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Abstract
Data analysis in science, e.g., high-energy particle physics, is often subject to an intractable likelihood if the observables 
and observations span a high-dimensional input space. Typically the problem is solved by reducing the dimensionality using 
feature engineering and histograms, whereby the latter allows to build the likelihood using Poisson statistics. However, in 
the presence of systematic uncertainties represented by nuisance parameters in the likelihood, an optimal dimensionality 
reduction with a minimal loss of information about the parameters of interest is not known. This work presents a novel strat-
egy to construct the dimensionality reduction with neural networks for feature engineering and a differential formulation 
of histograms so that the full workflow can be optimized with the result of the statistical inference, e.g., the variance of a 
parameter of interest, as objective. We discuss how this approach results in an estimate of the parameters of interest that is 
close to optimal and the applicability of the technique is demonstrated with a simple example based on pseudo-experiments 
and a more complex example from high-energy particle physics.

Keywords Optimal statistical inference · Neural networks · High-energy particle physics

Introduction

Measurements in many areas of research like, e.g., high-
energy particle physics, are typically based on the statisti-
cal inference of one or more parameters of interest defined 
by the likelihood L(D,�) with the observables x ∈ X ⊆ ℝ

d 
building the dataset D = {x1, ..., xn} ⊆ ℝ

n×d and the param-
eters � of the statistical model. The likelihood would have 
to be evaluated for the dataset D spanning a high-dimen-
sional input space, which is computationally expensive and 

typically unfeasible. The dimension of D can be reduced by 
the engineering of high-level observables and the usage of 
summary statistics. Analysts create high-level observables 
to reduce the dimension d of a single observation to k, ide-
ally without losing information about the parameters � . An 
example from high-energy particle physics is the usage of 
the invariant mass of a decay system instead of the kinematic 
properties of all its constituents. The dimension n of D can 
be reduced with the computation of a summary statistic, for 
which histograms are frequently used so that the statistical 
model can be expressed in form of a likelihood, based on 
Poisson statistics. The dimension is thus reduced from the 
number of observations n to the number of bins h in the his-
togram, whereby the analyst tries to optimize the trade-off 
between a feasible number of bins and the loss of informa-
tion about the parameters of interest. Applying both meth-
ods, the initial dimension of D ⊆ ℝ

n×d is reduced to ℝh×k.
This paper discusses an analysis strategy using machine 

learning techniques, by which the suboptimal performance 
introduced by the reduction of dimensionality can be avoided 
resulting in estimates of the parameters of interest � ∈ � close 
to optimal, e.g., with a minimal variance. We put emphasis 
on the applicability of this approach to analysis strategies as 
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used for Higgs boson analyses at the Large Hadron Collider 
(LHC) [1–4].

Section “Methods” presents the method in detail 
and “Related Work” puts the proposed technique in context 
of related work. Section “Application to a Simple Example 
Based on Pseudo-Experiments” shows the performance of 
the method with a simple example using pseudo-experi-
ments of a two-component mixture model with signal and 
background and “Application to a More Complex Analy-
sis Task Typical for High-Energy Particle Physics” applies 
the same approach to a more complex example from high-
energy particle physics.

Methods

The method requires as input an initial dataset D ⊆ ℝ
n×d 

used for the statistical inference of the parameters of inter-
est with n being the number of observations and d the 
number of observables. To simplify the statistical evalu-
ation, we typically reduce the number of observables by 
the engineering of high-level observables. Besides manual 
crafting of such features, a suited approach taken from 
machine learning is using a neural network (NN) function 
f (x,�) ∶ x ∈ X ⊆ ℝ

d
→ f ∈ F ⊆ ℝ

k with � being the free 
NN parameters. After application of the NN, we get a trans-
formed dataset DNN ⊆ ℝ

n×k with k the number of output 
nodes of the NN architecture.

