExternal beam radiotherapy is extensively used to treat cervical carcinomas. A single planning CT scan enables the calculation of the dose distribution. The treatment is delivered over 5 weeks. Large per-treatment anatomical variations may hamper the dose delivery, with the potential of an organs at risk (OAR) overdose and a tumor underdose. To anticipate these deformations, a recent approach proposed three planning CTs with variable bladder volumes, which had the limitation of not covering all per-treatment anatomical variations. An original patient-specific population-based library has been proposed. It consisted of generating two representative anatomies, in addition to the standard planning CT anatomy. First, the cervix and bladder meshes of a population of 20 patients (314 images) were registered to an anatomical template, using a deformable mesh registration. An iterative point-matching algorithm was developed based on local shape context (histogram of polar or cylindrical coordinates and geodesic distance to the base) and on a topology constraint filter. Second, a standard principal component analysis (PCA) model of the cervix and bladder was generated to extract the dominant deformation modes. Finally, specific deformations were obtained using posterior PCA models, with a constraint representing the top of the uterus deformation. For a new patient, the cervix-uterus and bladder were registered to the template, and the patient’s modeled planning library was built according to the model deformations. This method was applied following a leave-one-patient-out cross-validation. The performances of the modeled library were compared to those of the three-CT-based library and showing an improvement in both target coverage and OAR sparing

    Adaptive radiotherapy for preoperative gastric cancer

    Get PDF
    Preoperative radiotherapy for gastric cancer is a novel treatment approach, aiming to precisely irradiate the target while sparing the surrounding healthy tissue to limit potential adverse side effects. However, the stomach's inherent motion and deformation, as well as its proximity to vital organs, pose challenges for precise irradiation. A promising solution is adaptive radiotherapy, which adjusts the treatment plan to match daily anatomical variations. One such approach is a Library of Plans (LoP), where multiple treatment plans covering various anatomical variations are created, and the most suitable plan is selected daily. This thesis explored a CBCT-guided adaptive strategy for preoperative gastric cancer radiotherapy. The observed substantial stomach motion and deformation highlights the need for an adaptive strategy. The feasibility of a CBCT-guided LoP was demonstrated through observer evaluations, showing that a range of observers can consistently select the most appropriate treatment plan. Furthermore, using a gastric deformation model, stomach shape was predicted from stomach volumes. A dosimetric comparison between the LoP and a single-plan approach showed that the LoP reduces the average irradiated volume and the dose to organs at risk while maintaining equal target coverage. Hence, this research underscores the benefit of an adaptive strategy for preoperative gastric cancer radiotherapy and contributes to understanding the challenges and potential solutions in this field
    corecore