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Learning From Positive and UnlabeledExamples ?
François DENIS a Rémi GILLERON b Fabien LETOUZEY baÉquipe BDAA, LIF, Centre de Mathématiques et d'Informatique (CMI),Université de Provene, Marseille, FRANCE. E-mail: fdenis�mi.univ-mrs.frbÉquipe Grappa, LIFL, UPRESA 8022 CNRS, Université de Lille 1 andUniversité Charles de Gaulle, Lille 3, FRANCE. E-mail:{gilleron,letouzey}�li�.frAbstratIn many mahine learning settings, labeled examples are di�ult to ollet whileunlabeled data are abundant. Also, for some binary lassi�ation problems, positiveexamples whih are elements of the target onept are available. Can these additionaldata be used to improve auray of supervised learning algorithms? We investigatein this paper the design of learning algorithms from positive and unlabeled data only.Many mahine learning and data mining algorithms, suh as deision tree indutionalgorithms and naive Bayes algorithms, use examples only to evaluate statistialqueries (SQ-like algorithms). Kearns designed the Statistial Query learning modelin order to desribe these algorithms. Here, we design an algorithm sheme whihtransforms any SQ-like algorithm into an algorithm based on positive statistialqueries (estimate for probabilities over the set of positive instanes) and instanestatistial queries (estimate for probabilities over the instane spae). We provethat any lass learnable in the Statistial Query learning model is learnable frompositive statistial queries and instane statistial queries only if a lower bound onthe weight of any target onept f an be estimated in polynomial time. Then, wedesign a deision tree indution algorithm POSC4.5, based on C4.5, that uses onlypositive and unlabeled examples and we give experimental results for this algorithm.In the ase of imbalaned lasses in the sense that one of the two lasses (say thepositive lass) is heavily underrepresented ompared to the other lass, the learningproblem remains open. This problem is hallenging beause it is enountered inmany real-world appliations.Key words: PAC learning, Statistial Query model, Semi-supervised Learning,Data Mining? This researh was partially supported by: "CPER 2000-2006, Contrat de Planétat - région Nord/Pas-de-Calais: axe TACT, projet TIC"; fonds européens FEDERPreprint submitted to Elsevier Preprint 26 August 2002



1 IntrodutionThe �eld of Data Mining (sometimes referred to knowledge disovery in data-bases) addresses the question of how best to use various sets of data to disoverregularities and to improve deisions. The learning step is entral in the datamining proess. A �rst generation of supervised mahine learning algorithms(e.g. deision tree indution algorithms, neural network learning methods,bayesian learning methods, logisti regression, ...) have been demonstratedto be of signi�ant value in a Data Mining perspetive and they are nowwidely used and available in ommerial produts. But these mahine learn-ing methods are issued from non parametri statistis and suppose that theinput sample is a quite large set of independently and identially distributed(i.i.d.) labeled data desribed by numeri or symboli features. But, in a DataMining or a Text Mining perspetive, one has to use historial data that havebeen olleted from various origins and moreover, i.i.d. labeled data may beexpensive to ollet or even unavailable. On the other hand, unlabeled dataproviding information about the underlying distribution or examples of onepartiular lass (that we shall all the positive lass) may be easily available.Can this additional information help to learn? Here, we address the issue ofdesigning lassi�ation algorithms that are able to utilize data from diversedata soures: labeled data (if available), unlabeled data, and positive data.Along this line of researh, there has reently been signi�ant interest in semi-supervised learning, that is the design of learning algorithms from both labeledand unlabeled data. In the semi-supervised setting, one of the questions is: anunlabeled data be used to improve auray of supervised learning algorithms?Intuitively, the answer is positive beause unlabeled data must provide someinformation about the hidden distribution. Nevertheless, it seems that thequestion is hallenging from a theoretial perspetive as well as a pratialone. A promising line of researh is the o-training setting �rst de�ned in [3℄.Supposing that the features are naturally divided into two disjoint sets, theo-training algorithm builds two lassi�ers, and eah one of these two is usedto label unlabeled data for the other. In [3℄, theoretial results are proved,learning situations for whih the assumption is true are desribed in [14℄,experimental results may be found in [3℄ and [15℄. See also [8℄ for anotherapproah of the o-training setting. Other approahes inlude using the EMalgorithm [16℄, and using transdutive inferene [11℄. A NIPS'99 workshopand a NIPS'00 ompetition were also organized on using unlabeled data forsupervised learning.In this paper, we onsider binary lassi�ation problems. One of the two lasses"TIC - Fouille Intelligente de données - Traitement Intelligent des Connaissanes"OBJ 2-phasing out - 2001/3 - 4.1 - n 3" 2