To reduce the dataset DNN further, the number of obser-
vations n is compressed using a histogram. Histograms are 
widely used as a summary statistic since counts follow the 
Poisson distribution and therefore are well suited to build 
the statistical model of the analysis. For example in high-
energy particle physics, many statistical models and well 
established methods for describing the statistical model and 
systematic uncertainties are based on counts and binned 
Poisson likelihoods. The resulting dataset is DH ⊆ ℝ

h×k 
using h bins for the k-dimensional histogram. The count 
operation for a single bin in the histogram can be written as 
C =

∑n

i=1
S
�
f
�
xi,�

��
 with

In order to propagate the gradient from the result of the sta-
tistical inference to the free parameters � of the NN, the 
histogram has to be differentiable. Since the derivative of 
S is ill-defined on the edges of the bin and otherwise zero, 
the gradient is not suitable for optimization. Therefore, we 
use a smoothed approximation of the gradient [5] shown in 
Fig. 1 for a one-dimensional bin. The approximation uses 
the similarity of S to a Gaussian function G normalized to 
max(G) = 1 with the standard deviation being the half-width 
of the bin. We replace only the gradient of the operation S 

(1)S
(
f
(
xi,�

))
=

{
1, if f in the bin boundaries

0, otherwise.

and not the calculation of the count itself to keep the statisti-
cal model of the final analysis unchanged.

On top of the reduced dataset DH , we build the statisti-
cal model using a binned likelihood L(DH,�) with � being 
the parameters of the statistical model. For a mixture model 
with the two processes signal s and background b , the binned 
likelihood describing the statistical component is given by

with P being the Poisson distribution, d the observation and 
� ∈ � the parameter of interest scaling the expectation of the 
signal process s.

Moreover, the formulation of the statistical model allows 
to implement systematic uncertainties by adding nuisance 
parameters to the set of parameters � . For the model in Eq. 2, 
a single nuisance parameter � controlling a systematic vari-
ation � of the expected bin contents results in

with N  being a standard normal distribution constraining 
the nuisance � . If the systematic variation is asymmetric, the 
additional nuisance term can be written as

or with any other differential formulation [6].
The performance of an analysis is measured in terms of 

the variance of the estimate for the parameters of interest, 

(2)L(DH,�) =

h∏

i=1

P
(
di|�si + bi

)

(3)L(DH,�) =

h∏

i=1

P
(
di|�si + bi + ��i

)
N(�)

(4)max (�, 0)�up +min (�, 0)�down

Fig. 1  The figure shows the approximation of the gradient of a single 
bin in a histogram with the gradient of a Gaussian G normalized to 
max(G) = 1 with the standard deviation equal to the half-width of the 
bin
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for example in our case the variance of the estimated signal 
strength � . We built a differential estimate of the variance 
using the Fisher information [7] of the likelihood in Eq. 3 
given by

Because the maximum likelihood estimator is asymptoti-
cally efficient [8, 9], the variance of the estimates for � is 
asymptotically close to

Assuming the first diagonal element to correspond to the 
parameter of interest � , without loss of generality, the loss 
function to optimize the variance of the estimate for � with 
respect to the free parameters � of the NN function f  is V00.

To be independent of the statistical fluctuations of the 
observation, the optimization is performed on an Asimov 
dataset [1]. This artificial dataset replaces the observation 
d with the nominal expectation for s and b serving as repre-
sentative for the median expected outcome of the analysis in 
presence of the signal plus background hypothesis.

Given the assumption that the dimensionality reduction 
performed by the NN together with the histogram is a suf-
ficient statistic, the optimization can find a function for f  
that gives the best estimate for the parameter of interest � , 
similar to a statistical inference performed on the initial 
high-dimensional dataset D with an unbinned likelihood.

A graphical overview of the proposed method is given 
in Fig. 2.

Related Work

The authors of  [10] were first to develop an approach 
that also optimizes the parameters of an NN based on the 
binned Poisson likelihood of the analysis. They also iden-
tify the problem that a histogram has no suitable derivative 

(5)Fij =
�2

��i��j

(
− logL(DH,�)

)
.

(6)Vij = F−1
ij
.

but follow a different strategy to enable automatic differ-
entiation replacing the counts with means of a softmax 
function. This approach is also followed by [11].

Likewise Ref. [12] estimates a count with the sum of 
the NN output values but uses an inclusive estimate of 
the significance as training objective, which results in an 
improved analysis objective in a search for new physics.

The strategy to allow a NN to find the best compression 
of the data has also been discussed in [13]. The authors 
show that the NN is able to learn a summary statistic that 
is a close approximation of a sufficient statistic, yielding 
a powerful statistical inference.

