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Abstract

Nowadays, computers are the indispensable part of our life. They evolve rapidly and are more and
more versatile. Computer networks made the remote corners of the world just a click away. But unavoi-
dably, any software and hardware component is subject to failure. Distributed systems spread on tens
or hundreds of machines are particularly vulnerable to failures. Consequently, high availability and fault
tolerance became a “must have” feature for such systems.

Software fault tolerance is achieved through the technique called replication. In replication several
software replicas are executed at the same time. If one or several of them fail, other still provide the
service. Software replication is often implemented using group communication, which provides commu-
nication primitives with various semantics and greatly simplifies the development of highly available and
fault tolerant services.

However, despite tremendous advances in research and numerous prototypes, group communication
stays confined to small niches and academic prototypes. In contrast, other technology, called message-
oriented middleware such as the Java Message Service (JMS) is widely used in distributed systems, and
has become a de-facto standard. We believe that the lack of a well-defined and easily understandable
standard is the reason that hinders the deployment of group communication systems.

Since JMS is a well-established technology, we propose to extend JMS adding group communi-
cation primitives to it. Foremost, this requires to extend the traditional semantics of group communi-
cation in order to take into account various features of JMS, e.g., durable/non-durable subscriptions
and persistent/non-persistent messages. The resulting new group communication specification, together
with the corresponding API, defines group communication primitives compatible with JMS, that we
call JMSGroups. To validate the specification and API we provide a prototype implementation of JM-
SGroups. As such, we believe it facilitates the acceptance of group communication by a larger community
and provides a powerful environment for building fault-tolerant applications.
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Résumé

De nos jours, les ordinateurs jouent un rôle indispensable dans notre quotidien. Ils évoluent rapi-
dement et sont de plus en plus versatiles. Les réseaux informatiques rendent accessibles en un clic les
coins les plus retirés du monde. Immanquablement, tout logiciel ou composant matériel est sujet à des
pannes. Les systèmes distribués qui s’étendent sur des dizaines ou des centaines de machines sont par-
ticulièrement vulnérables aux fautes. En conséquence, haute disponibilité et tolérance aux fautes sont
devenues, pour ces systèmes, une caractéristique essentielle. La tolérance aux fautes des logiciels est
obtenue par une technique appelée réplication. Grâce à la réplication plusieurs copies d’un même logi-
ciel sont exécutées simultanément. Si l’une d’entre elles tombe en panne, d’autres pourront assurer la
disponibilité du service. La réplication de logiciel est souvent réalisée en utilisant la communication de
groupe, qui definit des primitives de communication avec diverses sémantiques et simplifie beaucoup le
développement du services hautement disponibles et tolérants aux fautes.

Malgré de grands progrès et la réalisation de nombreux prototypes, la communication de groupe
demeure confinée dans des domaines très particuliers. Par comparaison, une autre technologie appelée,
en anglais, Message Oriented Middleware (MOM), comme Java Message Service (JMS), est très utilisée
dans les systèmes répartis et est devenue un standard de fait. Nous pensons que l’absence de standards
freine le déploiement d’applications utilisant la communication de groupe.

Puisque JMS est une technologie bien établie, nous proposons d’étendre sa spécification en y ajoutant
des primitives de communication de groupe. Tout d’abord, cela nécessite l’extension de la sémantique de
la communication de groupe afin d’y inclure les divers aspects de JMS tels que, par exemple, les sous-
criptions durables/non-durables et les messages persistants/non-persistants. Cette nouvelle spécification,
avec l’API correspondante, définit des primitives de communication de groupe compatibles avec JMS
que nous appelons JMSGroups. Pour valider la spécification et l’API, nous avons implémenté un pro-
totype de JMSGroups. Nous espérons que JMSGroups favorisera l’acceptation des communications de
groupe dans une plus grande communauté et constituera une infrastructure robuste pour construire des
applications réparties tolérantes aux fautes.
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Chapter 1

Introduction

In the middle of the last century, when the first computers accessible for common people just started
appearing, the main challenge for the developers writing the software for these machines, was to design
an optimal algorithms for a given problem. This was done in order to use efficiently the limited resources
(CPU power, memory, storage space, processor time, etc.) that these machines provided. At that time
computer programs were executed on a single machine and the failure of hardware or software terminated
the application completely.

