233 research outputs found

    Study of architecture and protocols for reliable multicasting in packet switching networks

    Get PDF
    Group multicast protocols have been challenged to provide scalable solutions that meet the following requirements: (i) reliable delivery from different sources to all destinations within a multicast group; (ii) congestion control among multiple asynchronous sources. Although it is mainly a transport layer task, reliable group multicasting depends on routing architectures as well. This dissertation covers issues of both network and transport layers. Two routing architectures, tree and ring, are surveyed with a comparative study of their routing costs and impact to upper layer performances. Correspondingly, two generic transport protocol models are established for performance study. The tree-based protocol is rate-based and uses negative acknowledgment mechanisms for reliability control, while the ring-based protocol uses window-based flow control and positive acknowledgment schemes. The major performance measures observed in the study are network cost, multicast delay, throughput and efficiency. The results suggest that the tree architecture costs less at network layer than the ring, and helps to minimize latency under light network load. Meanwhile, heavy load reliable group multicasting can benefit from ring architecture, which facilitates window-based flow and congestion control. Based on the comparative study, a new two-hierarchy hybrid architecture, Rings Interconnected with Tree Architecture (RITA), is presented. Here, a multicast group is partitioned into multiple clusters with the ring as the intra-cluster architecture, and the tree as backbone architecture that implements inter-cluster multicasting. To compromise between performance measures such as delay and through put, reliability and congestion controls are accomplished at the transport layer with a hybrid use of rate and window-based protocols, which are based on either negative or positive feedback mechanisms respectively. Performances are compared with simulations against tree- and ring-based approaches. Results are encouraging because RITA achieves similar throughput performance as the ring-based protocol, but with significantly lowered delay. Finally, the multicast tree packing problem is discussed. In a network accommodating multiple concurrent multicast sessions, routing for an individual session can be optimized to minimize the competition with other sessions, rather than to minimize cost or delay. Packing lower bound and a heuristic are investigated. Simulation show that congestion can be reduced effectively with limited cost increase of routings

    A Framework for Secure Group Key Management

    Get PDF
    The need for secure group communication is increasingly evident in a wide variety of governmental, commercial, and Internet communities. Secure group key management is concerned with the methods of issuing and distributing group keys, and the management of those keys over a period of time. To provide perfect secrecy, a central group key manager (GKM) has to perform group rekeying for every join or leave request. Fast rekeying is crucial to an application\u27s performance that has large group size, experiences frequent joins and leaves, or where the GKM is hosted by a group member. Examples of such applications are interactive military simulation, secure video and audio broadcasting, and secure peer-to-peer networks. Traditionally, the rekeying is performed periodically for the batch of requests accumulated during an inter-rekey period. The use of a logical key hierarchy (LKH) by a GKM has been introduced to provide scalable rekeying. If the GKM maintains a LKH of degree d and height h, such that the group size n ≤ dh, and the batch size is R requests, a rekeying requires the GKM to regenerate O(R × h) keys and to perform O(d × R × h) keys encryptions for the new keys distribution. The LKH approach provided a GKM rekeying cost that scales to the logarithm of the group size, however, the number of encryptions increases with increased LKH degree, LKH height, or the batch size. In this dissertation, we introduce a framework for scalable and efficient secure group key management that outperforms the original LKH approach. The framework has six components as follows. First, we present a software model for providing secure group key management that is independent of the application, the security mechanism, and the communication protocol. Second, we focus on a LKH-based GKM and introduce a secure key distribution technique, in which a rekeying requires the GKM to regenerate O( R × h) keys. Instead of encryption, we propose a novel XOR-based key distribution technique, namely XORBP, which performs an XOR operation between keys, and uses random byte patterns (BPs) to distribute the key material in the rekey message to guard against insider attacks. Our experiments show that the XORBP LKH approach substantially reduces a rekeying computation effort by more than 90%. Third, we propose two novel LKH batch rekeying protocols . The first protocol maintains a balanced LKH (B+-LKH) while the other maintains an unbalanced LKH (S-LKH). If a group experiences frequent leaves, keys are deleted form the LKH and maintaining a balanced LKH becomes crucial to the rekeying\u27s process performance. In our experiments, the use of a B+-LKH by a GKM, compared to a S-LKH, is shown to substantially reduce the number of LKH nodes (i.e., storage), and the number of regenerated keys per a rekeying by more than 50%. Moreover, the B +-LKH performance is shown to be bounded with increased group dynamics. Fourth, we introduce a generalized rekey policy that can be used to provide periodic rekeying as well as other versatile rekeying conditions. Fifth, to support distributed group key management, we identify four distributed group-rekeying protocols between a set of peer rekey agents. Finally, we discuss a group member and a GKM\u27s recovery after a short failure time