is alled the positive lass. We are interested in the following questions:� How an unlabeled data and positive data be used to improve the aurayof supervised learning algorithms?� How an learning algorithms from unlabeled data and positive data be de-signed from previously known supervised learning algorithms?First, let us justify that the problem is relevant for appliations. We argue that,in many pratial situations, elements of the target onept may be abundantand heap to ollet. For instane, onsider one diagnosis of diseases: in orderto obtain an i.i.d. sample of labeled examples, it is neessary to systematiallydetet the disease on a representative sample of patients and this task may bequite expensive (or impossible). On the other hand, it may be easy to olletthe medial �les of patients who have the disease. Also, unlabeled data areany pool of patients possibly having the disease.Seond, let us note that many mahine learning algorithms as deision treelearning algorithms and Bayesian learning algorithms only use examples toestimate statistis. In other words, many mahine learning algorithms maybe onsidered as Statistial Query (SQ) learning algorithms. Thus we areinterested in general shemes whih transform supervised SQ-like learning al-gorithms into learning algorithms from both unlabeled data and positive data.In a preliminary paper [6℄, we have given evidene � with both theoretial andempirial arguments � that positive data and unlabeled data an boost au-ray of SQ-like learning algorithms. It was noted that learning with positiveand unlabeled data is possible as soon as the weight of the target onept (i.e.the ratio of positive examples) is known by the learner. An estimate of theweight an be obtained either by an extra-orale (say for a similar problem)or from a small set of labeled examples. In the present paper, we onsider themore general problem where only positive data and unlabeled data are avail-able. We present a general sheme whih transforms any SQ-like supervisedlearning algorithm L into an algorithm PL using only positive data and un-labeled data. We prove that PL is a learning algorithm as soon as the learneris given aess to a lower bound on the weight of the target onept. It re-mains open whether it is possible to design an algorithm from positive dataand unlabeled data from any SQ learning algorithm in the general ase.The theoretial framework is presented in Setion 2. Our learning algorithm isde�ned and proved in Setion 3, some onsequenes about the equivalene ofmodels are also given. It is applied to tree indution and experimental resultsare given in Setion 4. 3



2 Learning models2.1 Learning Models from Labeled DataFor eah n � 1, Xn denotes an instane spae on n attributes. A onept fis a subset of some instane spae Xn or equivalently a f0; 1g-valued funtionde�ned on Xn. For eah n � 1, let Cn � 2Xn be a set of onepts. ThenC = Sn�1 Cn denotes a onept lass over X = Sn�1Xn. The size of a oneptf is the size of a smallest representation of f for a given representation sheme.An example of a onept f is a pair hx; f(x)i, whih is positive if f(x) = 1 andnegative otherwise. Let D be a distribution over the instane spae Xn, for asubset A of Xn, we denote by D(A) the probability of the event [x 2 A℄. For asubset A of Xn suh that D(A) 6= 0, we denote by DA the indued distributionover A. For instane, for a onept f over Xn suh that D(f) 6= 0 and for anyx 2 Xn, Df (x) = D(x)=D(f) when f(x) = 1 and Df(x) = 0 otherwise. Let fand g be onepts over the instane spae Xn, we denote by f the omplementof the set f in Xn and by f�g the set f�g = fx 2 Xn j f(x) 6= g(x)g.Let f be a target onept over X in some onept lass C. Let D be the hiddendistribution de�ned over X. In the PAC model [18℄, the learner is given aessto an example orale EX(f;D) whih returns an example hx; f(x)i drawnrandomly aording to D at eah all. A onept lass C is PAC learnableif there exist a learning algorithm L and a polynomial p(:; :; :; :) with thefollowing property: for any n and any f 2 Cn, for any distribution D on Xn,and for any 0 < � < 1 and 0 < Æ < 1, if L is given aess to EX(f;D)and to inputs � and Æ, then with probability at least 1 � Æ, L outputs ahypothesis onept h satisfying error(h) = D(f�h) � � in time boundedby p(1=�; 1=Æ; n; size(f)). In this paper, we always suppose that the value ofsize(f) is known by the learner. Reall that if size(f) is not given then thehalting riterion of the algorithm is probabilisti [9℄. Also, for many oneptlasses the natural de�nition of size(f) is already bounded by a polynomialin n.One ritiism of the PAC model is that it is a noise free model. Thereforeextensions in whih the label provided with eah random example may beorrupted with random noise were studied. The lassi�ation noise model (CNmodel for short) was �rst de�ned by Angluin and Laird [1℄. A variant of theCN model, namely the onstant-partition lassi�ation noise model (CPCNmodel for short) has been de�ned by Deatur [5℄. In this model, the labeledexample spae is partitioned into a onstant number of regions, eah of whihmay have a di�erent noise rate. An interesting example is the ase where therate of false positive examples di�ers from the rate of false negative examples.We only de�ne this restrited variant of the CPCN model. The noisy orale4



EX�+;��(f;D) is a proedure whih, at eah all, draws an element x of Xnaording to D and returns (i) (x; 1) with probability 1 � �+ and (x; 0) withprobability �+ if x 2 f , (ii) (x; 0) with probability 1 � �� and (x; 1) withprobability �� if x 2 f . Let C be a onept lass over X. We say that Cis CPCN learnable if there exist a learning algorithm L and a polynomialp(:; :; :; :; :) with the following property: for any n and any f 2 Cn, for anydistribution D on Xn, and for any 0 � �+; �� < 1=2 and 0 < �; Æ < 1, if L isgiven aess to EX�+;��(f;D) and to inputs � and Æ, then with probability atleast 1�Æ, L outputs a hypothesis onept h 2 C satisfyingD(f�h) � � in timebounded by p(1=�; 1=Æ; 1=; size(f); n) where  = minf1=2� �+; 1=2� ��g.Many mahine learning algorithms only use examples in order to estimateprobabilities. This is the ase for indution tree algorithms suh as C4.5 [17℄and CART [4℄. This is also the ase for highly pratial Bayesian learningmethod as the naive Bayes lassi�er. Kearns de�ned the statistial query model(SQ model for short) in [12℄. The SQ model is a speialization of the PACmodel in whih the learner forms its hypothesis solely on the basis of estimatesof probabilities. A statistial query over Xn is a mapping � : Xn � f0; 1g !f0; 1g assoiated with a tolerane parameter 0 < � � 1. In the SQ modelthe learner is given aess to a statistial orale STAT (f;D) whih, at eahquery (�; �), returns an estimate of D(fx j �(hx; f(x)i) = 1g) within auray� . Let C be a onept lass over X. We say that C is SQ learnable if thereexist a learning algorithm L and polynomials p(:; :; :); q(:; :; :) and r(:; :; :) withthe following property: for any f 2 C, for any distribution D over X, andfor any 0 < � < 1, if L is given aess to STAT (f;D) and to input �, then,for every query (�; �) made by L, the prediate � an be evaluated in timeq(1=�; n; size(f)), and 1=� is bounded by r(1=�; n; size(f)), L halts in timebounded by p(1=�; n; size(f)) and L outputs a hypothesis h 2 C satisfyingD(f�h) � �.We slightly modify the statistial orale STAT (f;D). Let f be the targetonept and let us onsider a statistial query � made by a statistial querylearning algorithm L. The statistial orale STAT (f;D) returns an estimateD� of D� = D(fx j �(hx; f(x)i) = 1g) within some given auray. We maywrite:D� = D(fx j �(hx; 1i) = 1 ^ f(x) = 1g) +D(fx j �(hx; 0i) = 1 ^ f(x) = 0g)= D(fx j �(hx; 1i) = 1g \ f) +D(fx j �(hx; 0i) = 1g \ f)= D(B \ f) +D(C \ f)where the sets B and C are de�ned by:B = fx j �(hx; 1i) = 1g and C = fx j �(hx; 0i) = 1g:5