To the present days the computer hardware was rapidly evolving, its computational power dramat-
ically increasing and the price constantly in decline. Software also became much more diverse and
complicated, but even more important with the rise of computer networks and the Internet it became dis-
tributed. Applications no more execute on a single processor, but instead are distributed on the machines
across the network. They communicate to achieve the defined task and/or provide the service for the
users. In such a system the failure of a component does not necessary terminate the whole application,
but can put it in an unexpected/undefined state, which can be hard to detect and correct. This diversity
of distributed environment and the not necessary predictable failure semantics makes distributed systems
more failure-prone.

To make computer systems more robust and fault tolerant various techniques can be used, such as:
self-checking/repairing, replication. Self-checking is usually used in hardware to detect faulty transistor
states. Self-repairing is also used in hardware and is based on the idea that some general purpose devices
can be dynamically reprogrammed to substitute failed hardware components. For software fault tolerance
usually the replication technique is used, i.e., several software component replicas are executed at the
same time (normally on different machines), so that in the case of a failure there are always enough
replicas to provide the service. Even if such a technique seems intuitive and natural, it hides some
fundamental issues, such as: replica state consistency, failure detection, agreement between the replicas.
These and other issues are addressed by the computer science branch called group communication, which
is at the heart of software replication for fault tolerance.

Group communication (also denoted by GC hereafter) has been an active area of research for more
than a decade. The notion of process groups, with the possibility to multicast messages to the members

1
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of a group, was initially proposed in the context of the V System [11], and later extended by the Isis
system in the context of failures [7]. GC systems provide one-to-many communication primitives with
various semantics (e.g., reliable delivery of messages and/or delivery of messages in total order). Such
high-level communication abstractions among groups of processes greatly simplifies the development of
highly available services. Yet, despite tremendous advances in research and numerous prototypes, e.g.,
[8, 43, 51, 15, 9], GC stays confined to small niches and to academic prototypes. One reason for this
might be the lack of flexibility of existing GC prototypes. However, recent GC toolkits can be tailored
to the application’s needs [31, 50, 32], but still are not widely adopted in industry. Performance is also
sometimes mentioned as a reason for the lack of acceptance of GC. Clearly, increased quality of service
with respect to message delivery has a trade-off in performance. However, at the same time middleware
systems that suffer from significant performance problems [25] have seen wide industry acceptance.

In contrast to GC, another communication technology has attracted considerable interest: the so-
called message oriented middlewares (MOMs) such as MQSeries [33], Tuxedo [5], and Rendezvous [73].
This technology, which provides abstractions for asynchronous message sending, is increasingly used in
industry and is now considered to be an integral part of an enterprise computing infrastructure. One of
the key reasons for the success of MOMs (the Java based ones) has been the wide adoption of the Java
Message Service (JMS) interface standard [30]. As can be seen with other technologies (e.g., HTTP
and Java in the context of the World Wide Web), standards can be the driving force for the distribution
and acceptance of a technology. Unfortunately, no widely accepted standard exists for GC. We believe
that the lack of such a standard is one major reason for the limited distribution and acceptance of group
communication in enterprise computing infrastructure. Thus, it is crucial to define a standard for GC that
drives the acceptance of GC in industry.

In this thesis, we propose a standard interface (Application Programing Interface or API) for GC.
Instead of specifying yet another GC API with probably low chances of becoming a standard (similarly
as the existing GC APIs), we take advantage of the widespread acceptance of JMS and propose to extend
it with GC functionality. Currently, JMS supports two paradigms: point-to-point and publish-subscribe.
We add group communication as the third paradigm to JMS. The resulting specification and interface
is called JMSGroups and should be easily understandable by both the GC community and developers
familiar with JMS. As such, it facilitates the acceptance of group communication by a larger community
and provides a powerful environment for building fault-tolerant applications.