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    Radio resource allocation algorithms for multicast OFDM systems

    Get PDF
    Mención Internacional en el título de doctorVideo services have become highly demanded in mobile networks leading to an unprecedented traffic growth. It is expected that traffic from wireless and mobile devices will account for nearly 70 percent of total IP traffic by the year 2020, and the video services will account for nearly 75 percent of mobile data traffic by 2022. Multicast transmission is one of the key enablers towards a more spectral and energy efficient distribution of multimedia content in current and envisaged mobile networks. It is worth noting that multicast is a mechanism that efficiently delivers the same content to many users, not only focusing on video broadcasting, but also distributing many other media, such as software updates, weather forecast or breaking news. Although multicast services are available in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, new improvements are needed in some areas to handle the demands expected in the near future. Resource allocation techniques for multicast services are one of the main challenging issues, since it is required the development of novel schemes to meet the demands of their evolution towards the next generation. Most multicast techniques adopt rather conservative strategies that select a very robust modulation and coding scheme (MCS), whose characteristics are determined by the propagation conditions experienced by the worst user in the group in order to ensure that all users in a multicast group are able to correctly decode the received data. Obviously, this robustness comes at the prize of a low spectral efficiency. This thesis presents an exhaustive study of broadcast/multicast technology for current mobile networks, especially focusing on the scheduling and resource allocation (SRA) strategies to maximize the potential benefits that multicast transmissions imply on the spectral efficiency. Based on that issue, some contributions have been made to the state of the art in the radio resource management (RRM) for current and beyond mobile multicast services. • In the frame of LTE/LTE-A, the evolved multimedia broadcast and multicast service (eMBMS) shares the physical layer resources with the unicast transmission mode (at least up to Release 12). Consequently, the time allocation to multicast transmission is limited to a maximum of a 60 percent, and the remaining subframes (at least 40 percent) are reserved for unicast transmissions. With the aim of achieving the maximum aggregated data rate (ADR) among the multicast users, we have implemented several innovative SRA schemes that combine the allocation of multicast and unicast resources in the LTE/LTE-A frame, guaranteeing the prescribed quality of service (QoS) requirements for every user. • In the specific context of wideband communication systems, the selection of the multicast MCS has often relied on the use of wideband channel quality indicators (CQIs), providing rather imprecise information regarding the potential capacity of the multicast channel. Only recently has the per-subband CQI been used to improve the spectral efficiency of the system without compromising the link robustness. We have proposed novel subband CQI-based multicast SRA strategies that, relying on the selection of more spectrally efficient transmission modes, lead to increased data rates while still being able to fulfill prescribed QoS metrics. • Mobile broadcast/multicast video services require effective and low complexity SRA strategies. We have proposed an SRA strategy based on multicast subgrouping and the scalable video coding (SVC) technique for multicast video delivery. This scheme focuses on reducing the search space of solutions and optimizes the ADR. The results in terms of ADR, spectral efficiency, and fairness among multicast users, along with the low complexity of the algorithm, show that this new scheme is adequate for real systems. These contributions are intended to serve as a reference that motivate ongoing and future investigation in the challenging field of RRM for broadcast/ multicast services in next generation mobile networks.La demanda de servicios de vídeo en las redes móviles ha sufrido un incremento exponencial en los últimos años, lo que a su vez ha desembocado en un aumento sin precedentes del tráfico de datos. Se espera que antes del año 2020, el trafico debido a dispositivos móviles alcance cerca del 70 por ciento del tráfico IP total, mientras que se prevé que los servicios de vídeo sean prácticamente el 75 por ciento del tráfico de datos en las redes móviles hacia el 2022. Las transmisiones multicast son una de las tecnologías clave para conseguir una distribución más eficiente, tanto espectral como energéticamente, del contenido multimedia en las redes móviles actuales y futuras. Merece la pena reseñar que el multicast es un mecanismo de entrega del mismo contenido a muchos usuarios, que no se enfoca exclusivamente en la distribución de vídeo, sino que también permite la distribución de otros muchos contenidos, como actualizaciones software, información meteorológica o noticias de última hora. A pesar de que los servicios multicast ya se encuentran disponibles en las redes Long Term Evolution (LTE) y LTE-Advanced (LTE-A), la mejora en algunos ámbitos resulta necesaria para manejar las demandas que se prevén a corto plazo. Las técnicas de asignación de recursos para los servicios multicast suponen uno de los mayores desafíos, ya que es necesario el desarrollo de nuevos esquemas que nos permitan acometer las exigencias que supone su evolución hacia la próxima generación. La mayor parte de las técnicas multicast adoptan estrategias conservadoras, seleccionando esquemas de modulación y codificación (MCS) impuestos por las condiciones de propagación que experimenta el usuario del grupo con peor canal, para así asegurar que todos los usuarios pertenecientes al grupo multicast sean capaces de decodificar correctamente los datos recibidos. Como resulta obvio, la utilización de esquemas tan robustos conlleva el precio de sufrir una baja eficiencia espectral. Esta tesis presenta un exhaustivo estudio de la tecnología broadcast/ multicast para las redes móviles actuales, que se centra especialmente en las estrategias de asignación de recursos (SRA), cuyo objetivo es maximizar los beneficios que la utilización de transmisiones multicast potencialmente implica en términos de eficiencia espectral. A partir de dicho estudio, hemos realizado varias contribuciones al estado del arte en el ámbito de la gestión de recursos radio (RRM) para los servicios multicast, aplicables en las redes móviles actuales y futuras. • En el marco de LTE/LTE-A, el eMBMS comparte los recursos de la capa física con las transmisiones unicast (al menos hasta la revisión 12). Por lo tanto, la disponibilidad temporal de las transmisiones multicast está limitada a un máximo del 60 por ciento, reservándose las subtramas restantes (al menos el 40 por ciento) para las transmisiones unicast. Con el objetivo de alcanzar la máxima tasa total de datos (ADR) entre los usuarios multicast, hemos implementado varios esquemas innovadores de SRA que combinan la asignación de los recursos multicast y unicast de la trama LTE/LTE-A, garantizando los requisitos de QoS a cada usuario. • En los sistemas de comunicaciones de banda ancha, la selección del MCS para transmisiones multicast se basa habitualmente en la utilización de CQIs de banda ancha, lo que proporciona información bastante imprecisa acerca de la capacidad potencial del canal multicast. Recientemente se ha empezado a utilizar el CQI por subbanda para mejorar la eficiencia espectral del sistema sin comprometer la robustez de los enlaces. Hemos propuesto nuevas estrategias para SRA multicast basadas en el CQI por subbanda que, basándose en la selección de los modos de transmisión con mayor eficiencia espectral, conducen a mejores tasas de datos, a la vez que permiten cumplir los requisitos de QoS. • Los servicios móviles de vídeo broadcast/multicast precisan estrategias eficientes de SRA con baja complejidad. Hemos propuesto una estrategia de SRA basada en subgrupos multicast y la técnica de codificación de vídeo escalable (SVC) para la difusión de vídeo multicast, la cual se centra en reducir el espacio de búsqueda de soluciones y optimizar el ADR. Los resultados obtenidos en términos de ADR, eficiencia espectral y equidad entre los usuarios multicast, junto con la baja complejidad del algoritmo, ponen de manifiesto que el esquema propuesto es adecuado para su implantación en sistemas reales. Estas contribuciones pretenden servir de referencia que motive la investigación actual y futura en el interesante ámbito de RRM para los servicios broadcast/multicast en las redes móviles de próxima generación.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Atilio Manuel Da Silva Gameiro.- Secretario: Víctor Pedro Gil Jiménez.- Vocal: María de Diego Antó