Therefore, we onsider a statistial orale whih, at eah query (A; �), returnsestimates for probabilitiesD(f\A) andD(f\A) within auray � , where f isthe target onept, f its omplement and A any subset � for whih membershipis deidable in polynomial time � of the instane spae. It should be lear forthe reader that this tehnial modi�ation does not hange the SQ learnablelasses.It is lear that aess to the example orale EX(f;D) being given, it is easyto simulate the statistial orale STAT (f;D) by drawing a su�iently largeset of labeled examples. Moreover, there is a general sheme whih transformsany SQ learning algorithm into a PAC learning algorithm. It is also provedin [12℄ that the lass of parity funtions is learnable in the PAC model butannot be learned from statistial queries.It has been shown by Kearns that any lass learnable from statistial queryis also learnable in the presene of lassi�ation noise [12℄. Following theresults by Kearns, it has been proved by Deatur [5℄ that any lass learnablefrom statistial queries is also learnable in the presene of onstant-partitionlassi�ation noise. The proof uses the hypothesis testing property : a hypothesiswith small error an be seleted from a set of hypotheses by seleting the onewith the fewest errors on a set of CPCN orrupted examples. If we onfuse, inthe notations, the name of the model and the set of learnable lasses, we anwrite the following inlusions:SQ � CPCN � CN � PAC (1)SQ � PAC (2)To our knowledge, the equivalenes between the models CN and SQ or betweenthe models CN and PAC remain open despite reent insights [2℄ and [10℄.2.2 Learning Models from Positive and Unlabeled DataThe learning model from positive examples (POSEX for short) was �rst de�nedin [7℄. The model di�ers from the PAC model in the following way: the learnergets information about the target funtion and the hidden distribution fromtwo orales, namely a positive example orale POS(f;D) and an instaneorale INST (D) instead of an example orale EX(f;D). At eah request bythe learner, the instane orale INST (D) returns an element of the instanespae X, i.e. an unlabeled example, aording to the hidden distributionD. Ateah request by the learner, the positive example orale POS(f;D) returnsa positive example aording to the hidden distribution Df . We have thefollowing result:Proposition 1 [7℄ Any lass learnable in the CPCN model is learnable in the6



POSEX model.PROOF. The proof is simple and as it may help to understand the proof ofthe main algorithm of the present paper, we sketh it below.Let C be a CPCN learnable onept lass, let L be a learning algorithm for Cin the CPCN model, let f be the target onept, let D be a distribution overthe instane spae and let us suppose that D(f) 6= 0. We must show how Lan be used to learn from the orales POS(f;D) and INST (D).Run L. At eah all of the noisy orale:� with probability 2=3, all POS(f;D) and keep the positive label� with probability 1=3, all INST (D) and label the example as negative.It an easily be shown that this is stritly equivalent alling the noisy oraleEX�+;��(f;D0) where:
D0(x) = 8><>: D(x)3 if f(x) = 0D(x)+2Df (x)3 if f(x) = 1�+ = D(f)2 +D(f)�� = 0Note that �+ � 1=3 < 1=2. And as for any subset A of the instane spae,we have D(A) � 3D0(A), it is su�ient to run the algorithm L with inputauray �=3 and input on�dene Æ to output with on�dene greater than1� Æ a hypothesis whose error rate is less than �.The learning model from positive queries (POSQ for short) was also de�nedin [7℄. In the POSQ model, there are a positive statistial orale PSTAT (f;D)whih provides estimates for probabilities Df (A) for any subset A of theinstane spae within a given tolerane and an instane statistial oraleISTAT (D) whih provides estimates for probabilities D(A) for any subsetA of the instane spae within a given tolerane. The de�nition of a POSQlearnable lass is similar to the de�nition of a SQ learnable lass: the oraleSTAT (f;D) is replaed by the two orales PSTAT (f;D) and ISTAT (D).The POSQ model is weaker than the SQ model as there is no diret way toobtain an estimate of the weight D(f) of the target onept. However, if wean get suh an estimate, both models beome equivalent. Indeed, statistial7