A related approach to training the NN on the statistical 
model of the analysis including systematic uncertainties is 
the explicit decorrelation against the systematic variation. 
For example, the idea has been discussed on the basis of 
an adversarial architecture [14–16], a penalty term based 
on distance correlation [17] and an approach penalizing 
the variation using approximated bin counts [5]. These 
strategies are not aware of the analysis objective such as 
the variance of a parameter of interest and therefore the 
decorrelation is subject to manual optimization. For a large 
number of nuisances, this optimization procedure is com-
putational expensive and typically unfeasible.

Another approach to optimize the statistical inference is 
the direct estimation of the likelihood in the input space, 
which is typically carried out using machine learning tech-
niques. Such methods intend to use the approximated like-
lihood in the input space for the statistical inference, which 
avoids the dimensionality reduction that is optimized with 
the proposed method. The technical difficulties to carry 
out these methods are discussed in [18, 19].

Initial dataset
Rn×d

Neural network f(ω)
Rn×k

Histogram
Rh×k

Statistical inference
µ± σ(µ)

Analytic gradient
optimizing ω w.r.t. σ(µ)

Fig. 2  Graphical overview of the proposed method to optimize the 
reduction of the dataset used for the statistical inference of the param-
eters of interest from end to end. The number of observables d in the 
initial dataset with n observations is reduced to a set of k observa-
bles by the neural network function f  with the free parameters � . 

The dataset is compressed further by summarizing the n observa-
tions using a k-dimensional histogram with h bins. Eventually the 
free parameters � are optimized with the variance of the parameter 
of interest � as objective, which is made possible by an approximated 
gradient for the histogram
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Application to a Simple Example Based 
on Pseudo‑Experiments

A simple example based on pseudo-experiments and a 
known likelihood in the input space ℝn×d is used to illustrate 
our approach. The distributions of the signal and background 
components in the input space are shown in Fig. 3. We 
assume a systematic uncertainty on the mean of the back-
ground process modelled by the shifts x2 ± 1 , representing 
the systematic variations in Eq. 4.

The NN architecture is a fully-connected feed-forward 
network with 100 nodes in one hidden layer. The initializa-
tion follows the Glorot algorithm [20] and the activation 
function is a rectified linear unit [21]. The output layer has a 
single node with a sigmoid activation function.

We use eight bins for the histogram of the NN output and 
compute the variance of the estimate for the parameter of 
interest � denoted by V00 . The operations are implemented 
using TensorFlow as computational graph library [22, 23] 
and we use the provided automatic differentiation and the 
Adam algorithm [24] to optimize the free parameters � with 
the objective to minimize V00 . The systematic variations � 
can be implemented with reweighing techniques using sta-
tistical weights or duplicates of the nominal dataset with the 
simulated variations, whereas we chose the latter solution. 
Each gradient step is performed on the full dataset with 105 
simulated events for each process. The dataset is split in 
half for training and validation, and all results are computed 

from a statistically independent dataset of the same size as 
the original one. The training is stopped if the loss has not 
improved for 100 gradient steps eventually using the model 
with the smallest loss on the validation dataset for further 
analysis. We found that the convergence is more stable if 
the model is first optimized only on the statistical part of 
the likelihood shown in Eq. 2 and therefore apply this pre-
training for 30 gradient steps. We apply statistical weights 
to scale the expectation of signal and background to 50 and 
103 , respectively.

The best possible expected result in terms of the vari-
ance of the estimate for � is given by a fit of the unbinned 
statistical model without dimensionality reduction. Alterna-
tively, we can get an asymptotically close result by using a 
binned likelihood with sufficiently large number of bins in 
the two-dimensional input space. The latter approach with 
20 × 20 equidistant bins in the range shown in Fig. 3 results 
in the profile shown in Fig. 4 with � = 1.0+0.37

−0.35
 . The best-

fit value of � is always at 1.0 because of the used Asimov 
dataset. Further, we find the uncertainty of � in all fits by 
profiling the likelihood [25] rather than using the approxi-
mation by the covariance matrix in Eq. 6. We obtain all 
results in this paper with validated statistical tools, RooFit 
and RooStats [26–28], such as used by most publications 
analyzing data of the LHC experiments.

