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We derive general bounds on the complexity of learning in the statisti-
cal query (SQ) model and in the PAC model with classification noise.
We do so by considering the problem of boosting the accuracy of weak
learning algorithms which fall within the SQ model. This new model was
introduced by Kearns to provide a general framework for efficient PAC
learning in the presence of classification noise. We first show a general
scheme for boosting the accuracy of weak SQ learning algorithms,
proving that weak SQ learning is equivalent to strong SQ learning. The
boosting is efficient and is used to show our main result of the first
general upper bounds on the complexity of strong SQ learning. Since all
SQ algorithms can be simulated in the PAC model with classification
noise, we also obtain general upper bounds on learning in the presence
of classification noise for classes which can be learned in the SQ model.
] 1998 Academic Press

1. INTRODUCTION

Since Valiant's introduction of the probably approximately correct model of learning
(Valiant 1984), PAC learning has proven to be an interesting and well-studied
model of machine learning. In an instance of PAC learning, a learner is given the
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task of determining a close approximation of an unknown [0, 1]-valued target
function f from labeled examples of that function. The learner is given access to an
example oracle and accuracy and confidence parameters. When polled, the oracle
draws an instance according to a distribution D and returns the instance along with
its label according to f. The error rate of an hypothesis output by the learner is the
probability that an instance chosen according to D will be mislabeled by the
hypothesis. The learner is required to output an hypothesis such that, with high
confidence, the error rate of the hypothesis is less than the accuracy parameter. Two
important complexity measures studied in the PAC model are sample complexity
and time complexity. Angluin (1992) gives a survey of research in this model.

The model of learning described above is often referred to as the strong learning
model since a learning algorithm may be required to output an arbitrarily accurate
hypothesis depending on the accuracy parameter supplied. A variant referred to as
the weak learning model is identical, except that there is no accuracy parameter and
the output hypothesis need only have an error rate slightly less than 1�2. In other
words, the output of a weak learning algorithm need only perform slightly better
than random guessing. A fundamental and surprising result first shown by Schapire
(1990, 1992) and later improved upon by Freund (1990, 1992) states that any algo-
rithm which weakly learns can be transformed into an algorithm which strongly
learns. These results have important consequences for PAC learning, including
providing upper bounds on the time and sample complexities of strong learning.

One criticism of the PAC model is that the data presented to the learner is
assumed to be noise free. In fact, most of the standard PAC learning algorithms
would fail if even a small number of the labeled examples given to the learning
algorithm were ``noisy.'' A popular noise model for both theoretical and experimen-
tal research is the classification noise model introduced by Angluin and Laird
(1988). In the classification noise model, each example received by the learner is
mislabeled randomly and independently with some fixed probability. While a
limited number of efficient PAC algorithms had been developed which tolerate
classification noise (Angluin and Laird, 1988; Goldman et al. 1990; Sakakibara
1991), no general framework for efficient learning1 in the presence of classification
noise was known until Kearns introduced the statistical query (SQ) model (Kearns
1993).

In the SQ model, the example oracle of the standard PAC model is replaced by
a statistics oracle. An SQ algorithm queries this new oracle for the values of various
statistics on the distribution of labeled examples, and the oracle returns the
requested statistics to within some additive error specified by the algorithm. Upon
gathering a sufficient number of statistics, the SQ algorithm returns an hypothesis
of the desired accuracy. Since calls to a statistics oracle can be simulated with high
probability by drawing a sufficiently large sample from an example oracle, one may
view this new oracle as an intermediary which effectively limits the way in which
a learning algorithm may make use of labeled examples. Two standard complexity
measures of SQ algorithms are query complexity, the maximum number of statistics
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1 Angluin and Laird (1988) introduced a general framework for learning in the presence of classifica-
tion noise; however, their methods do not yield computationally efficient algorithms in most cases.
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required, and tolerance, the minimum additive error required. The time and sample
complexities of simulating SQ algorithms in the PAC model are directly affected by
these measures; therefore, one would like to characterize these measures as well as
possible.

Kearns (1993) demonstrates two interesting properties of the SQ model. First, he
shows that nearly every PAC learning algorithm can be cast within the SQ model,
thus demonstrating that the SQ model is quite general and imposes a rather weak
restriction on learning algorithms. Second, he shows that calls to a statistics oracle
can be simulated, with high probability, by a procedure which draws a sufficiently
large sample from a classification noise oracle. An immediate consequence of these
properties is that nearly every PAC learning algorithm can be transformed into one
which tolerates classification noise.

While greatly expanding the function classes known to be learnable in the
presence of noise, Kearns' technique does not make use of a formal reduction from
PAC learning to SQ learning. In fact, such a reduction cannot exist: while the class
of parity functions is known to be PAC learnable (Helmbold et al. 1992), Kearns
shows that this class is provably not learnable in the SQ model. Kearns' method for
converting PAC algorithms to SQ algorithms consists of a few general strategies,
but each PAC algorithm must be examined in turn and converted to an SQ algo-
rithm individually. Thus, one cannot derive general upper bounds on the com-
plexity of SQ learning from upper bounds on the complexity of PAC learning, due
to the dependence on the specific ad hoc conversion of a PAC algorithm to an SQ
algorithm. A consequence of this fact is that general upper bounds on the
complexity of PAC learning in the presence of noise are not directly obtainable
either.

We instead obtain bounds for SQ learning and PAC learning in the presence of
noise by making use of the following result. We define weak SQ learning in a man-
ner analogous to weak PAC learning, and we show that it is possible to boost the
accuracy of weak SQ algorithms to obtain strong SQ algorithms. Thus, we show
that weak SQ learning is equivalent to strong SQ learning. We use the technique
of ``boosting by majority'' (Freund 1990, 1992) which is nearly optimal in terms of
its dependence on the accuracy parameter =.

Schapire (1990) used his boosting result in the PAC model to upper bound
various complexity measures for PAC learning. Similarly, we use our SQ boosting
result to derive general upper bounds on various complexity measures for SQ learn-
ing. Specifically, we derive simultaneous upper bounds with respect to = on the
number of queries, O(log2 1

=), the Vapnik�Chervonenkis dimension of the query
space, O(log 1

= log log 1
=), and the inverse of the minimum tolerance, O( 1

= log 1
=). In

addition, we show that these general upper bounds are nearly optimal by describing
a class of learning problems for which we simultaneously lower bound the number
of queries by 0( d

log d log 1
=) and the inverse of the minimum tolerance by 0( 1

=). Here
d is the Vapnik�Chervonenkis dimension of the function class to be learned.

We further apply our boosting result and bounds in the SQ model to derive
bounds in the PAC model with classification noise. Since nearly all PAC algorithms
can be cast in the SQ model and since all SQ algorithms can be simulated in the
PAC model with classification noise, we effectively demonstrate that it is possible

87GENERAL BOUNDS ON SQ LEARNING



File: DISTIL 266404 . By:CV . Date:18:02:98 . Time:13:35 LOP8M. V8.B. Page 01:01
Codes: 3473 Signs: 2957 . Length: 52 pic 10 pts, 222 mm

to boost the accuracy of nearly all PAC algorithms even in the presence of noise.
This provides a partial answer to an open problem of Schapire (1990) on whether
boosting techniques can be used in the presence of noise. It also provides the first
theoretical evidence for an empirical result obtained by Drucker et al. (1992) on
improving the performance of a neural network in the presence of noise.

By creating efficient SQ algorithms and simulating them in the PAC model with
classification noise, we effectively show that nearly every PAC algorithm can be
converted into a highly efficient PAC algorithm which tolerates classification noise.
We show an upper bound (with respect to =) of O( 1

=
2 logc 1

=) on the sample com-
plexity of PAC learning in the presence of noise. Bounds for other complexity
measures may also be derived by combining our bounds on SQ learning with an
analysis of the complexity of the various PAC simulations of SQ algorithms in the
presence of classification noise.

The remainder of the paper is organized as follows. In Section 2, we give formal
definitions of the relevant learning models. Section 3 presents an overview of the
PAC model boosting result of Freund on which our boosting technique is modeled.
In Section 4, we describe our boosting results in the SQ model. Section 5 results
describes both upper bounds for SQ learning based on our boosting results and a
lower bound for SQ learning. Section 6 results describes the consequences of the
SQ boosting results for PAC learning in the presence of classification noise. We
conclude the paper in Section 7 and derive a number of technical results in the
appendices that follow.

2. LEARNING MODELS

In this section, we formally define the relevant models of learning. We begin by
defining the weak and strong PAC learning models, followed by the classification
noise model, and finally the statistical query model.

2.1. The Weak and Strong PAC Learning Models

In an instance of PAC learning, a learner is given the task of determining a close
approximation of an unknown [0, 1]-valued target function from labeled examples
of that function. The unknown target function f is assumed to be an element of a
known function class F defined over an instance space X. The instance space X is
typically either the Boolean hypercube [0, 1]n or n-dimensional Euclidean space
Rn. We use the parameter n to denote the common length of each instance x # X,
and we denote the i th component of an instance x by xi .

We assume that the instances are distributed according to some unknown prob-
ability distribution D on X. The learner is given access to an example oracle
EX( f, D) as its source of data. A call to EX( f, D) returns a labeled example (x, l) ,
where the instance x # X is drawn randomly and independently according to the
unknown distribution D, and the label l is equal to f (x). We often refer to a
sequence of labeled examples drawn from an example oracle as a sample.

88 ASLAM AND DECATUR
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A learning algorithm draws a sample from EX( f, D) and eventually outputs an
hypothesis h from some hypothesis class H defined over X. For any hypothesis h,
the error rate of h is defined to be the probability that h mislabels an instance
drawn randomly according to D. Using the notation PrD [P(x)] to denote the
probability that predicate P is satisfied by an instance drawn randomly according
to D, we define error(h)=PrD [h(x){ f (x)]. We often think of H as a class of
representations of functions in F, and as such we define size( f ) to be the size of
the smallest representation in H of the target function f.

