20,302 research outputs found

    Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters

    Get PDF
    Data analysis in science, e.g., high-energy particle physics, is often subject to an intractable likelihood if the observables and observations span a high-dimensional input space. Typically the problem is solved by reducing the dimensionality using feature engineering and histograms, whereby the latter technique allows to build the likelihood using Poisson statistics. However, in the presence of systematic uncertainties represented by nuisance parameters in the likelihood, the optimal dimensionality reduction with a minimal loss of information about the parameters of interest is not known. This work presents a novel strategy to construct the dimensionality reduction with neural networks for feature engineering and a differential formulation of histograms so that the full workflow can be optimized with the result of the statistical inference, e.g., the variance of a parameter of interest, as objective. We discuss how this approach results in an estimate of the parameters of interest that is close to optimal and the applicability of the technique is demonstrated with a simple example based on pseudo-experiments and a more complex example from high-energy particle physics

    Visual Representations: Defining Properties and Deep Approximations

    Full text link
    Visual representations are defined in terms of minimal sufficient statistics of visual data, for a class of tasks, that are also invariant to nuisance variability. Minimal sufficiency guarantees that we can store a representation in lieu of raw data with smallest complexity and no performance loss on the task at hand. Invariance guarantees that the statistic is constant with respect to uninformative transformations of the data. We derive analytical expressions for such representations and show they are related to feature descriptors commonly used in computer vision, as well as to convolutional neural networks. This link highlights the assumptions and approximations tacitly assumed by these methods and explains empirical practices such as clamping, pooling and joint normalization.Comment: UCLA CSD TR140023, Nov. 12, 2014, revised April 13, 2015, November 13, 2015, February 28, 201

    Non-parametric Bayesian modeling of complex networks

    Full text link
    Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model's fit and predictive performance. We explain how advanced non-parametric models for complex networks can be derived and point out relevant literature

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain

    QBDT, a new boosting decision tree method with systematic uncertainties into training for High Energy Physics

    Full text link
    A new boosting decision tree (BDT) method, QBDT, is proposed for the classification problem in the field of high energy physics (HEP). In many HEP researches, great efforts are made to increase the signal significance with the presence of huge background and various systematical uncertainties. Why not develop a BDT method targeting the significance directly? Indeed, the significance plays a central role in this new method. It is used to split a node in building a tree and to be also the weight contributing to the BDT score. As the systematical uncertainties can be easily included in the significance calculation, this method is able to learn about reducing the effect of the systematical uncertainties via training. Taking the search of the rare radiative Higgs decay in proton-proton collisions pp→h+Xâ†’ÎłÏ„+τ−+Xpp \to h + X \to \gamma\tau^+\tau^-+X as example, QBDT and the popular Gradient BDT (GradBDT) method are compared. QBDT is found to reduce the correlation between the signal strength and systematical uncertainty sources and thus to give a better significance. The contribution to the signal strength uncertainty from the systematical uncertainty sources using the new method is 50-85~\% of that using the GradBDT method.Comment: 29 pages, accepted for publication in NIMA, algorithm available at https://github.com/xialigang/QBD
    • 

    corecore