The first comparison to this best-possible result is done 
by training the NN not on the variance of the estimate for 
� , V00 , but on the cross entropy loss with signal and back-
ground weighted to the same expectation. This approach 
has been used in multiple analyses in high-energy particle 

Fig. 3  Distribution of the signal and background components in the 
input space modelled by multivariate Gaussian distributions centered 

around (0 0) and (1 1) with the covariance matrix 
(
1 0

0 1

)
 . We intro-

duce a systematic variation that shifts the mean of the background 
component along x

2

Fig. 4  Profile of the likelihood with (blue line) only the statistical 
uncertainty and (red line) the systematic uncertainty in addition for 
the likelihood defined in the two-dimensional input space spanned by 
x
1
 and x

2
 as given in Fig. 3
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physics [29, 30]. The NN function f  is a sufficient statistic - 
and therefore optimal - if no systematic uncertainties have to 
be considered for the statistical inference such as the likeli-
hood in Eq. 2 [10]. The resulting function f  is shown in the 
input space and by the distribution of the output in Fig. 5. 
The NN learns to project the two-dimensional space spanned 
by x1 and x2 on the diagonal, which is trivially the optimal 
dimensionality reduction in this simple example. If we apply 
the statistical model including the systematic uncertainty on 
the histograms in Fig. 5, the parameter of interest is fitted as 
� = 1.0+0.45

−0.44
 with an uncertainty worse by 19% than the best 

possible result obtained above, measured with the width of 
the total error bars.

As a consistency check for our new strategy described 
in section "Methods", we train the NN on the variance of 

the estimate for � given by V00 in Eq. 6 but without adding 
the nuisance parameter � modelling the systematic uncer-
tainty. The resulting NN function f  in the input space, the 
distribution of the outputs and the profile of the likelihood 
are shown in Fig. 6. As expected, the plane of the function 
f  in the input space is qualitatively similar, resulting with 
� = 1.0+0.47

−0.46
 in a comparable performance than the training 

on the cross entropy loss. It should be noted that the system-
atic uncertainty has been included again for the statistical 
inference.

When adding the nuisance parameter � to the likelihood, 
the training of the NN results in the function f  shown in 
Fig. 7. The uncertainty of the parameter of interest is with 
the fit result � = 1.0+0.39

−0.36
 considerably decreased and lowers 

the residual difference to the optimal result from 19% to 4% . 

Fig. 5  Distributions of the NN output for the simple example con-
sisting of signal, background, and systematic variation in the (left) 
input space spanned by x

1
 and x

2
 and (middle) value space, if the NN 

is trained on the classification of the two processes using the cross 

entropy loss. The likelihood profiles taking (red line) only the statis-
tical uncertainty and (blue line) the statistical and systematic uncer-
tainty into account for the final statistical inference of � are shown on 
the right

Fig. 6  Distributions of the NN output for the simple example consist-
ing of signal, background, and systematic variation in the (left) input 
space spanned by x

1
 and x

2
 and (middle) value space, if the NN is 

trained on the variance of the signal strength V
00

 defined by the likeli-

hood without the description of the systematic uncertainty. The like-
lihood profiles taking (red line) only the statistical uncertainty and 
(blue line) the statistical and systematic uncertainty into account for 
the final statistical inference of � are shown on the right
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The function f  in the input space in Fig. 7 shows that the 
training identified successfully the signal-enriched region 
with less contribution of the systematic uncertainty result-
ing in counts in the histogram yielding high signal statistics 
with a small uncertainty from the variation of the back-
ground process. Figure 7 shows also that the NN function 
is decorrelated against the systematic uncertainty because 
the profile of the likelihood changes only little if we remove 
the systematic uncertainty from the statistical model. The 
proposed method shares this feature with other approaches 
for decorrelation of the NN function such as discussed in 
section "Related work". The difference is that the strength 
of the decorrelation is not a hyperparameter but controlled 
by the higher objective V00 , which enables us to find directly 
the best trade-off between statistical and systematic uncer-
tainty contributing to the estimate of � . The correlation of 
the parameter of interest � to the parameter � controlling the 
systematic variation is reduced from 64% for the training on 
the cross entropy loss to 13% for the training on the variance 
of the parameter of interest V00.