The learner's goal is to output, with probability at least 1&$, an hypothesis h
whose error rate is at most =, for the given accuracy parameter = and confidence
parameter $. A learning algorithm is said to be polynomially efficient if its running
time is polynomial in 1�=, 1�$, n, and size( f ). We formally define PAC learning as
follows (adapted from Kearns (1993)):

Definition 1 (Strong PAC Learning). Let F and H be [0, 1]-valued function
classes defined over X. The class F is said to be learnable by H if there exists a
learning algorithm A and a polynomial p1( } , } , } , } ) such that for any f # F, for any
distribution D on X, for any accuracy parameter =, 0<=�1, and for any confidence
parameter $, 0<$�1, the following holds: if A is given inputs = and $, and access
to an example oracle EX( f, D), then with probability at least 1&$ A halts in time
bounded by p1(1�=, 1�$, n, size( f )) and outputs an hypothesis h # H that satisfies
error(h)�=.

As stated, this is often referred to as strong learning since the learning algorithm
may be required to output an arbitrarily accurate hypothesis depending on the
input parameter =. A variant of strong learning called weak learning is identical,
except that there is no accuracy parameter = and the output hypothesis need only
have error rate slightly less than 1�2, i.e., error(h)� 1

2&#= 1
2& 1

p(n, size( f )) for some
polynomial p. Since random guessing would produce an error rate of 1�2, one can
view the output of a weak learning algorithm as an hypothesis whose error rate is
slightly better than random guessing. We refer to the output of a weak learning
algorithm as a weak hypothesis and the output of a strong learning algorithm as a
strong hypothesis.

2.2. The Classification Noise Model

In the classification noise model, the example oracle EX( f, D) is replaced by a
noisy example oracle EX '( f, D). Each time this noisy example oracle is called, an
instance x # X is drawn according to D. The oracle then outputs (x, f (x)) with
probability 1&' or (x, cf (x)) with probability ', randomly and independently
for each instance drawn. Despite the noise in the labeled examples, the learner's
goal remains to output an hypothesis h which, with probability at least 1&$, has
error rate error(h)=PrD [h(x){ f (x)] at most =.

While the learner does not typically know the exact value of the noise rate ',
the learner is given an upper bound 'b on the noise rate, 0�'�'b<1�2, and the
learner is said to be polynomially efficient if its running time is polynomial in
the usual PAC learning parameters as well as 1�(1&2'b) .

89GENERAL BOUNDS ON SQ LEARNING
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2.3. The Statistical Query Model

In the statistical query model, the example oracle EX( f, D) from the standard
PAC model is replaced by a statistics oracle STAT( f, D). An SQ algorithm queries
the STAT oracle for the values of various statistics on the distribution of labeled
examples (e.g., ``What is the probability that a randomly chosen labeled example
(x, l) has variable x4=0 and l=1?''), and the STAT oracle returns the requested
statistics to within some specified additive error. Formally, a statistical query is of
the form [/, {]. Here / is a mapping from labeled examples to [0, 1] (i.e.,
/ : X_[0, 1] � [0, 1]) corresponding to an indicator function for those labeled
examples defining the statistic, while { is an additive error parameter. A call [/, {]
to STAT( f, D) returns an estimate P� / of P/ ] PrD [/(x, f (x))] which satisfies
|P� /&P/ |�{.

A call to STAT( f, D) could be simulated, with high probability, by drawing a
sufficiently large sample from EX( f, D) and outputting the fraction of labeled exam-
ples which satisfy /(x, f (x)) as the estimate P� / . Since the required sample size
depends polynomially on 1�{ and the simulation time additionally depends on the
time required to evaluate /, an SQ learning algorithm is said to be polynomially
efficient if 1�{, the time required to evaluate each /, and the running time of the SQ
algorithm are all bounded by polynomials in 1�=, n, and size( f ). We formally define
polynomially efficient learning in the statistical query model as follows (adapted
from Kearns (1993)):

Definition 2 (Strong SQ Learning). Let F and H be [0, 1]-valued function
classes defined over X. The class F is said to be learnable via statistical queries by
H if there exists a learning algorithm A and polynomials p1( } , } , } ), p2( } , } , } ), and
p3( } , } , } ) such that for any f # F, for any distribution D on X, and for any error
parameter =, 0<=�1, the following holds: if A is given input = and access to
a statistics oracle STAT( f, D), then (1) for every query [/, {] made by A,
/ can be evaluated in time bounded by p1(1�=, n, size( f )) and 1�{ is bounded
by p2(1�=, n, size( f )), and (2) A halts in time bounded by p3(1�=, n, size( f )) and
outputs an hypothesis h # H that satisfies error(h)�=.

We define weak SQ learning identically to strong SQ learning except that there
is no accuracy parameter =. In this case, the output hypothesis need only have error
rate slightly less than 1�2, i.e.,

error(h)�
1
2

&#=
1
2

&
1

p(n, size( f ))

for some polynomial p.
We define the query complexity of SQ algorithm A to be the maximum number

of queries that A makes in any run, and let N
*

=N
*

(=, n, size( f )) be an upper
bound on the query complexity of A. We define the tolerance of SQ algorithm A

to be the smallest additive error of the queries made by A in any run, and let

90 ASLAM AND DECATUR
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{
*

={
*

(=, n, size( f )) be a lower bound on the tolerance of A. Note that
N

*
�p3(1�=, n, size( f )) and {

*
�1�p2(1�=, n, size( f )).

Although a reasonably efficient simulation of an SQ algorithm can be obtained
by drawing a separate sample for each call to the statistics oracle, a better sample
complexity can be obtained by drawing one large sample and estimating each
statistical query using that single sample. If we let Q be the function space from
which an SQ algorithm A selects its queries, then the size of a single sample suf-
ficient is independent of the query complexity of A but depends on either the size
of Q, if Q is finite, or the Vapnik�Chervonenkis dimension2 of Q (Kearns 1993).
Q is referred to as the query space of the SQ algorithm A.

Recall that in addition to a noise-free simulation, an SQ algorithm can also be
simulated, with high probability, by a procedure which draws a sample from a
classification noise oracle (Kearns 1993). We give the results of a more efficient
simulation due to Aslam and Decatur (1994) below:

Theorem 1. Let F and H be [0, 1]-valued function classes defined over X. Sup-
pose that F is polynomially learnable via statistical queries by H using learning algo-
rithm A. Then F is polynomially learnable by H in the classification noise model.
If A uses query space Q and {

*
is a lower bound on the tolerance of A, then the num-

ber of calls to EX '( f, D) required to simulate A in the classification noise model is

O \ 1
{2

*
(1&2'b)2 log

|Q|
$

+
1

=(1&2'b)2 log log
1

1&2'b+
if Q is finite, or

O \ VC(Q)
{2

*
(1&2'b)2 log

1
{
*

(1&2'b)
+

1
{2

*
(1&2'b)2 log

1
$+

if Q has a finite VC-dimension.3

Given that nearly every PAC learning algorithm can be converted to an SQ algo-
rithm, an immediate consequence of this result is that nearly every PAC algorithm
can be transformed into one which tolerates noise. The complexities of these noise-
tolerant PAC algorithms depend on {

*
and Q, which themselves are a function of

the ad hoc conversion of PAC algorithms to SQ algorithms. Thus, one cannot show
general upper bounds on the complexity of these noise-tolerant versions of con-
verted PAC algorithms. By showing that weak SQ learning algorithms can be
``boosted'' to strong SQ learning algorithms, we derive general upper bounds on the
inverse of the tolerance of SQ learning and general upper bounds on the complexity
of the requisite query space. We are then able to show general upper bounds on the
complexity of noise-tolerant PAC learning via the statistical query model.

91GENERAL BOUNDS ON SQ LEARNING

2 VC-dimension is a standard complexity measure for a space of [0, 1]-valued functions and is
formally defined in Appendix B.

3 Note that since 1�{*=0(1�=) (Kearns 93), these bounds depend at least quadratically on 1�=.
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3. BOOSTING IN THE PAC MODEL

In this section, we describe Freund's PAC model boosting techniques on which
our SQ model boosting results are based.

Schapire (1990, 1992) and Freund (1990, 1992) use similar strategies for convert-
ing weak PAC learning algorithms into strong PAC learning algorithms. Both
methods create a strong hypothesis by combining hypotheses obtained from multi-
ple runs of a weak learning algorithm. The boosting schemes derive their power by
forcing successive runs of the weak learning algorithm to approximate the target
function f with respect to new distributions each of which adjusts the weights of
examples based on their classification with respect to previously generated weak
hypotheses. By suitably constructing example oracles corresponding to these new
distributions and properly combining the hypotheses obtained from multiple runs
of the weak learning algorithm, a strong learning algorithm can be produced which
uses the weak learning algorithm as a subroutine.

Freund developed two similar methods (which we call Scheme 1 and Scheme 2) for
converting weak learning algorithms into strong learning algorithms. One is more
efficient with respect to = while the other is more efficient with respect to #. Freund also
developed a hybrid scheme more efficient than either Scheme 1 or Scheme 2 by
combining these two methods in order to capitalize on the advantages of each. We first
describe the two methods separately and then show how they are combined.

3.1. Boosting via Scheme 1 in the PAC Model

Scheme 1 uses a weak learning algorithm to create a set of k1 ] 1
2#2 ln 1

= weak
hypotheses and outputs the majority vote of these hypotheses as the strong
hypothesis. The weak hypotheses are created by asking the weak learner to
approximate f with respect to various modified distributions over the instance space
X. The distribution used to generate a given weak hypothesis is based on the per-
formance of the previously generated weak hypotheses. Hypothesis h1 is created in
the usual way by using EX( f, D). For all i�1, hypothesis hi+1 is created by giving
the weak learner access to a filtered example oracle EX( f, Di+1) defined as follows:

1. Draw a labeled example (x, f (x)) from EX( f, D).

2. Compute h1(x), ..., hi (x).

3. Set r to be the number of the i weak hypotheses which agree with f on x.

4. Flip a biased coin with Pr[head]=:i
r .

5. If head, then output example (x, f (x)) , otherwise go to Step 1.

When a total of k weak hypotheses are to be generated, the set of probabilities
[:i

r] are fixed according to the following binomial distribution:

:i
r={

0 if r>wk�2x
( k&i&1

wk�2x&r)(
1
2+#)wk�2x&r ( 1

2&#)Wk�2X&i&1+r

if i&Wk�2X+1�r�wk�2x
0 if r<i&Wk�2X+1.