queries an be omputed from instane queries and positive statistial queriesas soon as the weight of the target onept is known beause of the followingequations: D̂(f \ A) = D̂f (A)� D̂(f)D̂(f \ A) = D̂(A)� D̂(f \ A) (3)So, any lass learnable in the SQ model is learnable in the POSQ model assoon as the learner is given aess to the weight of the target onept oran ompute it from the positive statistial orale and the instane statistialorale. This is formalized in the following result:Proposition 2 [7℄ Let C be a onept lass suh that the weight of any targetonept an be estimated in polynomial time within any given tolerane. If Cis SQ learnable then C is POSQ learnable.We an summarize all the results with the following inlusions:POSQ � SQ � CPCN � POSEX � PAC (4)CPCN � CN � PAC (5)SQ � POSEX (6)The inequality between SQ and POSEX holds beause the lass of parityfuntions is POSEX learnable but not SQ learnable. Equivalenes betweenPOSQ and SQ and between POSEX and PAC remain open.3 Learning Algorithms from Positive and Unlabeled ExamplesWe have already notied that in pratial Data Mining and Text Mining sit-uations, statistial query-like algorithms, suh as C4.5 or naive Bayes, arewidely used. It is straightforward to see how a statistial query an be eval-uated from labeled data. In a similar way, positive and instane statistialqueries an easily be evaluated from positive and unlabeled data. So, in orderto adapt lassial learning algorithms to positive and unlabeled examples, wean show how SQ learning algorithms an be modi�ed into POSQ learningalgorithms.In [6℄, we have studied the ase where the weight of the target onept is eithergiven by an orale or evaluated from a small set of labeled examples. In this8



ase, Equations 3 and Proposition 2 show how the transformation of the SQalgorithm an be ahieved. We now onsider the more general problem whereno information on the weight of the target onept is given to the learner.3.1 A Generi learning algorithm from positive statistial queries and in-stane statistial queriesIn this setion, we provide a general sheme whih transforms any SQ-likealgorithm into a POSQ-like algorithm.Let us onsider a onept lass C learnable in the SQ model by a learningalgorithm L, and let  be a positive real number. Let us reall that we supposethat size(f) is known by the learner. Also note that for most onept lassesC learnable from statistial queries, the size of every target onept f 2 Cnis bounded by a polynomial in n. We design a POSQ learning algorithm PLbased on the algorithm L whih learns any target onept f in C suh thatD(f) � . A onsequene of this result is that whenever a lower bound onthe weight of the target onept is known a priori, every SQ learnable lass isPOSQ learnable. First, we give some omments on the algorithm PL whih isdesribed in Figure 1 and seond, we prove its orretness in Setion 3.2.The algorithm PL is based on a statistial query learning algorithm L and isgiven aess to a lower bound  on the weight of the target onept. PL isomposed of two stages: in the �rst stage, a set of hypotheses is onstruted;in the seond stage, a hypothesis is seleted in the hypothesis set.In the �rst stage, the algorithm PL iterates over larger guesses for D(f).At eah guess, the statistial query learning algorithm is alled. But onlypositive and instane queries are available, thus when L makes a statistialquery, Equations 3 are used with the urrent estimate p̂i of D(f) togetherwith the estimates returned by the orales PSTAT (f;D) and ISTAT (D): ateah statistial query (A; �), return D̂(f \ A) = D̂f(A)� p̂i and D̂(f \ A) =D̂(A)� D̂(f \A) where D̂f (A) is the estimate given by the positive statistialorale PSTAT (f;D) with set A within tolerane �min=4 and where D̂(A) isthe estimate given by the instane statistial orale with set A within toler-ane �min=4. Note that the simulation of STAT (f;D) may produe erroneousresults when the estimate p̂i of D(f) is poor. In this ase, the behavior of thealgorithm L is not known. Thus we bound the running time of L and outputa default hypothesis.In the seond stage, the algorithm PL selets the hypothesis h whih minimizesthe quantity ê(h). Minimizing ê(h) is equivalent to minimizing an estimate ofthe error rate aording to the noisy orale de�ned in the proof of Proposi-9



POSQ learning algorithm PLparameters: SQ learning algorithm L,  2 (0; 1); let p (respetively r)be the polynomial whih bounds the running time of L (respetively theinverse of the tolerane needed for queries)input: �Constrution of a hypothesis setSet �0 to 12 � 2� � �, �min to 1r(1=�;n;size(f)) , N to d 2�min e, � to 12Nfor i = 1 to Nthe urrent estimate of D(f) is p̂i = (2i� 1)�run L with auray �0 using orales PSTAT (f;D), ISTAT (D)within tolerane �min4 and use Equations 3 ;if the running time exeeds p(1=�0; n; size(f))then let hi be a default hypothesiselse let hi be the output of LHypothesis testing algorithmfor i = 1 to Nall PSTAT with input hi within tolerane �12all ISTAT with input hi within tolerane �12set ê(hi) to 2D̂f(hi) + D̂(hi)output: h = argminhi ê(hi)Fig. 1. Learning algorithm from positive and unlabeled queriestion 1: with probability 2=3 draw a positive example and label it as positiveand with probability 1=3 draw an unlabeled example and label it as negative.Indeed, if an unlabeled example is drawn, the probability of error is equal toD(h). And if a positive example is drawn, the probability of error is equal toDf(h). That is, the error rate using the noisy orale is (2Df(h) +D(h))=3.Minimizing ê(h) an also be seen as: hoosing a hypothesis h approximatelyonsistent with positive data � when minimizing the �rst term of the sum2D̂f(hi)� while avoiding over-generalization � when minimizing the seondterm D̂(hi).Note that as the statistial orales PSTAT (f;D) and ISTAT (D) an be sim-ulated by using positive and unlabeled examples. Consequently the previoussheme allows to transform any SQ-like learning algorithm into an algorithmusing positive and unlabeled examples only.3.2 Proof of the algorithmLemma 3 There exists i 2 f1; : : : ; Ng suh that error(hi) � �0.10