1.1 Contributions

The main contributions of the thesis are the following:

Mapping and specification. JMSGroups is defined in the spirit of JMS; this requires to clearly identify
the semantic differences between the two technologies and to “bridge” the semantic gap. As a “bridge”
we present a semantic mapping between JMS and traditional GC. The result of this mapping provides
a GC specification. We also extend the JMS API to incorporate GC features, while trying to keep the
minimal deviation from the standard JMS specification.
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Architecture and implementation. For the implementation of JMSGroups different architecture op-
tions were considered, namely distributed and centralized. A distributed architecture is used in most
group communication toolkits. Inside an architecture there is no central entity and group members com-
municate directly with each other. This architecture is easy to implement given a GC toolkit (only a
JMSGroups API adapter layer need to be added between the GC stack and the application). Unfortu-
nately such an implementation inherits semantic inconsistencies between JMS and GC.

A centralized JMSGroups architecture is based on a central entity (server) which provides group
communication as a service. Such architecture is compatible with the JMS specification, but is more
complicated to implement. Moreover, the server must be made fault tolerant to eliminate a single point
of failure.

We have chosen the centralized architecture for our JMSGroups implementation. Together with its
advantage of JMS compatibility, this architecture allows us to explore different approaches to the imple-
mentation of group communication (when GC is provided as a service). Additionally, such architecture
is easier to understand and to use for the developers familiar with JMS. At the same time, it is less
expensive to integrate into existing enterprise systems.

Replicated invocation. In the scope of this work we analyzed the replicated invocation problem. The
problem occurs when a replicated server calls another replicated server. We formalized the problem in
the transactional environment and presented a solution.

1.2 Thesis Roadmap

The thesis is organized in eight chapters:

Basics. Chapter 2 introduces the basics of group communication and presents the most known group
communication toolkits together with their interfaces. The introduction to the Java Message Service is
given in Chapter 3.

Semantics and Mapping. Chapter 4 presents a semantic comparison between group communication
and JMS, as well as a semantic and API mapping between the two. The mapping and API define JMS-
Groups. The specification of JMSGroups is also presented in the chapter.

Architecture. Chapter 5 analyzes the architectural issues of JMSGroups and presents the possible
options for its implementation.

Implementation. Chapter 6 presents the implementation of JMSGroups together with performance
evaluation and a use case example.

Replicated Invocation. Chapter 7 analyzes the problem of replicated invocation and proposes a solu-
tion.

Conclusion. And finally, Chapter 8 summarizes and concludes the thesis.
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Chapter 2

Group Communication and its Toolkits

This chapter presents the basic definitions and models used in group communication, as well as the
specifications of commonly used communication primitives. At the same time it points out the system
models we consider for JMSGroups.

The second part of the chapter presents the survey of popular group communication toolkits with the
description of their basic API. We include this survey to demonstrate the diversity of the existing GC
toolkits and their interfaces.

2.1 Group Communication

Basic definitions. Distributed applications are composed from various components distributed accross
the computer network. These components in group communication are called processes. A process is a
dedicated unit of binary code that executes its tasks and communicates with other processes by sending
and receiving messages on the network.

Processes are managed by groups. A process group is a set of processes identified by a group iden-
tifier. Group communication provides one-to-many and many-to-many communication primitives to the
processes in a group. The processes that belong to a group are called members of that group. The set of
members in the group at a given moment t in time is called a group view or just a view. The evolution
of the group view during the system execution is managed by a service called the group membership
service.

Group membership. Two group membership models are used in group communication: static and
dynamic. In the static group membership, all processes are started at the system initialization time and
the group membership remains the same during the lifetime of the system, i.e., the group view does not
change. In this model the process that fails remains in the group and cannot be replaced by a new one.

In the dynamic group membership model the group view evolves during the lifetime of the system,
i.e., processes can join and leave the group. In this model process can start at any time (i.e. even after the
system initialization) and invoke a join operation to join the group. Similarly process can leave the group
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by invoking a leave operation. In the dynamic membership model, the process that fails is removed from
the group and can be replaced by a new one.