92 ASLAM AND DECATUR
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Freund shows that the majority vote of h1 , ..., hk1
has error rate no more than

= with respect to D if each hj has error rate no more than 1
2&# with respect

to Dj .
One pitfall of this scheme is that the simulation of EX( f, Di+1) may need to draw

many examples from EX( f, D) before one is output to the weak learner. Let ti be
the probability that an example drawn randomly from EX( f, D) passes through the
probabilistic filter which defines EX( f, Di+1). Freund observes that if ti<c=2 for
any constant c�1�13, then the majority vote of h1 , ..., hi is already a strong
hypothesis. The boosting algorithm estimates ti , and if ti is below the cutoff, the
algorithm halts and outputs the majority vote of the hypotheses created thus far.
The boosting algorithm's time and sample complexity dependence on # is 3� (1�#2),
while its dependence on = is O� (1�=2).4

3.2. Boosting via Scheme 2 in the PAC Model

Scheme 2 is very similar to Scheme 1; the weak learner is again called many times
to provide weak hypotheses with respect to filtered distributions. This method uses
k2 ] 2k1= 1

#2 ln 1
= weak hypotheses, while the filtered example oracle remains the

same. The main difference is the observation that if ti<(=(1&=) #�ln(1�=)) , then we
may simply use a ``fair coin'' in place of hi+1 and still be guaranteed that the final
majority of k2 hypotheses has error rate no more than =.5 The boosting algorithm
estimates ti to see if it is below this new threshold. If so, a fair coin is used as
hypothesis hi+1 , and the algorithm proceeds to find a weak hypothesis with respect
to the next distribution. The boosting algorithm's time and sample complexity
dependence on # is O� (1�#3), while its dependence on = is 3� (1�=).

3.3. Hybrid Boosting in the PAC Model

An improvement on these two boosting schemes is realized by using each in the
``boosting range'' for which it is most efficient. The first method is more efficient in
1�#, while the second method is more efficient in 1�=. One therefore uses the first
method to boost from 1

2&# to a constant and uses the second method to boost
from that constant to =. Let A1

4
be a learning algorithm which uses Scheme 1 and

makes calls to the weak learning algorithm A1
2

&# . The strong learning algorithm
A= uses Scheme 2 and makes calls to A1

4
as its ``weak learner.'' The strong

hypothesis output by such a hybrid algorithm is a depth two circuit with a majority
gate at the top level. The inputs to the top level are fair coin hypotheses and

93GENERAL BOUNDS ON SQ LEARNING

4 For asymptotically growing functions g, g>1, we define O� (g) to mean O(g logc g) for some constant
c�0. For asymptotically shrinking functions g, 0< g<1, we define O� (g) to mean O(g logc(1�g)) for
some constant c�0. We define 0� similarly for constants c�0. Finally, we define 3� to mean both O� and
0� . This asymptotic notation, read ``soft-O,'' ``soft-Omega,'' and ``soft-Theta,'' is convenient for expressing
bounds while ignoring lower order factors. Note that it is somewhat different than the standard soft-
order notation.

5 A ``fair coin'' hypothesis ignores its input x and outputs the outcome of a fair coin flip.
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majority gates whose inputs are weak hypotheses with respect to various distribu-
tions. The hybrid method's time and sample complexity dependence on # is 3� (1�#2),
while its dependence on = is 3� (1�=).

4. BOOSTING IN THE STATISTICAL QUERY MODEL

Hypothesis boosting is accomplished essentially by forcing a weak learning algo-
rithm to approximate the target function f with respect to modified distributions
over the instance space. Specifically, the boosting methods described in the previous
section are based on the ability to construct weak hypotheses with respect to a
sequence of distributions [Dj]. In the PAC model, a learner interacts with a dis-
tribution over the instance space through calls to an example oracle. Therefore,
boosting in the PAC model is accomplished by constructing EX( f, Dj) from the
original example oracle EX( f, D). In the SQ model, a learner interacts with the dis-
tribution over labeled examples through calls to a statistics oracle. Therefore,
boosting in the SQ model is accomplished by constructing STAT( f, Dj) from the
original statistics oracle STAT( f, D).

In the sections that follow, we show how to boost a weak SQ algorithm using
Scheme 1, Scheme 2, and the hybrid method. Although it is possible to boost in the
SQ model using Schapire's method, we do not describe these results here since they
are somewhat weaker and more complex to present than the results we achieve
using Freund's methods.

4.1. Boosting via Scheme 1 in the Statistical Query Model

We use Scheme 1 to boost weak SQ learning algorithms by answering statistical
queries made with respect to modified distributions. Therefore, we must simulate
queries to STAT( f, Dj) by making queries to STAT( f, D). We first show how to
specify the exact value of a query with respect to Dj in terms of queries with respect
to D. We then determine the accuracy with which we need to make these queries
with respect to D in order to obtain a sufficient accuracy with respect to Dj .

The modified distributions required for boosting are embodied in the five step
description of the filtered example oracle given in Section 3.1. Note that Steps 2 and
3 partition the instance space into i+1 regions corresponding to those instances
which are correctly classified by the same number of hypotheses. Let X i

r �X be the
set of instances which are correctly classified by exactly r of the i hypotheses. We
define the induced distribution DZ on a set Z with respect to distribution D as
follows: For any Y�Z, DZ[Y]=D[Y]�D[Z]. By construction, for any given X i

r

region, the filtered example oracle uniformly scales the probabilities with which
examples from that region are drawn. Therefore, the induced distribution on X i

r

with respect to Di+1 is the same as the induced distribution on X i
r with respect to

D. (This fact is used to obtain Eq. (2) from Eq. (1) below.)
A query [/, {] to STAT( f, Di+1) is a call for an estimate of PrDi+1

[/(x, f (x))]
within additive error {. We derive an expression for PrDi+1

[/(x, f (x))] as
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PrDi+1
[/(x, f (x))]= :

i

r=0

PrDi+1
[/(x, f (x)) | (x # X i

r)] } PrDi+1
[x # X i

r] (1)

= :
i

r=0

PrD[/(x, f (x)) | (x # X i
r)] } PrDi+1

[x # X i
r] (2)

= :
i

r=0

PrD[/(x, f (x)) 7 (x # X i
r)]

PrD[x # Xi
r]

}
:i

r } PrD[x # X i
r]

�i
j=0 :i

j } PrD[x # X i
j]

=
�i

r=0 :i
r } PrD[/(x, f (x)) 7 (x # X i

r)]
�i

j=0 :i
j } PrD[x # X i

j]
. (3)

Note that the denominator of Eq. (3) is the probability that an example drawn
randomly from EX( f, D) passes through the probabilistic filter which defines
EX( f, Di+1). Recall that Freund calls this probability ti .

Ignoring the additive error parameter for the moment, the probabilities in Eq. (3)
can be stated as queries to STAT( f, D) as

STAT( f, Di+1)[/]=
: i

j=0 :i
j } STAT( f, D)[/ 7/i

j]

: i
j=0 :i

j } STAT( f, D)[/i
j]

, (4)

where /i
j (x, l ) is true if and only if x # X i

j . Note that query /i
j is polynomially

evaluatable given h1 , ..., hi , thus satisfying the efficiency condition given in the
definition of SQ learning.

We next determine the accuracy with which one must ask these queries so that
the final result is within the desired additive error {. We make use of the following
two simple lemmas:

Lemma 1. If 0�a, b, c, {�1 and a=b�c, then to obtain an estimate of a within
additive error {, it is sufficient to obtain estimates of b and c within additive error
c{�3.

Proof. We must show that (b+c{�3)�(c&c{�3)�a+{ and (b&c{�3)�(c+c{�3)
�a&{. These two inequalities are shown as

b+c{�3
c&c{�3

=
a+{�3
1&{�3

=(a+{�3) \1+
{�3

1&{�3+
�(a+{�3) \1+

{�3
1&1�3+

=(a+{�3)(1+{�2)

=a+a{�2+{�3+{2�6

�a+{,
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b&c{�3
c+c{�3

=
a&{�3
1+{�3

=(a&{�3) \1&
{�3

1+{�3+
�(a&{�3)(1&{�3)

=a&a{�3&{�3+{2�9

�a&{.

Lemma 2. If 0�s, pi , zi , {�1, 0��i pi�1 and s=�i pi zi , then to obtain an
estimate of s within additive error {, it is sufficient to obtain estimates of each zi

within additive error { provided that the pi coefficients are known exactly.

Proof. The lemma follows immediately from the inequalities

:
i

pi (zi+{)=:
i

pizi+{ :
i

pi�s+{

:
i

pi (zi&{)=:
i

pizi&{ :
i

pi�s&{.

Applying Lemmas 1 and 2 to Eq. (4), we find that it is sufficient to submit
queries to STAT( f, D) with additive error ti } {�3 in order to simulate a call to
STAT( f, Di+1) with additive error {. However, there are two complications with
this strategy. First, if ti is small, then we are forced to submit queries with small
additive error. Second, the value ti is unknown, and in fact, it is the value of the
denominator we are attempting to estimate. We overcome these difficulties by
employing the ``abort'' condition of Freund which allows us to either lower bound
ti or abort the search for hi+1 .

If ti<c=2, then the majority vote of the hypotheses generated thus far is a
strong hypothesis. We make each STAT call on the right-hand side of Eq. (4)
with additive error (c=2{)�(3+2{). Let t̂i be the estimate for ti obtained, and
note that by Lemma 2, t̂i is within additive error (c=2{)�(3+2{) of ti . If
t̂i<c=2(1&({�(3+2{))), then ti<c=2, and in this case, we halt and output the
majority vote of the hypotheses created thus far. If t̂i�c=2(1&({�(3+2{))), then
ti�c=2(1&(2{�(3+2{)))=c=2(3�(3+2{)). In this case, our estimate t̂ i is suffi-
ciently accurate since the additive error required by Lemma 1 is ti } {�3, and
ti } {�3�c=2(3�(3+2{)) } {�3=(c=2{)�(3+2{) which is the additive error used. Given
that the numerator and denominator are both estimated with additive error ti } {�3,
their ratio is within additive error { by Lemma 1.