PROOF. There exists i suh that D(f) 2 [p̂i� �; p̂i +�℄ sine, by de�nitionof p̂i, Si[p̂i��; p̂i+�℄ = [0; 1℄. For that value, p̂i is an estimate of D(f) withintolerane �min4 sine � � �min4 . For all queries made by L, the orales PSTATand ISTAT are alled with tolerane �min4 and Equations 3 are used. It iseasy to prove that estimates for algorithm L are made within tolerane �min.Consequently, by hypothesis on L, L outputs some hi suh that error(hi) � �0.Lemma 4 Let f be the target onept, let g be some hypothesis and let � �2D(f). We haveerror(g) � e�(g)�D(f) � error(g) � �D(f)D(f) !where error(g) = D(f�g) is the (lassial) error and e�(g) = �Df(g)+D(g).PROOF. We haveerror(g) = D(f \ g) +D(g \ f)= D(g)�D(f) + 2D(f \ g)= e�(g)�D(f) + 2D(f \ g)� �Df(g)= e�(g)�D(f) +D(f \ g) 2� �D(f)!e�(g)�D(f) = error(g) +D(f \ g)� � 2D(f)D(f)As � � 2D(f) and D(f \ g) � error(g), we haveerror(g) � e�(g)�D(f) � error(g) "1 + � � 2D(f)D(f) # = error(g)� �D(f)D(f)Note that the learner is not given aess to an upper bound on D(f). Theprevious lemma holds if � � 2D(f), thus we set � to 2 and we simply de-note e2(h) by e(h). That is we have: e(g) = 2Df(g) + D(g) and the readershould note that in the hypothesis testing stage of the algorithm PL we usean estimate ê(h) of e(h) where h is a hypothesis in the hypothesis set.Lemma 5 Let h and h0 be two hypotheses suh that error(h) � 12 � 2� � �and error(h0) > �, then e(h0)� e(h) > �2 .PROOF. 11



Using the previous lemma � with � = 2 �, we have:e(h0)� e(h) � error(h0)� error(h) 2�D(f)D(f) ! :As the funtion r(x) = 2�xx is dereasing and D(f) � , we havee(h0)� e(h) � error(h0)� error(h) 2�  ! :By hypothesis on h and h0,error(h) < 12  2� ! error(h0);so e(h0)� e(h) > error(h0)2 > �=2:Proposition 6 The output hypothesis satis�es error(h) � � and the runningtime is polynomial in 1=�, n, l and 1=.PROOF. All estimates ê(hi) of e(hi) are done within tolerane �4 and Lem-mas 3 and 5 ensure that the output hypothesis satis�es error(h) � �.The number of hypotheses is N whih is linear in 1=�min. We have supposedfor sake of larity in the de�nition of the algorithm that �min was �xed andknown by the learner. Atually, �min is polynomial in the input auray of L,therefore �min is polynomial in �0 that is also polynomial in � and . It is easyto verify that all queries are made within a tolerane polynomial in � and .3.3 Equivalene of the SQ and POSQ modelsWhether or not any SQ algorithm an be transformed into a POSQ algorithmremains an open question. It has been proved in [7℄ that this transformationis possible when the weight of the target onept an be estimated from theorales PSTAT (f;D) and ISTAT (D) in polynomial time. In this paper, weimprove this result by showing that any SQ algorithm an be transformed intoa POSQ algorithm when a lower bound on the weight of the target onept isgiven to the learner. However, the running time of the algorithm is polynomialin the inverse of this lower bound.Let us onsider a onept lass C whih is SQ learnable. We say that C satis�esthe property Lowerbound if there exists an algorithmW whih, for any f in C,12



for any distribution D on X, with input � and given aess to PSTAT (f;D)and ISTAT (D)
outputs 8>>>>><>>>>>: yes if D(f) < �2 ;no if D(f) > �;? if �2 � D(f) � �in time polynomial in 1=�. Then we have the following result:Proposition 7 Any SQ learnable lass whih satis�es Lowerbound is POSQlearnable.PROOF. Consider the following algorithm:input: �if W outputs yesoutput funtion 0elserun the POSQ learning algorithm with parameter  = �2 and input �It is easy to prove that this algorithm is a learning algorithm from positiveand instane statistial queries using Proposition 6 and the de�nition of theproperty Lowerbound.Note that proving the property Lowerbound for every SQ learnable oneptlass would imply the equality between SQ and POSQ.4 Deision Tree Learning Algorithms from Positive and UnlabeledExamplesIndution tree algorithms are widely used for Data Mining purposes. Thesealgorithms are �statistial query like� sine they only use examples in order toestimate probabilities. In the �rst part of this setion, we reall the notionsof entropy and information gain on whih C4.5 is based. In the seond part,we introdue C4.5POSUNL, a learning algorithm based on C4.5 �rst de�nedin [6℄, where the statistial queries required by C4.5 are estimated with thehelp of Equations 3, an estimate of the weight of the target onept being givenas input. In the third part of this setion, we present POSC4.5 an indutiontree learning algorithm from positive data and unlabeled data only. In the13