Group access. As mentioned above, processes communicate by exchanging messages. According to
who can multicast a message to the group, the groups are divided into two types: closed and open groups.
If the group is closed only the members can send messages to the group, i.e., processes which do not
belong to the group (are not in the view) are not allowed to do so. On the contrary, open groups do not
have this restriction, i.e., processes that are not members of a group can multicast messages to it.

Process failures. Processes can fail due to the software, hardware or design errors. Usually when a
process fails it stops the execution and does not accept or produce any new messages. Such failure model
is called crash-stop. The failed processes in this model stop their execution “forever”. In this model a
process that never fails during the system execution is called a correct process; a process that does fail is
called a faulty process.

Another failure model is called crash-recovery. In the crash-recovery model a process also stops its
execution in the case of a failure, but only temporary. Later it recovers and moreover partially preserves
the state it had before the crash. State recovery implies the use of persistent storage.

There is a third failure model used in group communication, called Byzantine failures [38]. In the
byzantine failure model a failed process does not stop its execution, but produces incorrect output: its
behavior becomes inconsistent with the specification that it implements.

In the thesis we consider the first two failure models: crash-stop and crash-recovery, but not byzantine
failures.

Communication channels. Usually two kinds of communication channels are considered between
group members:

Reliable channel: a reliable channel between two processes p and q ensures the following: if p
executes send(m) and q is correct, then q eventually receives m.

Quasi-reliable channel: a quasi-reliable channel between two processes p and q ensures the fol-
lowing: if p and q are correct and p executes send(m), then q eventually receives m.

Reliable channels are considered to derive impossibility results; quasi-reliable channels better model
communication links in real networks.

Another property of communication channels is related to the message transmission time. If there
exist a bound on a message transmission delay and this bound is known, then the channels are called
synchronous. If such bound does not exist, the channels are called asynchronous. The physical commu-
nication networks can be modeled as quasi-synchronous channels, for which the bound on the message
transmission delay exists, but is not known. Unless indicated, in the thesis we assume quasi-reliable and
quasi-synchronous communication channels.



2.1. Group Communication 7

Partitions. Process crash is not the only reason that makes a process inaccessible. The failure of
communication channels can split the group into two or more isolated parts, which cannot communicate.
Such splitting is called a partition. Partitions are not trivial to handle, since each part of the partitioned
group is not sure if the other one failed or not.

The problem with partitioned groups is that the state of the group members can evolve in each parti-
tion independently from each other. Then the clients accessing different partitions of the same group will
see the different state of the group. One solution to the problem is the so called primary partition model.
It allows the group state to evolve only in the partition which has the majority of the group members.

The alternative, partitionable model, allows the group state to evolve in the different partitions, but
requires complicated state merge algorithms once the partitions “heal”. Also in the partitionable model
is hard to ensure that the inconsistent state of the different partitions will not propagate further into the
system (e.g., to the clients using the services provided by the group). The primary partition model does
not have these drawbacks and ensures group state consistency. In the thesis we only assume the primary
partition model.

Replication types. Depending on how replicas process the client requests and keep their state consis-
tent there are two replication types: active replication and passive replication.

Active replication also called state machine replication is a replication type when all replicas receive
requests and process them, this way all replicas are doing the same task, i.e., are active. Active replication
provides a quick reaction to failures, but requires more resources and can be used only with deterministic
replicas.

If in active replication all the replicas are equal, in passive replication there are two replica types:
primary and backups. Only the primary receives and processes the requests, the backups do not do the
processing. The primary periodically multicast the updates to the backups to keep their state up to date.
If a backup replica fails it is simply excluded from the group. When the primary fails, the new primary
must be elected among the backups. Primary election takes more time than the member exclusion, this
is reflected on the system response time to failures. However, as only the primary processes the requests,
passive replication does not require deterministic replicas.

2.1.1 Agreement problems

The main challenge when using process groups for software replication is to keep the state consistent
between the group members. For that, group members have to agree on various decisions, e.g., the set
of delivered messages, message delivery order, group view, etc. In group communication, various com-
munication primitives are specified that help to reach agreement between the group members. Here we
introduce some of them (as defined and specified in [29, 12]): Consensus, Reliable Broadcast, Reliable
FIFO Broadcast, Reliable Causal Broadcast, Atomic Broadcast.