Application to a More Complex Analysis Task 
Typical for High‑Energy Particle Physics

In this section, we apply the proposed method to a problem 
typical for data analysis in high-energy particle physics at 
the LHC. We use a subset of the dataset published for the 
Higgs boson machine learning challenge [31, 32] extended 
by a systematic variation. The goal of the challenge is to 
achieve the best possible significance for the signal process 
representing Higgs boson decays to two tau leptons overlaid 
by the background simulated as a mixture of different physi-
cal processes [31]. We pick from the dataset four variables, 

namely PRI_met, DER_mass_vis, DER_pt_h and 
DER_deltaeta_jet_jet and select only events, 
which have all of these features defined. In addition to the 
event weights provided with the dataset, we scale the signal 
expectation with a factor of two. The final dataset has 244.0 
and 35140.1 (106505 and 131480) weighted (unweighted) 
events for the signal and background process, respectively. 
The systematic uncertainty in the dataset is assumed as a 
10% uncertainty on the missing transverse energy imple-
mented with the transformation ���_��� ⋅ (1.0 ± 0.1) and 
propagated to the other variables using reweighing. The 
distributions of the variables including the systematic vari-
ations are shown in Figs. 8, 9, 10. The NN is trained only 
on three of the four variables, excluding the missing trans-
verse energy. The systematic variations propagated to the 
remaining variables are thus correlated via a hidden vari-
able, representing a more complex scenario than the simple 
example in section "Application to a simple example based 
onpseudo-experiments". We split the dataset using one third 
for training and validation of the NN, and two thirds for 
the results presented in this paper. The NN architecture and 
the training procedure are the same as implemented for the 
simple example in section "Application to a simple example 
based onpseudo-experiments" with the difference that we 
apply a standardization of the input ranges following the rule 
(x − x)∕�(x) with the mean x and standard variation �(x) of 
the input x (Fig. 11).

An (asymptotically) optimal result as derived for the 
previous example is not available since the likelihood in 
the input space is not known. Instead we use the training 
on the cross entropy loss as reference with � = 1.0+0.69

−0.68
 . 

Using V00 as training objective, but without the implemen-
tation of the systematic variations of the input distribu-
tions in the loss function, the result for the signal strength 

Fig. 7  Distributions of the NN output for the simple example consist-
ing of signal, background, and systematic variation in the (left) input 
space spanned by x

1
 and x

2
 and (middle) value space, if the NN is 

trained on the variance of the signal strength V
00

 defined by the like-

lihood including the systematic uncertainty. The likelihood profiles 
taking (red line) only the statistical uncertainty and (blue line) the sta-
tistical and systematic uncertainty into account for the final statistical 
inference of � are shown on the right
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� = 1.0+0.65
−0.64

 shows a similar uncertainty compared to this 
reference. However, using the full likelihood from Eq. 3 
as training objective, the signal strength is fitted with 
� = 1.0+0.61

−0.60
 . The inclusion of the systematic variations 

yields an improvement in terms of the uncertainty on � 
of 12% compared to the training on the cross entropy loss. 
The histograms and profiles of the likelihood used for 
extracting the results are shown in Figs. 12, 13, 14. For the 
assessment of the distributions of the NN output, it should 

Fig. 8  Distribution of the miss-
ing transverse energy (PRI_
met) for the (left) signal and 
(right) background process
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Fig. 9  Distribution of the vis-
ible mass of the di-tau system 
(DER_mass_vis) for the (left) 
signal and (right) background 
process

0

10

20

30

40

50

C
ou

nt

Nominal
Up-shift
Down-shift

25 50 75 100 125 150
mτµ

vis in GeV

0.7

1.0

1.3

R
at
io

to
no

m
in
al 0

1

2

3

4

5

C
ou

nt

×103

Nominal
Up-shift
Down-shift

25 50 75 100 125 150
mτµ

vis in GeV

0.7

1.0

1.3

R
at
io

to
no

m
in
al

Fig. 10  Distribution of the 
transverse momentum built 
from the vector sum of the 
hadronic tau, the muon and the 
missing transverse momentum 
(DER_pt_h), used as an esti-
mate of the transverse momen-
tum of the reconstructed Higgs 
boson candidate, for the (left) 
signal and (right) background 
process
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Fig. 11  Distribution of the 
absolute difference in the pseu-
dorapidity of the two leading 
jets (DER_deltaeta_jet_
jet) for the (left) signal and 
(right) background process
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Fig. 12  Distribution of the NN 
output for the more complex 
example of section "Application 
to a more complex analysis task 
typical for high-energy particle 
physics", if the NN is trained on 
the classification of the two pro-
cesses using the cross entropy 
loss. The likelihood profiles 
taking (red line) only the statis-
tical uncertainty and (blue line) 
the statistical and systematic 
uncertainty into account for the 
final statistical inference of � 
are shown on the right