last part of this setion, we give experimental results for POSC4.5 both onarti�ial problems and on two benhmarks hosen from the UCI MahineLearning Database.4.1 Top down deision tree algorithmsMost algorithms for tree indution use a top-down, greedy searh through thespae of deision trees. The splitting riterion used by C4.5 [17℄ is based ona statistial property, alled information gain, itself based on a measure frominformation theory, alled entropy. We only onsider binary problems. Givena sample S of some target onept, the entropy of S isEntropy(S) = �p0 log2 p0 � p1 log2 p1 (7)where pi is the proportion of examples in S belonging to the lass i. The infor-mation gain is the expeted redution in entropy by partitioning the sampleaording to an attribute test t. It is de�ned asGain(S; t) = Entropy(S)� Xv2V alues(t) NvN Entropy(Sv) (8)where V alues(t) is the set of every possible value for the attribute test t, Nvis the ardinality of the set Sv of examples in S for whih t has value v andN is the ardinality of S.As the information gain riterion has a strong bias in favor of tests with manyoutomes, the riterion used in C4.5 is the Gain ratio de�ned byGainRatio(S; t) = Gain(S; t)SplitInfo(S; t)where SplitInfo(S; t) = � Xv2V alues(t) NvN log NvN :Let D be the hidden distribution de�ned over the set of instanes. Let nbe the urrent node, let Dn be the �ltered distribution, that is the hiddendistribution D restrited to instanes reahing the node n. Let S be the setof training examples assoiated with the urrent node n and let p1 be theproportion of positive examples in S: p1 is an estimate of Dn(f) and p0 is anestimate of Dn(f). 14



4.2 C4.5POSUNL: a top-down indution tree algorithm from positive andunlabeled examples with the help of an estimate of the weight of the targetoneptRoughly speaking, C4.5POSUNL is a version of C4.5 in whih the statistialqueries are estimated from positive examples and unlabeled examples by usingEquations 3, an estimate of the weight of the target onept being given. Thedi�erenes between C4.5POSUNL and C4.5 are the following:� C4.5POSUNL takes as input:� a set POS of positive examples,� together with a set UNL of unlabeled examples,� together with an estimate D̂(f) of D(f) whih is the weight of the targetonept.� For the urrent node, entropy and gain are alulated using Equations 7and 8 where, based on Equations 3, the ratios p0 and p1 are given by theequations: p1 = inf ( jPOSnjjPOSj � D̂(f)� jUNLjjUNLnj ; 1)p0 = 1� p1 (9)where POSn is the set of positive examples assoiated with the node n andUNLn is the set of unlabeled examples assoiated with the node n;� When the Gain Ratio is used instead of the information gain , split infor-mation SplitInfo is alulated from unlabeled examples;� The majority lass is hosen as 0 or 1 aording to the values of p0 and p1alulated with equations (9);� Halting riteria during the top-down tree generation are evaluated fromunlabeled data;� When pruning trees, lassi�ation errors are estimated with the help ofratios p0 and p1 from (9).4.3 POSC4.5: a top-down indution tree algorithm from positive and unla-beled examples onlyThe learning algorithm POSC4.5 is given in Figure 2. It is based on the theo-retial result proved in Setion 3. We intend to use the algorithm sheme PLto transform C4.5. But as C4.5POSUNL an already be viewed as a variantof C4.5 whih uses positive and unlabeled examples together with an estimateof the target weight, we have diretly inorporated C4.5POSUNL in the PLalgorithm. 15



POSC4.5input: a set POS of positive examples and a set UNL of unlabeled examplesSplit POS and UNL with ratios 2/3, 1/3 into POSL, POST , UNLL and UNLTConstrution of a hypothesis setfor i = 1 to 9the urrent estimate of D(f) is set to D̂(f) = i10run C4.5POSUNL with input POSL, UNLL and D̂(f) = i10 , and output hiSeleting the best estimate of D(f)for i = 1 to 9set ê(hi) to 2 jfx2POST jhi(x)=0gjjPOST j + jfx2UNLT jhi(x)=1gjjUNLT jset j to argmini ê(hi)Constrution of the �nal hypothesisrun C4.5POSUNL with input POS, UNL and D̂(f) = j10 , and output hFig. 2. POSC4.5: indution tree algorithm from positive and unlabeled examplesAnother di�erene between PL and POSC4.5 is that the lower bound  is notgiven as input to POSC4.5. Instead, it is impliitly supposed that the weightof the target onept is not too small.The algorithm takes as input a set POS of examples of the target lass togetherwith a set UNL of unlabeled examples. The algorithm splits the set POS(respetively UNL) into two sets POSL and POST (respetively UNLL andUNLT ) using the usual values 2=3 and 1=3.The sets POSL and UNLL are used for the onstrution of the hypothesis set.More preisely these sets are used to simulate the positive statistial orale andthe instane statistial orale. In this stage, we run nine times C4.5POSUNLwith input POSL, UNLL and an estimate D̂(f) of D(f) taking the suessivevalues 0.1, . . . , 0.9.In the seond stage of POSC4.5, i.e, the hypothesis testing algorithm, the setsPOST and UNLT are used to simulate the positive statistial orale and theinstane statistial orale. In our implementation, we selet in POSC4.5 thebest estimate D̂(f) of D(f) aording to the minimal estimate ê(h) of e(h)instead of seleting the best hypothesis like in PL.The output of POSC4.5 is the output of C4.5POSUNL with input POS, UNLtogether with the best estimate D̂(f) of D(f).16