Consensus. Consensus is the fundamental agreement problem. It allows group members to agree on
a common value, that is the value proposed by one of the processes. Instances of this problem occur to
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deliver messages in total order, to agree on group views, etc. Consensus is defined by two primitives:
propose(v) by which a process proposes value v, and decide(v) by which it decides value v. Consensus
is specified by the following properties:

Termination Every correct process eventually decides.

Validity If a process decides v, then v was proposed by some process.

Agreement Two correct processes cannot decide differently.

The Agreement property sometimes is replaced by the following Uniform Agreement property:

Uniform Agreement Two processes (correct or not) cannot decide differently.

The uniformity condition is frequently used for the group communication primitives and it strengthens
the specification properties by applying them not only to the correct processes, but to the faulty ones as
well. The uniform properties can be more costly to implement.

Reliable Broadcast. Group communication provides one-to-many and many-to-many communication
means to the group members. Such communication has different semantics and can impose stronger
properties than a simple one-to-one communication. Reliable Broadcast or RBcast provides reliable
one-to-many communication. It is defined by the primitives R-broadcast(m) and R-deliver(m), where m
is a message. RBcast satisfies the following properties:

Validity If a correct process R-broadcasts message m, then it eventually R-delivers m.

Agreement If a correct process R-delivers message m, then all correct processes eventually R-
deliver m.

Integrity For any message m, every correct process R-delivers m at most once, and only if m was
previously R-broadcast.

The Uniform-RBcast is defined by applying the above specification (except validity property) not
only to the correct processes but to all (correct and faulty ones).

Reliable FIFO Broadcast. Reliable FIFO Broadcast adds some ordering guarantees to the above spec-
ified Reliable Broadcast. It basically ensures that the messages are delivered in the order in which they
were sent. The specification of the Reliable FIFO Broadcast adds the following property to the Reliable
Broadcast specification:

FIFO delivery If a correct process p sends two messages, then these messages are delivered in the
order in which they were sent.
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Reliable Causal Broadcast. Reliable Causal Broadcast similarly to Reliable FIFO broadcast adds
some order guarantees to the delivered messages, namely messages are delivered according to their
causal relation. The specification of the Reliable Causal Broadcast adds the following property to the
Reliable Broadcast specification:

Causal delivery If two messages m and m′ are sent so that m causally precedes m′, then every
correct process delivers m before m′.

Atomic Broadcast. Atomic Broadcast (ABcast) also called Total Order Broadcast adds to Reliable
Broadcast the guarantee that messages are delivered by every process in the same order. It is defined by
two primitives: A-broadcast(m) and A-deliver(m), where m is a message. Atomic Broadcast is specified
as Uniform Reliable Broadcast, with an additional property:

Uniform Total Order For any two processes p and q, if p A-delivers message m′ after message
m, then q A-delivers m′ only after A-delivering m.

2.2 Group Communication Toolkits

This section presents a small survey of group communication toolkits and aims to present their variety
and diversity. A short description and the basic API are presented for each toolkit. The survey includes
the toolkits frequently used in academic community, but the list is not complete.

2.2.1 Isis

Isis distributed toolkit [34], developed in Cornell University, USA, was the first to implement virtual
synchrony [7]. Virtual synchrony is a programming model, which assumes that the events happening
in the distributed system and their order are the same on each individual process. If the processes are
deterministic, the state of each of them will be the same after the equivalent sequence of events. The
term virtual is added because the events are not synchronous in physical time.

The Isis system consists of a collection of programs that are started on each machine where Isis
facilities will be accessed directly; these machines are called sites. Isis data structures, such as group
view, are kept and updated on the sites. Not all machines in the system have to be Isis sites. Applications
running on the other machines can access sites remotely. Such machines do not have to run Isis core, but
have to support the Isis client library.