Thus, we bound the tolerance of strong SQ learning algorithms obtained by
Scheme 1 boosting as follows. If {0={0(n, size( f )) is a lower bound on the
tolerance of a weak SQ learning algorithm, then 0({0 =2) is a lower bound on the
tolerance of the strong SQ learning algorithm obtained by Scheme 1 boosting.

We next examine the query complexity of strong SQ learning algorithms
obtained by Scheme 1 boosting. Let N0=N0 (n, size( f )) be an upper bound on the
query complexity of a weak SQ learning algorithm. In Eq. (4), we note that 2(i+1)

96 ASLAM AND DECATUR



File: DISTIL 266413 . By:CV . Date:18:02:98 . Time:13:35 LOP8M. V8.B. Page 01:01
Codes: 3374 Signs: 2373 . Length: 52 pic 10 pts, 222 mm

queries to STAT( f, D) are required to simulate a single query to STAT( f, Di+1).
Since k1= 1

2#2
ln 1

= is an upper bound on the number of weak learners run in the
boosting scheme, O(N0k2

1)=O(N0
1
#4 log2 1

=) is an upper bound on the query com-
plexity of the strong SQ learning algorithm obtained by Scheme 1 boosting.

We finally examine the complexity of QB , the query space of strong SQ learning
algorithms obtained by Scheme 1 boosting. There are two cases to consider depend-
ing on the nature of the instance space. If the instance space is discrete, e.g., the
Boolean hypercube [0, 1]n, then the query space and hypothesis class used by an
SQ algorithm are generally finite. In this case, we bound the size of the query space
used by the strong SQ learning algorithm obtained by boosting. If the instance
space is continuous, e.g., n-dimensional Euclidean space Rn, then the query space
and hypothesis class used by an SQ algorithm are generally infinite. In this case, we
bound the VC-dimension of the query space used by the strong SQ learning algo-
rithm obtained by boosting.

In Appendix A we show that the size of the query space is bounded as follows,
when Q0 and H0 , the query space and hypothesis space of the weak learning algo-
rithm, are finite

log |QB|=O(log |Q0|+k1 log |H0| ).

Furthermore, we show that the VC-dimension of the query space is bounded

VC(QB)=O(VC(Q0)+VC(H0) } k1 log k1).

Theorem 2. Given a weak SQ learning algorithm for F whose query complexity
is upper bounded by N0=N0(n, size( f )), whose tolerance is lower bounded by
{0={0(n, size( f )), whose query space and hypothesis class are Q0 and H0 , respec-
tively, and whose output hypothesis has error rate at most 1

2&#, then a strong SQ
learning algorithm for F can be constructed whose query complexity is
O(N0

1
#4 log2 1

=) and whose tolerance is 0({0=2). The query space complexity is given
by

log |QB|=O \log |Q0|+\ 1
#2 log

1
=+ log |H0|+

when Q0 and H0 are finite, or

VC(QB)=O(VC(Q0)+VC(H0) } \ 1
#2 log

1
=+ log \ 1

#2 log
1
=++

when Q0 and H0 have finite VC-dimension.

4.2. Boosting via Scheme 2 in the Statistical Query Model

We use Scheme 2 to boost weak SQ learning algorithms in a manner similar to
that described above. Since the abort condition of Scheme 2 introduces fair coin
hypotheses, we first rederive the probability that /(x, f (x)) is true with respect to
Di+1 in terms of probabilities with respect to D.
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When i hypotheses have been generated, let w be the number of weak hypotheses
and let i&w be the number of fair coin hypotheses. The weak hypotheses h1 , ..., hw

partition the instance space X into w+1 regions corresponding to those instances
which are correctly classified by the same number of weak hypotheses. Let X w

r �X
be the set of instances which are correctly classified by exactly r of the w weak
hypotheses. Consider the probability *i, w

r that an instance x # X w
r passes through

the probabilistic filter which defines EX( f, Di+1). If none of the fair coin hypotheses
agree with f, this probability is :i

r . If j of the fair coin hypotheses agree with f, this
probability is :i

r+ j . Thus, *i, w
r =�i&w

j=0 :i
r+ j;

i&w
j where ;i&w

j =( i&w
j )�2i&w is the

probability that exactly j of the fair coin hypotheses agree with f. The following
filtered example oracle is equivalent to EX( f, Di+1):

1. Draw a labeled example (x, f (x)) from EX( f, D).

2. Compute h1(x), ..., hw(x).

3. Set r to be the number of the w weak hypotheses which agree with f on x.

4. Flip a biased coin with Pr[head]=*i, w
r .

5. If head, then output example (x, f (x)) , otherwise go to Step 1.

We derive an expression for PrDi+1
[/(x, f (x))]

PrDi+1
[/(x, f (x))]= :

w

r=0

PrDi+1
[/(x, f (x)) | (x # X w

r )] } PrDi+1
[x # X w

r ]

= :
w

r=0

PrD [/(x, f (x)) | (x # X w
r )] } PrDi+1

[x # X w
r ]

= :
w

r=0

PrD [/(x, f (x)) 7 (x # Xw
r )]

PrD [x # X w
r ]

}
*i, w

r } PrD[x # X w
r ]

:w
j=0 *i, w

j } PrD [x # X w
j ]

=
:w

r=0 *i, w
r } PrD [/(x, f (x)) 7 (x # X w

r )]
:w

j=0 *i, w
j } PrD [x # X w

j ]
. (5)

Note that the denominator of Eq. (5) again corresponds to ti , the probability
that a labeled example is accepted by the probabilistic filter. Also note that
�w

r=0 *i, w
r =�w

r=0 �i&w
j=0 :i

r+ j;
i&w
j �1 since the terms in the double summation are

distinct and contained in the product (�i
r=0 :i

r)(�
i&w
j=0 ;i&w

j )=1.
Ignoring the additive error parameter for the moment, the probabilities in Eq. (5)

can be stated as queries to STAT( f, D) as

STAT( f, Di+1)[/]=
:w

j=0 *i, w
j } STAT( f, D)[/ 7 /w

j ]

:w
j=0 *i, w

j } STAT( f, D)[/w
j ]

. (6)

Applying Lemmas 1 and 2 to Eq. (6), we again find that it is sufficient to submit
queries to STAT( f, D) with additive error ti } {�3 in order to simulate a call to
STAT( f, Di+1) with additive error {. Again, two complications arise with this
strategy. First, if ti is small, then we are forced to submit queries with small additive
error. Second, the value ti is unknown, and in fact, it is the value of the
denominator we are attempting to estimate. We overcome these difficulties by
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employing the abort condition of Freund which allows us to either lower bound ti

or use a fair coin in place of hi+1 .
If ti<=(1&=) #�ln(1�=), then a fair coin can be used in place of hi+1. We make

each STAT call on the right-hand side of Eq. (6) with additive error
({=(1&=) #�ln(1�=))�(3+2{). Let t̂ i be the estimate obtained for ti , and note that
by Lemma 2, t̂i is within additive error ({=(1&=) #�ln(1�=))�(3+2{) of ti . If
t̂i<((=(1&=) #)�(ln(1�=)))(1&({�(3+2{))), then ti<=(1&=) #�ln(1�=). In this case,
we use a fair coin in place hi+1 and proceed to the next distribution. If
t̂i�((=(1&=) #)�(ln(1�=)))(1&({�(3+2{))), then ti�((=(1&=) #)�(ln(1�=)))(1&(2{�
(3+2{)))=((=(1&=) #)�(ln(1�=)))(3�(3+2{)). In this case, the estimate t̂i is suf-
ficiently accurate since the additive error required by Lemma 1 is ti } {�3, and
ti } {�3�((=(1&=) #)�(ln(1�=)))(3�(3+2{)) } {�3=({=(1&=) #�ln(1�=))�(3+2{) which
is the additive error used. Given that the numerator and denominator are both
estimated with additive error ti } {�3, their ratio is within additive error { by
Lemma 1.

Thus, we bound the tolerance of strong SQ learning algorithms obtained by
Scheme 2 boosting as follows. If {0={0(n, size( f )) is a lower bound on the
tolerance of a weak SQ learning algorithm, then 0({0 =#�log(1�=)) is a lower
bound on the tolerance of the strong SQ learning algorithm obtained by Scheme 2
boosting.

We next examine the query complexity of strong SQ learning algorithms
obtained by Scheme 2 boosting. Let N0=N0(n, size( f )) be an upper bound on the
query complexity of a weak SQ learning algorithm. In Eq. (6), we note that
2(w+1)�2(i+1) queries to STAT( f, D) are required to simulate a single query to
STAT( f, Di+1). Since k2= 1

#2 ln 1
= is an upper bound on the number of weak

learners run in the boosting scheme, O(N0 k2
2)=O(N0

1
#4 log2 1

=) is an upper bound
on the query complexity of the strong SQ learning algorithm obtained by Scheme
2 boosting.

Finally, we note that the query space complexity results for Scheme 2 boosting
are identical to those for Scheme 1 boosting where k1 is replace by k2 .

Theorem 3. Given a weak SQ learning algorithm for F whose query complexity
is upper bounded by N0=N0 (n, size( f )), whose tolerance is lower bounded by
{0={0 (n, size( f )), whose query space and hypothesis class are Q0 and H0 , respec-
tively, and whose output hypothesis has error rate at most 1

2&#, then a strong SQ
learning algorithm for F can be constructed whose query complexity is
O(N0

1
#4 log2 1

=) and whose tolerance is 0({0=#�log (1�=)). The query space complexity
is given by

log |QB|=O \log |Q0|+\ 1
#2 log

1
=+ log |H0|+

when Q0 and H0 are finite, or

VC(QB)=O \VC(Q0)+VC(H0) } \ 1
#2 log

1
=+ log \ 1

#2 log
1
=++

when Q0 and H0 have finite VC-dimension.
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4.3. Hybrid Boosting in the Statistical Query Model

We obtain a more efficient boosting scheme in the SQ model by combining the
two previously described methods. As in the PAC model, we use Scheme 1 to boost
from 1

2&# to 1
4 and Scheme 2 to boost from 1

4 to =. By combining the results of
Theorem 2 and Theorem 3, we immediately obtain an upper bound on the query
complexity of the hybrid boosting scheme and a lower bound on the tolerance of
the hybrid boosting scheme. An upper bound on the query space complexity of the
hybrid boosting scheme is proven in Appendicies A and B. We thus obtain the
following boosting result.