4.4 Experiments with Deision ListsA deision list over x1; : : : ; xn is an ordered sequene L = (m1; b1); : : : ; (mp; bp)of terms, in whih eah mj is a monomial over x1; : : : ; xn, and eah bj 2 f0; 1g.The last monomial is always mp = 1. For any input a 2 f0; 1gn, the value L(a)is de�ned as bj, where j is the smallest index satisfying mj(a) = 1. We onlyonsider 1-deision list where eah monomial is a variable xi or its negationxi. We set p to 11 and n to 20. The hoie of a target deision list f , the hoieof the weight D(f) and the hoie of the distribution D are done as follows:� a target deision list f is hosen randomly;� for any a 2 f0; 1gn, a weight wa is hosen randomly in [0; 1);� a normalization proedure is applied to the two sets of weights fwa j f(a) =1g and fwa j f(a) = 0g. Thus we get two distributions D1 on f and D2 onf ;� a weight D(f) for the target onept is hosen using a proedure that de-pends on the experiment;� D is de�ned by: 8a 2 f0; 1gn, D(a) = D(f)�D1(a) + (1�D(f))�D2(a).In the experiments, we ompare C4.5POSUNL and POSC4.5. The algorithmC4.5POSUNL takes as input a set POS of positive examples, a set UNL ofunlabeled examples and an estimate D̂(f) of D(f). The experimental resultsfor C4.5POSUNL depend on the auray of the estimate D̂(f) of D(f). Thuswe onsider two ases:� the exat value of D(f) is given as input of the learning algorithm. In thefollowing and in the �gures, we denote by C4.5POSUNL(D(f)) this variantof C4.5POSUNL;� the estimate D̂(f) is set to the ratio of positive examples in a (small) setLAB of labeled examples given as input. We denote by C4.5POSUNL(LAB)this variant of C4.5POSUNL. The set LAB is only used for the alulationof D̂(f).In the experimental results and in the plots, the error rates and target weightsare expressed in perent. The size of a set is its ardinality.Experiment 1.In order to obtain experimental results on the relative value of examples,we let the number of positive examples vary and we ompare POSC4.5,C4.5POSUNL(LAB) and C4.5POSUNL(D(f)). We set D(f) to 0.5, thesize of POS is equal to the size of UNL and ranges from 50 to 1000 by step50, the size of LAB is �xed to 25. For a given size of POS, we iterate 100times the experiment: a target f is drawn, a distribution D is hosen, setsLAB, POS and UNL are drawn randomly, we run the three algorithmsand alulate the error rate of the output hypothesis on a large test set of17



10000 examples. We average the error rates over the 100 experiments. Theresults are given in Figure A.1.The learning algorithmPOSC4.5 performs as well as C4.5POSUNL(D(f))where the exat value of D(f) is given to the learner. Thus for this arti�ialproblem, the results of POSC4.5 whih is based on a hypothesis testing al-gorithm are onvining. The reader should also note that the two algorithmsPOSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB) whihuses a rough estimate of D(f) (solely based on 25 labeled examples). In this�rst set of experiments, the weight of the target onept is set equal to0.5. An equal ratio between positive and negative examples is the mostfavourable to POSC4.5. Therefore, in a seond set of experiments, we on-sider di�erent values for D(f).Experiment 2.The weight D(f) of the target onept ranges from 0 to 1 by step 0.05.The size of POS is equal to the size of UNL and is set to 1000. The sizeof LAB is �xed to 25. For a given value of D(f), we average the error ratesover 100 experiments. The results are given in Figure A.2.The results are similar: POSC4.5 performs as well as C4.5POSUNL(D(f));POSC4.5 and C4.5POSUNL(D(f)) outperform C4.5POSUNL(LAB). Forthis set experiments, POSC4.5 is robust to the value of the weight of thetarget onept. Note that the plots for D(f) = 0:05 and D(f) = 0:95 arenot signi�ant beause POSC4.5 makes its guesses from 0.1 to 0.9.4.5 Experiments with UCI problemsWe onsider two data sets from the UCI Mahine Learning Database [13℄:kr-vs-kp and adult. The majority lass is hosen as positive. In the experi-ments, we ompare C4.5POSUNL and POSC4.5 with C4.5.Experiment 3.In order to obtain experimental results for the relative value of examples,we ompare C4.5 and C4.5POSUNL(LAB). For kr-vs-kp, the size of POSand the size of UNL are set equal to 600; the error rate is estimated on ahold-out test set of 1000 labeled examples. For adult, the size of POS andthe size of UNL are set equal to 10 000; the error rate is estimated on ahold-out test set of 15 000 labeled examples. We let the number of labeledexamples vary, and ompare the error rate of C4.5 and C4.5POSUNL(LAB).For a given size of LAB, we iterate 100 times the following: all sets areseleted randomly, we ompute the error rate for C4.5 with input LAB andthe error rate for C4.5POSUNL with input POS, UNL and an estimate ofthe weight of the target onept whih is the ratio of positive examples inthe set LAB. The reader should note that C4.5POSUNL(LAB) only useslabeled examples to ompute a rough estimate of the weight of the target18