Communication unit in Isis is a process group. Isis supports different kind of groups, but the main
of them are four: peer groups, client/server groups, diffusion groups and hierarchical groups. The
simplest of them are the peer groups, where all processes are equal members and cooperate between
themselves to get the task done. In the client/server groups, a peer group of processes acts as a server to
the clients of that group. Clients are not the full members and interact with the group in the request/reply
manner. There is a possibility for the client to chose one particular member to interact with, or multicast
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the requests for the whole group. The diffusion groups are the special type of client/server groups,
where members of the group multicast the messages for the both sets: members and clients. Hierarchical
groups have a tree structure that is constructed at the application connection time by the root group. Once
connected the application always interacts with its “leaf” subgroup and the data is partitioned between
different subgroups.

For the members of the group, Isis provides view synchronous multicast with FIFO, causal and total
order protocols [67].

Programming model. Groups in Isis are identified by the group address, the address can be retrieved
by the group name. Isis group membership uses a dynamic model, i.e., processes can join and leave
the group during the execution. Groups are open, processes do not have to be members of the group to
multicast a message to it. The membership is based on primary partition, i.e., only one set of processes
stays in the group in the case of partition, others are excluded from the membership.

Interface. Isis interface is given in Table 2.1 (for full signatures and detailed method description see
Appendix A.1).

Table 2.1: Isis system group API.

Interface Description

isis remote init(...) Connect to the Isis backbone
site getview() Get the view of the site
bcast(...) Broadcast a message and collect the replies
pg join(...) Join a process group
pg subgroup(...) Create a process group with prespecified initial membership
pg leave(...) Leave a process group
pg client(...) Become a client of a process group
pg getview(...) Get information about a process group
sv monitor(...) Monitor changes to the site view
sv watch(...) Watch for a site to fail or recover
pg monitor(...) Monitor changes to the membership of a process group

2.2.2 Transis

Transis [41] is a transport level group communication service developed in the Hebrew University of
Jerusalem, Israel. It employs a multicast protocol based on Trans protocol [46], that uses hardware mul-
ticast. Message flow control mechanism called network sliding window helps to achieve high throughput



2.2. Group Communication Toolkits 11

for multicast messages. The main feature of Transis, in the context of group communication toolkits, is
its support for partitionable service and the means for consistent merging of the partitioned components.

Transis group service manages the messages sent to the group and group views. It supports sev-
eral types of message multicast: FIFO multicast provides sender-based FIFO message delivery order,
CAUSAL multicast preserves the causal order among the delivered messages, AGREED or ATOMIC
multicast enforces a unique delivery order among every pair of messages in all their destinations and
SAFE multicast guarantees a unique order of message delivery, and in addition, delivery atomicity in
case of communication failures. Group view management preserves so called virtual synchrony [7] be-
tween the members of the group. Intuitively, the virtual synchrony guarantees that local view history of
the group is consistent on all group members, unless they crash, and between consecutive view changes,
the same set of messages is delivered by all overlapping members. As an important extension to the vir-
tual synchrony model, Transis allows partitionable operation: if a group partitions into two components,
which do not communicate, then each component continues observing the virtual synchrony model sep-
arately. Furthermore, upon re-merging, the merged set will be virtually synchronized starting with the
membership change that denotes the merge.

The systems in Transis are composed from a collection of multicast clusters. Each multicast cluster
consists of a set of machines communicating using hardware multicast. Such clusters can be located on
a local area network (LAN), or multiple LANs interconnected by transparent gateways or bridges.

Programming model. Process group is the basic unit of communication in Transis. To send a message
to a single process, one must send a message to a group consisting only of that process. Groups in Transis
are identified by the group name. There are no specific create group call, groups are automatically
created when the first members joins. Transis uses dynamic group model, i.e., the members can join
and leave the group during the system execution. In addition Transis groups are open, that means the
process do not have to be a member of the group to multicast a message to the group members. Group
membership model is consistent with virtual synchrony and is extended to partitionable operation, it
supports consistent merging upon the partition healing.

Interface. Transis group interface is given in Table 2.2 (for full signatures and detailed method de-
scription see Appendix A.2).

