173 research outputs found

    A Complete Characterization of Statistical Query Learning with Applications to Evolvability

    Get PDF
    Statistical query (SQ) learning model of Kearns (1993) is a natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the examples themselves. We describe a new and simple characterization of the query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ learning our characterization preserves the accuracy and the efficiency of learning. The preservation of accuracy implies that that our characterization gives the first characterization of SQ learning in the agnostic learning framework. The preservation of efficiency is achieved using a new boosting technique and allows us to derive a new approach to the design of evolutionary algorithms in Valiant's (2006) model of evolvability. We use this approach to demonstrate the existence of a large class of monotone evolutionary learning algorithms based on square loss performance estimation. These results differ significantly from the few known evolutionary algorithms and give evidence that evolvability in Valiant's model is a more versatile phenomenon than there had been previous reason to suspect.Comment: Simplified Lemma 3.8 and it's application

    On Statistical Query Sampling and NMR Quantum Computing

    Full text link
    We introduce a ``Statistical Query Sampling'' model, in which the goal of an algorithm is to produce an element in a hidden set SsubseteqbitnSsubseteqbit^n with reasonable probability. The algorithm gains information about SS through oracle calls (statistical queries), where the algorithm submits a query function g(cdot)g(cdot) and receives an approximation to PrxinS[g(x)=1]Pr_{x in S}[g(x)=1]. We show how this model is related to NMR quantum computing, in which only statistical properties of an ensemble of quantum systems can be measured, and in particular to the question of whether one can translate standard quantum algorithms to the NMR setting without putting all of their classical post-processing into the quantum system. Using Fourier analysis techniques developed in the related context of {em statistical query learning}, we prove a number of lower bounds (both information-theoretic and cryptographic) on the ability of algorithms to produces an xinSxin S, even when the set SS is fairly simple. These lower bounds point out a difficulty in efficiently applying NMR quantum computing to algorithms such as Shor's and Simon's algorithm that involve significant classical post-processing. We also explicitly relate the notion of statistical query sampling to that of statistical query learning. An extended abstract appeared in the 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003), 2003. Keywords: statistical query, NMR quantum computing, lower boundComment: 17 pages, no figures. Appeared in 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003

    General Bounds on Statistical Query Learning and PAC Learning with Noise via Hypothesis Boosting

    Get PDF
    AbstractWe derive general bounds on the complexity of learning in the statistical query (SQ) model and in the PAC model with classification noise. We do so by considering the problem of boosting the accuracy of weak learning algorithms which fall within the SQ model. This new model was introduced by Kearns to provide a general framework for efficient PAC learning in the presence of classification noise. We first show a general scheme for boosting the accuracy of weak SQ learning algorithms, proving that weak SQ learning is equivalent to strong SQ learning. The boosting is efficient and is used to show our main result of the first general upper bounds on the complexity of strong SQ learning. Since all SQ algorithms can be simulated in the PAC model with classification noise, we also obtain general upper bounds on learning in the presence of classification noise for classes which can be learned in the SQ model

    Learning from Positive and Unlabeled Examples

    Get PDF
    International audienceIn many machine learning settings, labeled examples are difficult to collect while unlabeled data are abundant. Also, for some binary classification problems, positive examples, that is examples of the target class, are available. Can these additional data be used to improve accuracy of supervised learning algorithms? We investigate in this paper the design of learning algorithms from positive and unlabeled data only. Many machine learning and data mining algorithms, such as decision tree induction algorithms and naive Bayes algorithms, only use examples in order to evaluate statistical queries (SQ-like algorithms). Kearns designed the Statistical Query learning model in order to describe these algorithms. Here, we design an algorithm scheme which transforms any SQ-like algorithm into an algorithm based on positive statistical queries (estimates for probabilities over the set of positive instances) and instance statistical queries (estimates for probabilities over the instance space). We prove that any class learnable in the Statistical Query learning model is learnable from positive statistical queries and instance statistical queries only if a lower bound on the weight of any target concept ff can be estimated in polynomial time. Then, we design a decision tree induction algorithm POSC4.5, based on C4.5, that uses only positive and unlabeled examples and we give experimental results for this algorithm. The case of imbalanced classes in the sense that one of the two classes (say the positive class) is heavily underrepresented compared to the other class remains open. This problem is challenging because it is encountered in many real-world applications

    Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model

    Full text link
    We describe a slightly sub-exponential time algorithm for learning parity functions in the presence of random classification noise. This results in a polynomial-time algorithm for the case of parity functions that depend on only the first O(log n log log n) bits of input. This is the first known instance of an efficient noise-tolerant algorithm for a concept class that is provably not learnable in the Statistical Query model of Kearns. Thus, we demonstrate that the set of problems learnable in the statistical query model is a strict subset of those problems learnable in the presence of noise in the PAC model. In coding-theory terms, what we give is a poly(n)-time algorithm for decoding linear k by n codes in the presence of random noise for the case of k = c log n loglog n for some c > 0. (The case of k = O(log n) is trivial since one can just individually check each of the 2^k possible messages and choose the one that yields the closest codeword.) A natural extension of the statistical query model is to allow queries about statistical properties that involve t-tuples of examples (as opposed to single examples). The second result of this paper is to show that any class of functions learnable (strongly or weakly) with t-wise queries for t = O(log n) is also weakly learnable with standard unary queries. Hence this natural extension to the statistical query model does not increase the set of weakly learnable functions

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [−1,1][-1,1]-valued dd-resilient function in ℓ1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between ℓ1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that ℓ1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Replicable Reinforcement Learning

    Full text link
    The replicability crisis in the social, behavioral, and data sciences has led to the formulation of algorithm frameworks for replicability -- i.e., a requirement that an algorithm produce identical outputs (with high probability) when run on two different samples from the same underlying distribution. While still in its infancy, provably replicable algorithms have been developed for many fundamental tasks in machine learning and statistics, including statistical query learning, the heavy hitters problem, and distribution testing. In this work we initiate the study of replicable reinforcement learning, providing a provably replicable algorithm for parallel value iteration, and a provably replicable version of R-max in the episodic setting. These are the first formal replicability results for control problems, which present different challenges for replication than batch learning settings
    • …
    corecore