    Self-organizing protocol for reliability and security in wireless sensor networks

    Get PDF

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    JMSGroups:JMS compliant group communication

    Get PDF
    Nowadays, computers are the indispensable part of our life. They evolve rapidly and are more and more versatile. Computer networks made the remote corners of the world just a click away. But unavoidably, any software and hardware component is subject to failure. Distributed systems spread on tens or hundreds of machines are particularly vulnerable to failures. Consequently, high availability and fault tolerance became a "must have" feature for such systems. Software fault tolerance is achieved through the technique called replication. In replication several software replicas are executed at the same time. If one or several of them fail, other still provide the service. Software replication is often implemented using group communication, which provides communication primitives with various semantics and greatly simplifies the development of highly available and fault tolerant services. However, despite tremendous advances in research and numerous prototypes, group communication stays confined to small niches and academic prototypes. In contrast, other technology, called messageoriented middleware such as the Java Message Service (JMS) is widely used in distributed systems, and has become a de-facto standard. We believe that the lack of a well-defined and easily understandable standard is the reason that hinders the deployment of group communication systems. Since JMS is a well-established technology, we propose to extend JMS adding group communication primitives to it. Foremost, this requires to extend the traditional semantics of group communication in order to take into account various features of JMS, e.g., durable/non-durable subscriptions and persistent/non-persistent messages. The resulting new group communication specification, together with the corresponding API, defines group communication primitives compatible with JMS, that we call JMSGroups. To validate the specification and API we provide a prototype implementation of JMSGroups. As such, we believe it facilitates the acceptance of group communication by a larger community and provides a powerful environment for building fault-tolerant applications
    corecore