2.2.3 Phoenix

Phoenix [43] is a toolkit for programming fault-tolerant large scale applications and was developed at
École Politechnique Fédérale de Lausanne (EPFL). It provides view synchronous communication in
large scale distributed systems, addressing such problems as network partitioning due to the link failures.
Phoenix has a layered structure, where each layer provides a service used by the upper layers. The upper
layers communicate with the lower ones by procedure calls, and the lower ones use callbacks to notify
the upper layers.
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Table 2.2: Transis system group API.

Interface Description

zzz Connect(...) Connect to Transis
zzz Join(...) Join the group
zzz Leave(...) Leave the group
zzz Send(...) Send a message to the group
zzz Receive(...) Receive messages from the group
zzz Add Upcall(...) Add an upcall event

Every application using Phoenix requires the set of protocol layers, but the layers are not dependent
on the application, i.e., the same layers can be used by several applications. Therefore there is a possi-
bility to separate core layers from the application and use them as a service. This is implemented using
Phoenix daemons. The daemons are composed of the core Phoenix protocol layers and allow the appli-
cations to connect and use these layers as a service. In order to do that, the application only needs a thin
Phoenix client layer. Consequently, Phoenix daemons and the applications using them do not necessary
need to be located on the same machine.

The layers composing Phoenix are the following (from bottom up): socket interface layer uses UDP
for point to point communication, routing layer improves the reliability of the socket interface layer
by rerouting the messages through the other hosts if the UDP point-to-point link breaks, reliable com-
munication layer implements reliable communication channels, view synchronous communication layer
implements view synchronous message broadcast, ordered multicast communication layer orders the ap-
plication messages, it defines different primitives for ordering (FIFO, weak total order, strong total order,
uniform multicast and global order multicast), the most upper layer application programing interface
provides the application with the primitives of all underlying layers.

Programming model. Phoenix groups use dynamic group model in which processes can join and leave
the group during the execution. The groups in Phoenix are open, the processes not members of the group
can multicast messages to the group. Process can be a member only of one group. Communication
channels are asynchronous and unreliable. Phoenix groups implement the primary partition model.

Interface. Phoenix has two API options for the application to use: the first is the mentioned application
programing interface layer, which provides the procedure calls of the underlying layers, the second is
the object oriented programing interface. The latter provides classes for three Phoenix process types:
members, clients and sinks. These types form a hierarchical structure with the sink class type on top, the
client class inheriting from the sink class, and the member class inheriting from the client class. The sink
class inherits from the basic class called team. The difference between sink, client and member classes
is the set of Phoenix methods the objects of these classes can use. Only the processes of type member
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form the groups.
The object oriented programming interface is more complete and convenient to use for the appli-

cation, therefore we present only this interface (see Table 2.3, for full signatures and detailed method
description see Appendix A.3).

Table 2.3: Phoenix object oriented API.

Interface Description

Sink class

SinkSubscribe(...) Subscribes an object as a sink to the group
SinkUnsubscribe(...) Unsubscribes an object as a sink

Client class

ClientSubscribe(...) Subscribes an object as a client to the group
ClientUnsubscribe(...) Unsubscribes an object as a client
ViewChangeDeliveryCB(...) View change notification callback

Member class

Join(...) Adds the object to the group
Leave() Makes the object leave the group
Multicast(...) Multicast a message to the group
IntermediateViewDeliveryCB(...) Intermediate view delivery callback

2.2.4 JGroups

JGroups (formerly JavaGroups) [2] is a toolkit for reliable group communication developed at Cornell
University, USA. JGroups is a rewrite of Ensemble [31] in JavaTM language, Ensemble itself is a rewrite
of Horus [74] in ML language. JGroups uses IP multicast as a communication basis, on top of it JGroups
provide reliability for message delivery, duplicate detection, message ordering, group membership and
fault detection services. JGroups, like Ensemble, is based on the partitionable membership model, i.e, the
group can split into partitions during the execution and concurrent views are allowed in these partitions.