Theorem 4. Given a weak SQ learning algorithm whose query complexity is
upper bounded by N0=N0 (n, size( f )), whose tolerance is lower bounded by
{0={0 (n, size( f )), whose query space and hypothesis class are Q0 and H0 , respec-
tively, and whose output hypothesis has error rate at most 1

2&#, then a strong SQ
learning algorithm can be constructed whose query complexity is O(N0

1
#4 log2 1

=) and
whose tolerance is 0({0=�log(1�=)). The query space complexity is given by

log |QHB|=O \log |Q0|+\ 1
#2 log

1
=+ log |H0|+

when Q0 and H0 are finite, or

VC(QHB)=O \VC(Q0)+VC(H0) } \ 1
#2 log

1
=+ log \ 1

#2 log
1
=++

when Q0 and H0 have finite VC-dimension.

Note that the tolerance of the strong SQ learning algorithm constructed has no
dependence on # in this hybrid boosting scheme.

5. GENERAL BOUNDS ON LEARNING IN THE STATISTICAL QUERY MODEL

In this section, we derive general upper bounds on the complexity of statistical
query learning. These results are obtained by applying the boosting results of the
previous section. We further show that our general upper bounds are nearly
optimal by demonstrating the existence of a function class whose minimum learning
complexity nearly matches our general upper bounds.

5.1. General Upper Bounds on Learning in the SQ Model

Just as the sample complexity of boosting in the PAC model yields general upper
bounds on the sample complexity of strong PAC learning (Schapire 1990), the
query, query space, and tolerance complexities of boosting in the SQ model yield
general bounds on the query, query space, and tolerance complexities of strong SQ
learning.

We may convert any strong SQ learning algorithm into a weak SQ learning
algorithm by ``hard wiring'' the accuracy parameter = to a constant. We then
boost this learning algorithm, via Scheme 2 for instance, to obtain a strong SQ
learning algorithm whose dependence on = is nearly optimal.
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Theorem 5. Suppose a class F is SQ learnable by algorithm A whose query
complexity is upper bounded by N

*
(n, size( f ), =), whose tolerance is lower bounded

by {
*

(n, size( f ), =), whose query space and hypothesis class are Q(n, size( f ), =) and
H(n, size( f ), =), respectively, and let N0 , {0 , Q0 and H0 be these complexity measures
when A is run with a constant accuracy parameter. Then F is SQ learnable by an
algorithm whose query complexity is O(N0 log2 1

=), whose tolerance is 0({0 =�log(1�=))
and whose query space complexity is given by

log |QHB|=O \log |Q0|+log
1
=

log |H0|+
when Q0 and H0 are finite, or

VC(QHB)=O \VC(Q0)+VC(H0) } log
1
=

log log
1
=+

when Q0 and H0 have finite VC-dimension.

Corollary 1. If a class F is SQ learnable, then F is SQ learnable by an algo-
rithm whose complexity depends on = as follows: The query complexity is O(log2 1

=),
the tolerance is 0(=�log(1�=)) and the query space is of size O(log 1

=) when the query
space is finite or has VC-dimension O(log 1

= log log 1
=) when the query space has finite

VC-dimension.

While we have focused primarily on the query, query space, and tolerance com-
plexities of SQ learning, we note that our boosting results can also be applied to
bound the time, space and hypothesis size complexities of SQ learning. It is easily
shown that, with respect to =, these complexities are bounded by O(log2 1

=),
O(log 1

=), and O(log 1
=), respectively.6

Kearns (1993) shows that for any function class of VC-dimension d, learning in
the SQ model requires 0(d�log d ) queries each with additive error O(=). Whereas
Kearns simultaneously lower bounds the query complexity and upper bounds the
tolerance, we have simultaneously upper bounded the query complexity and lower
bounded the tolerance. Note that the tolerance we give in Corollary 1 is optimal to
within a logarithmic factor.

5.2. A Specific Lower Bound for Learning in the SQ Model

Kearns' general lower bound leaves open the possibility that there may exist a
general upper bound on the query complexity which is independent of =. In this sec-
tion we show that this is not the case by demonstrating a specific learning problem
which requires 0( d

log d log 1
=) queries each with additive error O(=) in the SQ model.

Thus, with respect to =, our general upper bound on query complexity is within a
log 1

= factor of the best possible general upper bound. We begin by introducing a
game on which our learning problem is based.

Consider the following two player game parameterized by t, d and N where
t�d�N. The adversary chooses a set S�[N] of size d, and the goal of the player
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is to output a set T�[N] such that |SqT |�t.7 The player is allowed to ask
queries of the form Q�[N] to which the adversary returns |Q & S|.

Lemma 3. For any d�4, t�d�4 and N=0(d 1+:) for any constant :>0, the
player requires 0((d�log d) log N) queries, in the worst case.

Proof. Any legal adversary must return responses to the given queries which are
consistent with some set S�[N] of size d. We construct an adaptive adversary
which works as follows. Let S0/2[N] be the set of all ( N

d ) subsets of size d. When
the player presents the first query Q1�[N], the adversary calculates the value of
|S & Q1 | for every S # S0 and partitions the set S0 into d+1 sets S0

0 , S1
0 , ..., Sd

0

where each subset S # S i
0 satisfies |S & Q1 |=i. For i=arg maxj |S j

0 |, the adver-
sary returns the value i and lets S1=S i

0 . In general, Sk is the set of remaining sub-
sets which are consistent with the responses given to the first k queries, and the
adversary answers each query so as to maximize the remaining number of subsets.
Note that |Sk |�|S0 |�(d+1)k=( N

d )�(d+1)k.
For any S�2[N], define width(S)=maxSi , Sj # S [ |Si qSj |]. Note that if

width(Sk)>2t, then there exist at least two sets S1 , S2 # Sk such that |S1 qS2 |>2t.
This implies that there cannot exist a set T which satisfies both |S1qT |�t and
|S2qT |�t (since q is a metric over the space of sets which satisfies the triangle
inequality). If the player were to stop and output any set T at this point, then the
malicious adversary could always force the player to lose. We now bound width(Sk)
as a function of |Sk |. This, combined with our bound on |Sk | as a function of k,
will effectively bound the minimum number of queries required by the player. We
make use of the following inequalities (Graham et al. 1994)

\n
r+

r

�\n
r+�\\n

r++�\en
r +

r

,

where we use the standard combinatorial notation (( n
r))=�r

i=0 ( n
i ).

For any S�2[N] of width at most w, one can easily show that |S|�(( N
w)).

Thus, if |Sk |>(( N
2t)), then width(Sk)>2t. We now note that any k satisfying the

following inequalities will guarantee that width(Sk)>2t:

\\N
2t++�\\ N

d�2++�\eN
d�2+

d�2

<
\N

d +
d

(d+1)k�
\N

d +
(d+1)k�|Sk |.

Solving the third inequality for (d+1)k, we obtain:

(d+1)k<\N
d +

d

\d�2
eN+

d�2

=\ N
2ed+

d�2

.
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Thus, a lower bound on the number of queries required by the player is

d
2

log
N

2ed
log (d+1)

=0 \ d
log d

log N+
for N=0(d 1+:). K

Now consider a learning problem defined as follows. Our instance space X is the
set of natural numbers N, and our function class is the set of all indicator functions
corresponding to subsets of N of size d. This function class is learnable in the SQ
model.8 In what follows, we show that any deterministic SQ algorithm for this class
requires 0( d

log d log 1
=) queries, each with additive error O(=).

Theorem 6. There exists a parameterized family of function classes which is
learnable in the SQ model and requires 0( d

log d log 1
=) queries, each with additive

error O(=).

Proof. Consider the two-player game as defined above. For an instance of the
game specified by t, d, and N (where d�4, t=d�4 and N=0(d 1+:)), we create an
instance of the learning problem as follows. We define distribution D over N to
have weight 4�N d on each point in the set [1, ..., N] and to have weight 1&4�d on
the point N+1. All other points have zero weight. We set ==1�N and invoke the
deterministic SQ learning algorithm. Note that if the SQ algorithm returns an
hypothesis whose error rate is at most ==1�N, then this hypothesis corresponds to
a set whose symmetric difference with the target set is at most t=d�4.

Since the target subset has weight 4�N, if the SQ algorithm submits a query with
additive error greater than or equal to 4==4�N, then we may answer the query
without consulting the adversary by assuming that the target subset is ``empty.'' For
any query / submitted with tolerance less than 4=, we determine the exact answer
as follows. Begin with an answer of 0. If /(N+1, 0)=1, then add 1&4�d to the
answer. Determine the following three subsets of [N]: X 0

1 , X 1
1 , and X2 where x # X 0

1

if /(x, 0)=1 and /(x, 1)=0, x # X1
1 if /(x, 0)=0 and /(x, 1)=1, and x # X2 if

/(x, 0)=1 and /(x, 1)=1. Add |X2 | } 4�N d to the answer. Submit the query X 0
1 to

the adversary, and for a response r add ( |X 0
1|&r) } 4�N d to the answer. Submit the

query X 1
1 to the adversary, and for a response r add r } 4�N d to the answer. Return

the final value of the answer to the SQ algorithm.
Note that we are able to answer each SQ algorithm query by submitting only

two queries to the adversary, and we need not submit any queries to the adversary
if the requested additive error is greater than or equal to 4=. Since 0( d

log d log N)
queries of the adversary are required, the SQ algorithm must ask 0( d

log d log N)=
0( d

log d log 1
=) queries, each with additive error O(=). K

Using techniques similar to those found in Kearns' lower bound proof (Kearns
1993), the above proof can be modified to show that even if the adversary chooses
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his subset randomly and uniformly before the game starts, then there exists some
constant probability with which any SQ algorithm (deterministic or probabilistic)
will fail unless it asks 0( d log(1�=)

log(d log(1�=))) queries, each with additive error O(=). This
result is given in Appendix C.