onept. Then, we average the error rates over the 1000 experiments.Theresults an be seen in Figure A.3.For the two datasets, C4.5POSUNL(LAB) outperforms C4.5 when thenumber of labeled examples is small until a limit whih is about 100 forkr-vs-kp � reall that there are 600 positive examples and 600 unlabeledexamples � and about 500 for adult � reall that there are 10 000 positiveexamples and 10 000 unlabeled examples �. One ould also note that, whenthe estimate of the weight of the target onept is preise enough, the er-ror rate for is C4.5POSUNL onstant. Also note that C4.5POSUNL treesare onsistently larger than C4.5 ones beause of the pruning proedure inC4.5POSUNL whih is not optimized.Experiment 4.In this seond set of experiments, we �x the size of LAB and we let thenumber of positive and unlabeled examples vary, and ompare the error rateof C4.5POSUNL(LAB), C4.5POSUNL(D(f)) and POSC4.5. The resultsan be seen in Figure A.4. For kr-vs-kp, the plots are similar, the leastgood results are obtained by POSC4.5. This seems natural beause it usesless information. Surprisingly, POSC4.5 obtains the best results for the dataset adult.5 ConlusionWe have given evidene in the present paper that the weight of the targetonept is a key parameter for learning from positive data and unlabeleddata. In the o-training framework [3℄, it seems that the weight of the targetonept is impliitly known by the learner. The ratio of positive examples inthe labeled training sample is set to the weight of the target onept and thisratio is preserved throughout the learning proess. It is unlear whether theresults depend on this impliit hypothesis.In this paper, we have shown that knowledge of a lower bound of the targetweight is su�ient when learning from positive and unlabeled data. Never-theless the equivalene between SQ and POSQ remains open. In the semi-supervised setting as in our setting of learning from positive and unlabeledexamples, it should be interesting to investigate the relative value of examples(labeled examples vs positive examples vs unlabeled examples). Also it shouldbe lear that more experimental results are needed. We are urrently applyingthe results of the present paper to real-world text mining problems using thenaive Bayes algorithm.Lastly, it is now a hallenging problem to �nd algorithms from positive dataand unlabeled data when the weight of the target onept is quite small be-ause many appliations fall in this ase. For imbalaned lasses the lassi�er's19



performane annot be expressed in terms of the auray: if only 1% examplesare positive the default hypothesis ahieves an auray of 99%. Thus anotherriterion of suess for the learning algorithm should be used, say for examplethe geometri mean of auraies observed separately on positive examples,and on negative examples. We also plan to investigate this problem, but it isknown to be di�ult even when learning from labeled data.Referenes[1℄ D. Angluin and P. Laird. Learning from noisy examples. Mahine Learning,2(4):343�370, 1988.[2℄ A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parityproblem, and the statistial query model. In Proeedings of the 32th AnnualACM Symposium on Theory of Computing, pages 435�440, 2000.[3℄ A. Blum and T. Mithell. Combining labeled and unlabeled data with o-training. In Proeedings of the 11th Annual Conferene on ComputationalLearning Theory, pages 92�100, 1998.[4℄ L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�ation andregression trees. Tehnial report, Wadsworth International, Monterey, CA,1984.[5℄ S. E. Deatur. Pa learning with onstant-partition lassi�ation noise andappliations to deision tree indution. In Proeedings of the 14th InternationalConferene on Mahine Learning, pages 83�91, 1997.[6℄ F. DeComité, F. Denis, R. Gilleron, and F. Letouzey. Positive and unlabeledexamples help learning. In Proeedings of the 10th International Conferene onAlgorithmi Learning Theory, pages 219�230, 1999.[7℄ F. Denis. PAC learning from positive statistial queries. In Proeedings of the9th International Conferene on Algorithmi Learning Theory, pages 112�126,1998.[8℄ Sally Goldman and Yan Zhou. Enhaning supervised learning with unlabeleddata. In Proeedings of the 17th International Conferene on Mahine Learning,pages 327�334, 2000.[9℄ D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalene ofmodels for polynomial learnability. Information Computation, 95(2):129�161,1991.[10℄ J. Jakson. On the e�ieny of noise-tolerant PAC algorithms derivedfrom statistial queries. In Proeedings of the 13th Annual Conferene onComputational Learning Theory, pages 7�15, 2000.20



[11℄ Thorsten Joahims. Transdutive inferene for text lassi�ation using supportvetor mahines. In Proeedings of 16th International Conferene on MahineLearning, pages 200�209, 1999.[12℄ M. Kearns. E�ient noise-tolerant learning from statistial queries. InProeedings of the 25th ACM Symposium on the Theory of Computing, pages392�401, 1993.[13℄ C.J. Merz and P.M. Murphy. UCI repository of mahine learning databases,1998.[14℄ T. Mithell. Mahine learning and data mining. In Communiations of theACM, volume 42(11):30�36, 1999.[15℄ Kamal Nigam and Rayid Ghani. Analyzing the appliability and e�etiveness ofo-training. In Proeedings of the 9th International Conferene on Informationand Knowledge Management, pages 86�93, 2000.[16℄ Kamal Nigam, Andrew K. MCallum, Sebastian Thrun, and Tom M. Mithell.Text lassi�ation from labeled and unlabeled douments using EM. MahineLearning, 39(2/3):103�134, 2000.[17℄ J. R. Quinlan. C4.5: Programs for Mahine Learning. Morgan Kaufmann, 1993.[18℄ L.G. Valiant. A theory of the learnable. Communiations of the ACM,27(11):1134�1142, 1984.A Experimental results
0

2

4

6

8

10

12

0 200 400 600 800 1000

er
ro

r 
ra

te

size(POS)=size(UNL)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

Fig. A.1. We onsider deision lists where D(f) = 0:5. We ompareC4.5POSUNL(LAB) where the estimate of D(f) is done on a small random setof 25 labeled examples, C4.5POSUNL(D(f)) where the exat value of D(f) is givenas input, and POSC4.5. The three algorithms take as input a set POS and a setUNL where size(POS) = size(UNL) ranges from 50 to 1000 by step 50.
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Fig. A.2. We onsider deision lists where D(f) ranges from 0 to 1 by step 0.05.We ompare C4.5POSUNL(LAB) where the estimate of D(f) is done on a smallrandom set of 25 labeled examples, C4.5POSUNL(D(f)) where the exat value ofD(f) is given as input, and POSC4.5. The three algorithms take as input a set POSand a set UNL where size(POS) = size(UNL) = 1000.
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Fig. A.3. error rate of C4.5 and C4.5POSUNL(LAB) averaged over 100 trials on thekr-vs-kp data set (left plot) and on the adult data sets (right plot).
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