1,171 research outputs found

    Regenerative block empirical likelihood for Markov chains

    Full text link
    Empirical likelihood is a powerful semi-parametric method increasingly investigated in the literature. However, most authors essentially focus on an i.i.d. setting. In the case of dependent data, the classical empirical likelihood method cannot be directly applied on the data but rather on blocks of consecutive data catching the dependence structure. Generalization of empirical likelihood based on the construction of blocks of increasing nonrandom length have been proposed for time series satisfying mixing conditions. Following some recent developments in the bootstrap literature, we propose a generalization for a large class of Markov chains, based on small blocks of various lengths. Our approach makes use of the regenerative structure of Markov chains, which allows us to construct blocks which are almost independent (independent in the atomic case). We obtain the asymptotic validity of the method for positive recurrent Markov chains and present some simulation results

    Robust Inference of Risks of Large Portfolios

    Full text link
    We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB method (Fan et al., 2015). Such an extension allows us to handle possibly misspecified models and heavy-tailed data. Under mixing conditions, we analyze the proposed approach and demonstrate its advantage over the H-CLUB. We further provide thorough numerical results to back up the developed theory. We also apply the proposed method to analyze a stock market dataset.Comment: 45 pages, 2 figure

    Model Checks Using Residual Marked Empirical Processes

    Get PDF
    This paper proposes omnibus and directional tests for testing the goodness-of-fit of a parametric regression time series model. We use a general class of residual marked empirical processes as the building-blocks for estimation and testing of such models. First, we establish a weak convergence theorem under mild assumptions, which allows us to study in a unified way the asymptotic null distribution of the test statistics and their asymptotic behavior against Pitman's local alternatives. To approximate the asymptotic null distribution of test statistics we justify theoretically a bootstrap procedure. Also, some asymptotic theory for the estimation of the principal components of the residual marked processes is considered. This asymptotic theory is used to derive optimal directional tests and efficient estimation of regression parameters. Finally, a Monte Carlo study shows that the bootstrap and the asymptotic results provide good approximations for small sample sizes and an empirical application to the Canadian lynx data set is considered.

    Estimation of Copula-Based Semiparametric Time Series Models

    Get PDF
    This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric invariant (or marginal) distributions and parametric copula functions that capture the temporal dependence of the processes; the implied transition distributions are all semiparametric. Models in this class are easy to simulate, and can be expressed as semiparametric regression transformation models. One advantage of this copula approach is to separate out the temporal dependence(such as tail dependence) from the marginal behavior (such as fat tailedness) of a time series. We present conditions under which processes generated by models in this class are β\beta -mixing; naturally, these conditions depend only on the copula specification. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. Estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles are easily obtained from estimators of the marginal distribution and the copula parameter; their n\sqrt{n}- consistency and asymptotic normality can be obtained using the Delta method. In addition, the semiparametric conditional quantile estimators are automatically monotonic across quantiles.Copula; Nonlinear Markov models; Semiparametric estimation;Conditional quantile

    Testing for Changes in Kendall's Tau

    Get PDF
    For a bivariate time series ((Xi,Yi))i=1,...,n((X_i,Y_i))_{i=1,...,n} we want to detect whether the correlation between XiX_i and YiY_i stays constant for all i=1,...,ni = 1,...,n. We propose a nonparametric change-point test statistic based on Kendall's tau and derive its asymptotic distribution under the null hypothesis of no change by means a new U-statistic invariance principle for dependent processes. The asymptotic distribution depends on the long run variance of Kendall's tau, for which we propose an estimator and show its consistency. Furthermore, assuming a single change-point, we show that the location of the change-point is consistently estimated. Kendall's tau possesses a high efficiency at the normal distribution, as compared to the normal maximum likelihood estimator, Pearson's moment correlation coefficient. Contrary to Pearson's correlation coefficient, it has excellent robustness properties and shows no loss in efficiency at heavy-tailed distributions. We assume the data ((Xi,Yi))i=1,...,n((X_i,Y_i))_{i=1,...,n} to be stationary and P-near epoch dependent on an absolutely regular process. The P-near epoch dependence condition constitutes a generalization of the usually considered LpL_p-near epoch dependence, p1p \ge 1, that does not require the existence of any moments. It is therefore very well suited for our objective to efficiently detect changes in correlation for arbitrarily heavy-tailed data

    An overview of the goodness-of-fit test problem for copulas

    Full text link
    We review the main "omnibus procedures" for goodness-of-fit testing for copulas: tests based on the empirical copula process, on probability integral transformations, on Kendall's dependence function, etc, and some corresponding reductions of dimension techniques. The problems of finding asymptotic distribution-free test statistics and the calculation of reliable p-values are discussed. Some particular cases, like convenient tests for time-dependent copulas, for Archimedean or extreme-value copulas, etc, are dealt with. Finally, the practical performances of the proposed approaches are briefly summarized
    corecore