6. GENERAL BOUNDS ON PAC LEARNING WITH CLASSIFICATION NOISE

Given the bounds of the previous section and Theorem 1, we obtain upper
bounds on the sample complexity of PAC learning in the presence of classification
noise for classes whose PAC algorithms can be stated in the SQ model.

Theorem 7. Suppose a class F is SQ learnable by an algorithm A whose query
complexity is upper bounded by N

*
(n, size( f ), =), whose tolerance is lower bounded

by {
*

(n, size( f ), =), whose query space and hypothesis class are Q(n, size( f ), =) and
H(n, size( f ), =), respectively, and let N0 , {0 , Q0 and H0 be these complexity measures
when A is run with a constant accuracy parameter. Then F is PAC learnable in the
presence of classification noise by an algorithm whose sample complexity is

O \ 1
{2

0=2(1&2'b)2 log2 1
=

} \log |Q0|+log
1
=

log |H0|+log
1
$+

+
1

=(1&2'b)2 log log
1

1&2'b+
when Q0 and H0 are finite, or

O \ 1
{2

0=2(1&2'b)2 log2 1
=

} _\VC(Q0)+VC(H0) log
1
=

log log
1
=+

} log \ 1
{0 =(1&2'b)

log
1
=++log

1
$&+

when Q0 and H0 have finite VC-dimension.

Corollary 2. If a class F is SQ learnable, then F is PAC learnable in the
presence of classification noise by an algorithm whose sample complexity depends on
= as follows: O( 1

=2 log3 1
=) when the query space and hypothesis class are finite

or O( 1
=2 log4 1

= log log 1
=) when the query space and hypothesis class have finite VC-

dimension.

Note that the hypothesis output by the simulation of an SQ algorithm in the
presence of classification noise is simply an hypothesis generated by the SQ algo-
rithm itself. Therefore, the hypothesis size required for PAC learning in the presence
of classification noise can be bounded, with respect to =, by O(log 1

=).
Bounds on additional complexity measures, such as space and time, may also be

obtained by combining our general upper bounds for SQ learning with an analysis
of the complexity of a simulation of SQ algorithms in the PAC model with
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classification noise. As the various simulations exhibit trade-offs among these com-
plexity measures, we refer the reader to the details of these simulations given by
Kearns (1993) and Aslam and Decatur (1994, 1995).

7. DISCUSSION

Blumer et al. (1989) show that the sample complexity of PAC learning depends
at least linearly on 1�=, and clearly this bound holds for learning in the presence of
classification noise as well. Laird (1988) has developed a general technique for
learning in the presence of classification noise whose sample complexity depends
only linearly on 1�=; however, this technique does not yield computationally
efficient algorithms. The upper bound given in Theorem 7 has a roughly quadratic
dependence on 1�=. Since the tolerance of our boosting scheme has a roughly
optimal dependence on =, one cannot significantly improve the sample complexity
bound given in Theorem 7 by improving the boosting scheme. An interesting open
question is whether there exists a time-efficient, noise-tolerant PAC simulation of
STAT( f, D) whose sample complexity dependence on = is o(1�=2). Such a simulation
would immediately yield improved sample complexity bounds for learning in the
presence of classification noise. Conversely, if one could show that such a simula-
tion does not exist, then our classification noise bounds are roughly the strongest
obtainable through the use of the statistical query model.

Aslam and Decatur (1995) provide a partial answer to this question by introduc-
ing a new simulation of SQ algorithms and demonstrating a function class and
corresponding SQ learning algorithm which takes advantage of this simulation in
order to achieve a roughly linear sample complexity dependence on 1�=. Note that
this linear dependence is only achieved for the simulation of some SQ algorithms
and therefore does not provide a general technique for achieving a o(1�=2) sample
complexity.

APPENDIX A

The Finite Query Space Complexity of Boosting

In this section we calculate the size of the query space of boosting by Scheme 1,
Scheme 2 and hybrid boosting. These results apply when the query space and
hypothesis class of the weak SQ algorithm are finite.

A.1. The Size of the Query Space of Scheme 1 and Scheme 2 Boosting

Let Q0 and H0 be the finite query space and finite hypothesis class used by a
weak SQ learning algorithm. The queries used by the strong SQ learning algorithm
obtained by Scheme 1 or Scheme 2 boosting are of the form /, /i

j , and / 7 /i
j , where

/ # Q0 , and /i
j is constructed from hypotheses in H0 . The queries /i

j are defined by
i hypotheses and a number j, 0� j�i.

Since the hypotheses need not be distinct, for fixed i and j, the number of unique
/i

j queries is equal to the number of unique arrangements of i indistinguishable balls
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in |H0| bins. Each unique arrangement corresponds to a unique /i
j in that the num-

ber of balls in bin l corresponds to the number of copies of the hypothesis
associated with bin l used in /i

j . Thus, the number of unique /i
j queries is ( |H0|+i&1

i )
(Feller 1968). For fixed i, the number of /i

j queries is (i+1) } ( |H0|+i&1
i ). Since i is

bounded by k=k1 or k2 , the total number of /i
j queries is given by

�k
i=1 (i+1) } ( |H0|+i&1

i ). Given that / # Q0 , we may bound the size of the query
space used by the strong SQ learning algorithm obtained from Scheme 1 or Scheme
2 boosting as

|QB |=|Q0|+ :
k

i=1

(i+1) } \ |H0|+i&1
i ++|Q0| :

k

i=1

(i+1) } \ |H0|+i&1
i + , (7)

where k is k1 or k2 depending on the type of boosting used.
We begin by simplifying the expression �k

i=1 (i+1) } ( N+i&1
i ). In order to obtain

a closed-form expression for this sum, we first eliminate the (i+1) factor.

(i+1) } \N+i&1
i +=i }

(N+i&1)!
(N&1)! i !

+\N+i&1
i +

=N }
(N+i&1)!
N! (i&1)!

+\N+i&1
i +

=N } \N+i&1
i&1 ++\N&1+i

i + .

Using the fact that �m
i=0 ( n+i

i )=( n+m+1
m ) (Graham et al. 1994), we now have

:
k

i=1

(i+1) } \N+i&1
i +=N :

k

i=1
\N+i&1

i&1 ++ :
k

i=1
\N&1+i

i +
=N :

k&1

j=0
\N+ j

j ++ :
k

i=0
\N&1+i

i +&1

=N } \N+k
k&1 ++\N+k

k +&1.

Applying this fact to Eq. (7) above, we obtain the following closed-form expression

|QB|=( |Q0|+1) \ |H0|+k
k ++|H0|( |Q0|+1) \ |H0|+k

k&1 +&1. (8)

In order to bound the above expression, we make use of the inequality

\n+m
m +=

(n+m)(n+m&1) } } } (n+1)
m(m&1) } } } 1

=\1+
n
m+\1+

n
m&1+ } } } \1+

n
1+

�(1+n)m.
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Applying this inequality, we now have

|QB|�( |Q0|+1)( |H0|+1)k+|H0|( |Q0|+1)( |H0|+2)k&1&1

<(|Q0|+1)( |H0|+2)k+(|Q0|+1)( |H0|+2)k

=2(|Q0|+1)( |H0|+2)k. (9)

The PAC sample complexity of simulating an SQ algorithm depends on log |QB| ,
and we have shown that

log |QB|=O(log |Q0|+k log |H0| ).

A.2. The Size of the Query Space of Hybrid Boosting

In the hybrid boosting scheme, the Scheme 1 and Scheme 2 boosting schemes are
combined to obtain improved overall complexities. The Scheme 2 booster uses the
Scheme 1 booster, run with ==1�4, as its ``weak learner,'' while the Scheme 1
booster uses the actual weak learner. Thus, k1=k1(#, 1�4) and k2=k2(1�4, =). Let
QHB be the query space of the hybrid booster, and let Q1�4 and H1�4 be the query
space and hypothesis class of the Scheme 1 booster. By the results of the previous
section, we have

|QHB|<2(|Q1�4|+1)( |H1�4|+2)k2,

|Q1�4|<2(|Q0|+1)( |H0|+2)k1.

The hypotheses in H1�4 are majority functions of up to k1 hypotheses from H0 . The
number of unique majority functions of i hypotheses from H0 is given by ( |H0|+i&1

i ),
and therefore the number of unique majority functions of up to k1 hypotheses from
H0 is given by �k1

i=1 ( |H0|+i&1
i ). Using the techniques of the previous section, we can

simplify this expression as

|H1�4|= :
k1

i=1 \
|H0|+i&1

i +
= :

k1

i=0
\ |H0|&1+i

i +&1

=\ |H0|+k1

k1 +&1

�(|H0|+1)k1&1.

Combining these results, we obtain

|QHB|<2(2( |Q0|+1)( |H0|+2)k1+1)(( |H0|+1)k1+1)k2

which yields

log |QHB|=O(log |Q0|+k1k2 log |H0| ).
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APPENDIX B

The General Query Space Complexity of Boosting

In this section we prove bounds on the Vapnik�Chervonenkis dimension (Vapnik
and Chervonenkis 1971) of the query space of boosting. We begin by defining VC-
dimension and introducing a number of preliminary results.

B.1. Preliminaries

Let G be a set of [0, 1]-valued functions defined over a domain X. For any set
S=[x1 , ..., xm ]�X and function g # G, g defines a labeling of S as follows:
( g(x1), ..., g(xm)). S is said to be shattered by G if S can be labelled in all possible
2m ways by functions in G. The VC-dimension of G, VC(G), is defined to be the car-
dinality of the largest shattered set.

VC-dimension is often defined in terms of set-theoretic notation. One can view
a function g # G as an indicator function for a set Xg�X where Xg=
[x # X : g(x)=1]. For any set S�X, let 6G (S)=[S & Xg : g # G]. One can view
6G (S) as the set of subsets of S ``picked out'' by functions in G. Note that if
6G (S)=2S, then S is shattered by G. For any integer m�1, define 6G (m)=
max[ |6G (S) : S�X, |S|=m]. One can view 6G (m) as the maximum number of
subsets of any set of size m picked out by functions in G. Note that if 6G (m)=2m,
then there exists a set of size m shattered by G. One may define VC-dimension in
terms of 6G (m) as VC(G)=max[m : 6G (m)=2m].

