9,812 research outputs found

    Betweenness and Diversity in Journal Citation Networks as Measures of Interdisciplinarity -- A Tribute to Eugene Garfield --

    Get PDF
    Journals were central to Eugene Garfield's research interests. Among other things, journals are considered as units of analysis for bibliographic databases such as the Web of Science (WoS) and Scopus. In addition to disciplinary classifications of journals, journal citation patterns span networks across boundaries to variable extents. Using betweenness centrality (BC) and diversity, we elaborate on the question of how to distinguish and rank journals in terms of interdisciplinarity. Interdisciplinarity, however, is difficult to operationalize in the absence of an operational definition of disciplines, the diversity of a unit of analysis is sample-dependent. BC can be considered as a measure of multi-disciplinarity. Diversity of co-citation in a citing document has been considered as an indicator of knowledge integration, but an author can also generate trans-disciplinary--that is, non-disciplined--variation by citing sources from other disciplines. Diversity in the bibliographic coupling among citing documents can analogously be considered as diffusion of knowledge across disciplines. Because the citation networks in the cited direction reflect both structure and variation, diversity in this direction is perhaps the best available measure of interdisciplinarity at the journal level. Furthermore, diversity is based on a summation and can therefore be decomposed, differences among (sub)sets can be tested for statistical significance. In an appendix, a general-purpose routine for measuring diversity in networks is provided

    Hierarchy and assortativity as new tools for affinity investigation: the case of the TBA aptamer-ligand complex

    Full text link
    Aptamers are single stranded DNA, RNA or peptide sequences having the ability to bind a variety of specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually they are in vitro generated, but, recently, computational approaches have been developed for the in silico selection, with a higher affinity for the specific target. Anyway, the mechanism of aptamer-ligand formation is not completely clear, and not obvious to predict. This paper aims to develop a computational model able to describe aptamer-ligand affinity performance by using the topological structure of the corresponding graphs, assessed by means of numerical tools such as the conventional degree distribution, but also the rank-degree distribution (hierarchy) and the node assortativity. Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex, produced in the presence of Na+ or K+. The topological analysis reveals different affinity performances between the macromolecules in the presence of the two cations, as expected by previous investigations in literature. These results nominate the graph topological analysis as a novel theoretical tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, which reveals that the resistance sensitively depends on the presence of sodium or potassium thus posing resistance as a crucial physical parameter for testing affinity.Comment: 12 pages, 5 figure

    Exploratory Key Nodes in the Inventor-author Knowledge Diffusion Network

    Get PDF
    This paper aims to mine the key nodes in the process of knowledge flow from literatures of science and technology journals to technology patents on the community level. Based on the citation of technological patents to literatures of scientific journals and the cooperation among the researchers, this paper builds the knowledge flow network from the angle of spatial dimension. Then employing the extensity centrality-Newman and the commonly used degree indexes, this paper excavates and analyses the nodes which occupy important positions among communities in the knowledge flow network. After that, this paper puts forward suggestions on how to make full use of the key nodes’ role of bridge to promote knowledge flow from literatures of science and technology journals to technology patents

    Patent Information Retrieval: Approaching a Method and Analyzing Nanotechnology Patent Collaborations

    Get PDF
    ArticleThis is the final version of the article. Available from Springer Verlag via the DOI in this record.Many challenges still remain in the processing of explicit technological knowledge documents such as patents. Given the limitations and drawbacks of the existing approaches, this research sets out to develop an improved method for searching patent databases and extracting patent information to increase the efficiency and reliability of nanotechnology patent information retrieval process and to empirically analyse patent collaboration. A tech-mining method was applied and the subsequent analysis was performed using Thomson data analyser software. The findings show that nations such as Korea and Japan are highly collaborative in sharing technological knowledge across academic and corporate organisations within their national boundaries, and China presents, in some cases, a great illustration of effective patent collaboration and co-inventorship. This study also analyses key patent strengths by country, organisation and technology
    corecore