Fig. 13  Shown on the left is the 
distribution of the NN output in 
the Higgs example for signal, 
background and the systematic 
variation if the NN is trained 
on the variance of the signal 
strength V

00
 defined by the like-

lihood without the description 
of the systematic uncertainty. 
The likelihood profiles taking 
(red line) only the statistical 
uncertainty and (blue line) 
the statistical and systematic 
uncertainty into account for the 
final statistical inference of � 
are shown on the right
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be noted that in contrast to the training based on the cross 
entropy loss, for the training based on V00 no preference is 
given for signal (background) events to obtain values close 
to 1 (0). Similar to the result from the simple example in 
section "Application to a simple example based on pseudo-
experiments", the profiles of the likelihood for all scenar-
ios show that the training on V00 removes the dependence 
on the systematic uncertainty yielding a smaller variance 
on � . On the other hand, the training on the cross entropy 
optimizes best the estimate of � in the absence of system-
atic uncertainties, as expected from our previous discus-
sion. With the proposed strategy, the NN function learns 
to decorrelate against the systematic uncertainty, visible in 
the correlation of the signal strength � to the parameter � 
controlling the systematic variation, which drops from 69% 

for the training on the cross entropy to 4% for the training 
on the variance of the parameter of interest V00 , based on 
the full likelihood information as given in Eq. 3.  

To improve the estimate of � for the approach with the 
NN trained on the cross entropy loss, a possible strategy 
could be to increase the number of histogram bins to exploit 
better the separation between the signal and background pro-
cess. Figure 15 shows the development of the performance 
with the number of bins for the training on the cross entropy 
loss and the training on the likelihood via V00 . The training 
on the cross entropy loss results in an estimate of � with a 
mean correlation to the nuisance parameter � of 66% and 
a falling uncertainty in � with an average distance of 0.18 
between the result for taking only the statistical uncertainties 
and statistical and systematic uncertainties into account for 

Fig. 14  Shown on the left is the 
distribution of the NN output in 
the Higgs example for signal, 
background and the systematic 
variation if the NN is trained 
on the variance of the signal 
strength V

00
 defined by the like-

lihood including the systematic 
uncertainty. The likelihood pro-
files taking (red line) only the 
statistical uncertainty and (blue 
line) the statistical and system-
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the statistical inference of � . In contrast, the strategy with 
the NN trained on V00 shows a reduction of the correlation 
between � and � of 0.35 when moving from two to eight 
bins for the input histogram for the statistical inference. The 
estimate remains robust against the systematic variation for 
all tested configurations, yielding a smaller variance for the 
estimate of � compared to the training on the cross entropy 
loss. The average distance between the inference using only 
the statistical part of the likelihood and the full statistical 
model is 0.01. Including the systematic uncertainty in the 
inference, the comparison of the estimate of � between the 
training based on V00 and the training based on the cross 
entropy shows an improved variance of � by 0.07 on average, 
yielding a stable average improvement of 10%.

It should be noted that in practice the granularity of the 
binning is limited by the statistics of data and the simula-
tion. Limited statistical precision in the simulation is usu-
ally taken into account by introducing dedicated systematic 
uncertainties in the statistical model that typically degrade 
the performance of the analysis for a large number of bins.

Summary

We have presented a novel approach to optimize statistical 
inference in the presence of systematic uncertainties, when 
using dimensionality reduction of the dataset and likeli-
hoods based on Poisson statistics. Neural networks and in 
particular the differential approximation for the gradient of 
a histogram enables us to optimize directly the variance of 
the estimate of the parameters of interest in consideration of 
the nuisance parameters representing the systematic uncer-
tainties of the measurement. The proposed method yields 
an improved performance for data analysis influenced by 
systematic uncertainties in comparison to conventional strat-
egies using classification-based objectives for the dimen-
sionality reduction. The improvements are discussed using a 
simple example based on pseudo-experiments with a known 
likelihood in the input space and we show that the technique 
is able to perform a statistical inference close to optimal 
by leveraging the given information about the systematic 
uncertainties. The applicability of the method for more com-
plex analyses is demonstrated with an example typical for 
data analyses in high-energy particle physics. Future fields 
of studies are the application of the proposed method on 
analyses with many parameters in the statistical model and 
the evaluation of other possible differential approximations 
for the gradient of a histogram.
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