We next prove a lemma concerning 6G (m) which is used throughout the sections
that follow.

Lemma 4. If G=G1 _ G2 , then 6G (m)�6G1
(m)+6G2

(m).

Proof. For any m, let Sm be a set of size m such that |6G (Sm)|=6G (m). Note
that such a set is guaranteed to exist by the definition of 6G (m). We next note that
6G (Sm)=6G1

(Sm) _ 6G2
(Sm), and therefore |6G (Sm)|�|6G1

(Sm)|+|6G2
(Sm)|.

The proof is completed by noting that |6G1
(Sm)|�6G1

(m) and |6G2
(Sm)|�

6G2
(m).

The growth of the function 6G (m) plays an important role in proving a number
of results in PAC learning. Note that for any m�VC(G), 6G (m)=2m. The follow-
ing result due to Sauer (1972) upper bounds the growth of 6G (m) for all
m�VC(G).

Lemma 5 (Sauer's Lemma). Let G be a set of [0, 1]-valued functions, and let
d=VC(G). For all integers m�d, 6G (m)��d

i=0 ( m
i ).

Blumer et al. (1989) show that for all integers m�d�1, �d
i=0 ( m

i )<(em�d )d

where e is the base of the natural logarithm. We present a new and simpler proof
of this result below.

Lemma 6. For all integers m�d�1, �d
i=0 ( m

i )<(em�d )d.
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Proof. Since 0<d�m�1, we have

\ d
m+

d

:
d

i=0
\m

i +� :
d

i=0
\ d

m+
i

\m
i +

� :
d

i=0
\ d

m+
i mi

i !

= :
d

i=0

d i

i !

< :
�

i=0

d i

i !

=ed.

Dividing both sides of this inequality by (d�m)d yields the desired result. K

Thus, the growth of the function 6G (m) can be characterized as 6G (m) grows
exponentially up to m=VC(G), and 6G (m) grows at most polynomially after that.

B.2. The VC-Dimension of the Query Space of Scheme 1 and Scheme 2 Boosting

We now prove the result used in Section 4 bounding the VC-dimension of the
query space of Scheme 1 and Scheme 2 boosting. Let Q0 and H0 be the query space
and hypothesis class used by a weak SQ learning algorithm. The queries used by
the strong SQ learning algorithm obtained by either Scheme 1 or Scheme 2 boost-
ing are of the form /, /i

j and / 7/i
j , where / # Q0 , and /i

j is constructed from
hypotheses in H0 .

A particular query /i
j is defined by i hypotheses and an integer j, 0� j�i. /i

j(x, l )
is 1 if exactly j of the i hypotheses map x to l, and /i

j(x, l ) is 0 otherwise. Note that
i is bounded by k1= 1

2#2 ln 1
= in Scheme 1 boosting, and i is bounded by k2= 1

#2 ln 1
=

in Scheme 2 boosting. Also note that the hypotheses used to construct a particular
/i

j need not be distinct.
For fixed i and j, let 1 i

j be the set of all /i
j queries. In addition, we make the two

definitions

1 i= .
i

j=0

1 i
j ,

1 [k]= .
k

i=1

1 i.

For any two sets of [0, 1]-valued functions A and B, we define

A 7 B=[ fa 7 fb : fa # A, fb # B].

The query space of boosting, QB , may then be given as

QB=Q0 _ 1 [k] _ Q0 7 1 [k].
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Note that k=k1 in the case of Scheme 1 boosting, and k=k2 in the case of Scheme
2 boosting.

We bound the VC-dimension of QB in terms of the VC-dimensions of Q0 and H0

as follows. We first bound 6Q0
(m), 61[k] (m) and 6Q0 7 1 [k] (m) and then apply

Lemma 4 to obtain a bound on 6QB (m). From this bound, we obtain a bound on
the VC-dimension of QB by finding an m such that 6QB (m)<2m. We begin by
examining 1 i

j .
For any hypothesis h : X � [0, 1], we define h� : X_[0, 1] � [0, 1] as

h� (x, l )=(h(x)#l ),

where # is the Boolean equivalence operator. Thus, h� (x, l) is true if and only if the
hypothesis h maps x to l. Let H� 0=[h� : h # H0]. A query /i

j based on hypotheses
h1 , ..., hi can be specified as

/i
j (x, l )={1

0
if exactly j of h� 1 (x, l), ..., h� i (x, l) are 1
otherwise.

From a set-theoretic perspective, we may view /i
j and h� as indicator functions for

subsets of Y=X_[0, 1]. We then have

Y/i
j
=[y # Y : y is an element of exactly j of the sets Yh� 1

, ..., Yh� i].

We next relate 61 i
j
(m) with 6H� 0

(m) as follows.

Claim 1. 61 i
j
(m)�\6H� 0

(m)+i&1
i + .

Proof. We will view each /i
j # 1 i

j and h� # H� 0 as indicator functions for sets
Y/i

j
�Y and Yh� �Y, respectively. Let T be any subset of Y of size m. Recall that

6H� 0
(T) is the set of subsets of T picked out by functions h� # H� 0 , and 61 i

j
(T) is the

set of subsets of T picked out by functions /i
j # 1 i

j . By the definition of /i
j , note that

each set in 61 i
j
(T ) must correspond to some collection of i sets in 6H� 0

(T).
However, the i sets in any collection need not be distinct. Since the number of
unique collections is given by the number of arrangements of i indistinguishable
balls in |6H� 0

(T )| bins, we have

|61 i
j
(T )|�\ |6H� 0

(T)|+i&1
i +

which implies the desired result. K

By Lemma 4 and the definition of 1 i, we now have

61 i (m)�(i+1) } \6H� 0
(m)+i&1

i + .
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Furthermore, by Lemma 4 and the definition of 1 [k], we have

61 [k] (m)� :
k

i=1

(i+1) } \6H� 0
(m)+i&1

i + .

By applying the simple fact that 6A 7 B (m)�6A (m) } 6B (m) (Anthony and Biggs
1992, p. 104), we have

6Q0 7 1 [k] (m)�6Q0
(m) :

k

i=1

(i+1) } \6H� 0
(m)+i&1

i + .

Finally, by Lemma 4 and the definition of QB , we have

6QB (m)�6Q0
(m)+ :

k

i=1

(i+1) } \6H� 0
(m)+i&1

i +
+6Q0

(m) :
k

i=1

(i+1) } \6H� 0
(m)+i&1

i + . (10)

Note that Eq. (10) is of the same form as Eq. (7), and we may therefore simplify
Eq. (10) in a similar manner to obtain

6QB
(m)<2(6Q0

(m)+1)(6H� 0
(m)+2)k. (11)

In order to bound the VC-dimension of QB , we must relate the VC-dimension of
H� 0 to the VC-dimension of H0 .

Claim 2. VC(H� 0)=VC(H0).

Proof. We begin by noting that for any instance x # X, h(x)=1 if and only if
h� (x, 1)=1. For any set S=[x1 , ..., xm] and hypothesis h # H0 , the labeling of S
induced by h is identical to the labeling of T induced by h� where
T=[(x1 , 1) , ..., (xm , 1)]. Thus, if there exists a set of size m shattered by H0 ,
then there exists a set of size m shattered by H� 0 . This implies that
VC(H� 0)�VC(H0).

We next note that for all functions h� # H� 0 , h� (x, l )=ch� (x, l� ). Now let

T=[(x1 , l1), ..., (xm , lm)]

be any set shattered by H� 0 . If (x, l) # T, then (x, l� ) � T since (x, l) and (x, l� )
cannot be labeled identically, which is required for shattering. Thus, xi{xj if i{ j,
and therefore S=�m

i=1 [xi] is of size m.
Now note that h(x)=b if and only if h� (x, l )=(b#l ). Consider any labeling

(b1 , ..., bm) of S. This labeling of S would be induced by a hypothesis h # H0

corresponding to a function h� # H� 0 which labels T as follows: ( (b1#l1), ...,
(bm#lm)) . Since T is shattered by H� 0 , such a function and corresponding
hypothesis must exist. Thus, if there exists a set of size m shattered by H� 0 , then
there exists a set of size m shattered by H0 . This implies that VC(H0)�VC(H� 0). K

We now prove the main result of this section.
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Lemma 7. VC(QB)=O(VC(Q0)+VC(H0) } k log k).

Proof. In order to bound the VC-dimension of QB , we need only find an m
which satisfies 6QB

(m)<2m. We begin by further simplifying the bound for 6QB
(m)

given in Eq. (11).
Assume that 6Q0

(m)�1 and 6H� 0
(m)�2. Each of these assumptions is assured

when m�1 and the VC-dimensions of Q0 and H� 0 are at least 1. We then have the
following:

6QB
(m)<2(6Q0

(m)+1)(6H� 0
(m)+2)k

�2(26Q0
(m))(26H� 0

(m))k

=2k+26Q0
(m)(6H� 0

(m))k.

Let q0=VC(Q0) and d0=VC(H� 0)=VC(H0). For any m�max[q0 , d0], we have
both 6Q0

(m)<(em�q0)q0 and 6H� 0
(m)<(em�d0)d0. This yields

6QB
(m)<2k+2(em�q0)q0 (em�d0)d0k.

To bound the VC-dimension of QB , we need only find an m which guarantees that
the right-hand side of the above inequality is at most 2m. (We use lg to denote the
logarithm base 2.)

2k+2(em�q0)q0 (em�d0)d0 k�2m

� (k+2)+q0 lg(em�q0)+d0k lg (em�d0)�m. (12)

For fixed d0 , q0 and k, the above inequality has the form m�g1 (m)+ g2 (m)+
g3 (m), where each function gi (m) grows more slowly than m. In particular, each
function gi satisfies the following property (recall that we are restricted to values
m�max[q0 , d0]): If mi�gi (3mi), then m�gi (3m) for all m�mi . Our strategy is
to find appropriate values of mi which satisfy mi�gi (3mi) and let m=
3 max[m1 , m2 , m3]. Then m must satisfy m�g1(m)+ g2(m)+ g3(m) by the follow-
ing argument. Suppose, without loss of generality, that m1=max[m1 , m2 , m3]. We
then have m=3m1 . Furthermore, m1�g1(3m1), and since m1�m2 and m1�m3 ,
we also have m1�g2 (3m1) and m1�g3 (3m1). Combining these inequalities, we
have 3m1�g1 (3m1)+ g2 (3m1)+ g3 (3m1) which implies the desired result.

For g1 (m)=k+2, we may simply choose m1=k+2. For g2 (m)=q0 lg(em�q0),
we chose m2=6q0 , which is verified as

6q0�q0 lg(e(3 } 6q0)�q0)

� 6�lg(18e)r5.613.

112 ASLAM AND DECATUR



File: DISTIL 266429 . By:CV . Date:18:02:98 . Time:13:36 LOP8M. V8.B. Page 01:01
Codes: 3606 Signs: 1992 . Length: 52 pic 10 pts, 222 mm

For g3 (m)=d0 k lg(em�d0), we choose m3=9 d0k lg k, which is verified as

9 d0k lg k�d0 k lg(e(3 } 9d0k lg k)�d0)

� 9 lg k�lg(27ek lg k)

� k9�27ek lg k

o k7�27e.

This final inequality is true for any k�2. Thus m=3 max[k+2, 6q0 , 9d0k lg k]=
O(q0+d0k log k) is an upper bound on VC(QB). K

B.3. The VC-Dimension of the Query Space of Hybrid Boosting

We now prove the result used in Section 4 bounding the VC-dimension of
the query space of hybrid boosting. As in Section A.2, let QHB be the query space
of the hybrid booster, and let Q1�4 and H1�4 be the query space and hypothesis class
of the Scheme 1 booster. Furthermore, let k1=k1 (#, 1�4) and k2=k2 (1�4, =). We
then have the following analogs of Eq. (11)

6QHB (m)<2(6Q1�4 (m)+1)(6H� 1�4 (m)+2)k2,

6Q1�4 (m)<2(6Q0
(m)+1)(6H� 0

(m)+2)k1.

Recall that H1�4 is the set of hypotheses which are majority functions of up to k1

hypotheses from H0 , and H� 1�4=[h� : h # H1�4 ]. However, we make use of the follow-
ing equivalent definition of the functions in H� 1�4 . Given a function h� # H� 1�4 ,
h� corresponds to some hypothesis h # H1�4 which in turn corresponds to some set
of hypotheses [h1 , ..., hj] from H0 where j�k1 . By definition, we have

h� (x, l )=(maj[h1(x), ..., hj (x)]#l).

However, it is also the case that

(maj[h1 (x), ..., hj (x)]#l)=maj[h� 1 (x, l ), ..., h� j (x, l )].

Thus, we can think of H� 1�4 as the set of majority functions of up to k1 functions
from H� 0 .

Now, let H� j
1�4 be the set of majority functions of j functions from H� 0 , and let T

be any subset of Y of size m. Recall that 6H� 0
(T ) is the set of subsets of T picked

out by functions h� # H� 0 , and 6H� j
1�4

(T ) is the set of subsets of T picked out by func-
tions h� # H� j

1�4 . Note that each set in 6H� j
1�4

(T ) must correspond to some collection
of j sets in 6H� 0

(T). However, the j sets in any collection need not be distinct. Since
the number of such unique collections is given by the number of arrangements of

j indistinguishable balls in |6H� 0
(T )| bins, we have |6H� j

1�4
(T )�\ |6H� 0

(T )|+ j&1
j +

which implies that

6H� j
1�4

(m)�\6H� 0
(m)+ j&1

j + .
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Since H� 1�4=�k1
j=1 H� j

1�4 , by Lemma 4, we have

6H� 1�4 (m)� :
k1

j=1
\6H� 0

(m)+ j&1
j +

= :
k1

j=0 \
6H� 0

(m)+ j&1
j +&1

=\6H� 0
(m)+k1

k1 +&1

�(6H� 0
(m)+1)k1&1.

Combining the above results, we have

6QHB (m)<2(2(6Q0
(m)+1)(6H� 0

(m)+2)k1+1)((6H� 0
(m)+1)k1+1)k2.

Now, assume that 6Q0
(m)�1 and 6H� 0

(m)�2. These assumptions are assured
when m�1 and the VC-dimensions of Q0 and H� 0 are at least 1. We then have

6QHB (m)<2(2(6Q0
(m)+1)(6H� 0

(m)+2)k1+1)((6H� 0
(m)+1)k1+1)k2

<2(2(26Q0
(m))(26H� 0

(m))k1+1)((26H� 0
(m))k1+1)k2

<2(2k1+36Q0
(m)(6H� 0

(m))k1)(2k1+1(6H� 0
(m))k1)k2

=2(k1+1)(k2+1)+36Q0
(m)(6H� 0

(m))k1(k2+1).

Let q0=VC(Q0) and let d0=VC(H� 0)=VC(H� 0). For any m�max[q0 , d0], we have
both 6Q0

(m)<(em�q0)q0 and 6H� 0
(m)<(em�d0)d0. We now have

6QHB (m)<2(k1+1)(k2+1)+3(em�q0)q0 (em�d0)d0 k1 (k2+1).

To bound the VC-dimension of QHB, we need only find an m which guarantees that
the right-hand side of the above inequality is at most 2m.

2(k1+1)(k2+1)+3(em�q0)q0 (em�d0)d0k1(k2+1)�2m

� ((k1+1)(k2+1)+3)+q0 lg (em�q0)+d0k1 (k2+1) lg (em�d0)�m (13)

Inequality (13) has the same form as Inequality (12). By appropriate substitution,
we find that m=3 max[(k1+1)(k2+1)+3, 6q0 , 9d0 k1 (k2+1) lg (k1 (k2+1))]=
O(q0+d0k1k2 log(k1k2)) is sufficient to satisfy the above inequality. Thus, we have
proven the following:

Lemma 8. VC(QHB)=O(VC(Q0)+VC(H0) } k1k2 log(k1k2))
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APPENDIX C

A Lower Bound for Probabilistic SQ Algorithms

Throughout this paper, we have assumed that SQ algorithms are deterministic
and output an accurate hypothesis with certainty. In this section we relax this con-
dition by allowing probabilistic SQ algorithms which output accurate hypotheses
with high probability. In particular, we show a lower bound on the query and
tolerance complexities of such SQ algorithms which is analogous to the result
obtained in Section 5.2.

Consider the two-player game described in Section 5.2. We modify this game by
allowing the player to be probabilistic, and we only require that the player output
an acceptable set with probability at least 1&$, for some $>0. We show the
following:

Lemma 9. For any d�4, t�d�4, $�1�8 and N=0(d 1+:) for any constant
:>0, the probabilistic player requires 0(d log N�log(d log N)) queries to succeed
with probability at least 1&$.

Proof. By incorporating techniques from Kearns' lower bound proof (Kearns
1993), we can modify the original proof of Lemma 3 as follows. The adversary
chooses the target set S randomly and uniformly from the set S0 of all ( N

d ) subsets
of [N] of size d. Consider the first query, Q1 , submitted by the player. Q1 partitions
S0 into d+1 sets S0

0 , S1
0 , ..., Sd

0 where each subset S # S i
0 satisfies |S & Q1|=i.

Since the choice of the target set was random, uniform and independent of Q1 , the
probability that the target set is an element of S i

0 is proportional to |Si
0|. Note

that S1 , by definition, is the set S i
0 of which the target is a member.

For any k�2, consider all S i
0 for which |S i

0|<|S0|�(k } (d+1)). Since there are
only d+1 sets, the aggregate cardinality of such ``small'' sets is less than |S0|�k.
Thus, we have

Pr _ |S1|�
|S0|

k } (d+1)&>
|S0|&|S0|�k

|S0|
=1&1�k,

where the probability is with respect to the random selection of the target set. By
successively applying this result through k queries, we obtain

Pr _ |Sk|�
|S0|

(k } (d+1))k&>(1&1�k)k.

Note that for any k�2, (1&1�k)k # [1�4, 1�e). Thus, with probability greater than
1�4, we have a lower bound on the size of Sk . We next show that if the size of Sk

is sufficiently large, then there is a significant probability that the player will fail if
it halts and outputs a set at this point.

Let T be any set output by the player at the end of the game. For any i,
0�i�N, note that there are exactly ( N

i ) sets S # 2[N] such that |S q T |=i. Thus,
there are exactly (( N

t )) sets S # 2[N] such that |S q T |�t. Now suppose that
|Sk|�2(( N

t )). Since the target set is equally likely to be any element of Sk , the
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probability that T is an acceptable set is at most 1�2. Furthermore, since
|Sk|�( N

d )�(k } (d+1))k with probability greater than 1�4, the player will fail with
probability greater than 1�8 if it halts after k questions for any k which satisfies the
inequalities

2 \\N
t ++�2 \\ N

d�4++�2 \eN
d�4+

d�4

�
\N

d +
d

(k } (d+1))k�
\N

d +
(k } (d+1))k .

Solving the third inequality for (k } (d+1))k and noting that d�4, we have the
following:

(k } (d+1))k� 1
2 \N

d +
d

\d�4
eN+

d�4

o (k } (d+1))k�\ N
4ed+

3d�4

� k log k+k log(d+1)�
3d
4

log \ N
4ed+ .

The latter inequality is implied by the two inequalities

k log k�
3d
8

log \ N
4ed+

o k�

3d
8

log
N

4ed

log \3d
8

log
N

4ed+
,

k log(d+1)�
3d
8

log \ N
4ed+

� k�

3d
8

log
N

4ed
log (d+1)

.

Each of these inequalities is satisfied by

k=

3d
8

log
N

4ed

log \(d+1) log
N

4ed+
=0 \ d log N

log (d log N)+

for N=0(d1+:). K

Combining this result with the proof of Theorem 6, we immediately obtain the
following:
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Theorem 8. There exists a parameterized family of function classes which is
learnable in the SQ model and requires 0(d log(1�=)�log(d log(1�=))) queries, each
with additive error O(=), to learn in the SQ model by a probabilistic algorithm.
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