The architecture of JGroups is shown in Figure 2.1 and consists of three parts: protocol stack, channel
and building blocks. The protocol stack implements the specified communication properties, the channel
API is used by the application to connect to the protocol stack, and the building blocks provide the higher
abstraction layer for the applications using channel.

The communication protocol stack in JGroups has a layered architecture. The desired communication
properties can be chosen composing various protocol layers at the stack creation time. This provides the
flexibility for the application designer, as the desired properties can be chosen depending on their need.

The channel represents a group and is the access proxy to the group communication facilities on the
application side. Whenever the application sends a message, the channel passes it on to the protocol
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Figure 2.1: The architecture of JGroups.

stack, which passes it to the topmost protocol layer. After the layer processes the message, it is passed
to the layer below and etc., until it reaches the network. The same, just in the reverse order, happens
when the protocol stack receives the message. It is passed up through all the layers, until delivered to
the application. Creating a channel also creates the protocol stack associated with it; connecting to the
channel automatically joins the connecting application to the group. To leave the group it is enough to
disconnect from the channel.

Programming model. Each group has a name associated with it and the channel connects (joins) to
the group providing its name. The group is created by the first member joining it. JGroups are dynamic,
as the members can join and leave at runtime. Groups are closed: the client must be a member to be able
to send messages to the group. As already mentioned, JGroups uses partitionable group membership.

Interface. Group representative in JGroups is the Channel class. It provides the API for the applica-
tion to use the JGroups. The summary of the API is given in Table 2.4, full documentation is in [3].
JGroups provide some event listener interfaces, which application have to implement in order to auto-
matically receive the notifications. Table 2.4 also includes some methods from MessageListener and
MembershipListener interfaces (for full signatures and detailed method description see Appendix A.4).

2.2.5 Object Group Service

Object Group Service (OGS) [18] developed at École Politechnique Fédérale de Lausanne (EPFL) pro-
vides a group communication service for the Common Object Request Broker Architecture (CORBA).
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Table 2.4: JGroups API.

Interface Description

Channel class

connect(...) Connects the application to the channel (joins the group)
getView() Gets the current view of the group
send(...) Sends a message
receive(...) Receives messages, views and suspicions
disconnect() Disconnects from the channel (leaves the group)

MessageListener interface

receive(...) Receives messages
MembershipListener interface

viewAccepted(...) Receives membership views
suspect(...) Receives member suspicions

OGS has a modular, component-oriented architecture, where each module can be modified without the
knowledge of the application using it. OGS adds the following notions to CORBA objects: object group,
group behavior and group reference. These notions help to make the groups transparent for the clients
addressing them, and make dealing with a group appear as dealing with a single CORBA object. OGS
does not change the CORBA specification [56] to support object groups, but provides group communi-
cation as a service. This approach in theory makes OGS portable to any CORBA compliant ORB.

OGS uses the so called service approach to provide fault tolerance to CORBA objects. In the service
approach the fault tolerance mechanisms are implemented above the ORB, i.e., themselves act as a
CORBA objects providing dedicated service. OGS consists of several such services. The core group
service implements two functionalities: group membership manages the life cycle of the group, and
group multicast provides the communication primitives, on a per message basis. The consensus service
allows a set of CORBA objects to solve the distributed consensus problem, and is used to implement
group communication protocols. The monitoring service defines the interfaces for detecting remote
component failures, and supports several modes of monitoring. Finally, the message service provides the
remote communication service.

Programming model. The group in OGS is addressed by the object groups reference and managed by
the group membership service. OGS supports dynamic groups, i.e., the membership of the groups can
change over time. New members can explicitly join or leave the group, or can be implicitly removed
from the group because of failure. Naturally CORBA object groups in OGS are open, i.e., non-member
objects can issue multicasts to the group. The OGS group membership service implements the primary
partition model.
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Interface. Each OGS service has an interface defined in the Interface Definition Language (IDL). IDL
is the part of the CORBA specification and has mappings to the main programing languages. Even the
clients implemented in the different language than OGS can access its services using the IDL mapping.
Table 2.5 summarizes the interface of the main OGS service, i.e., the group service (for full signatures
and detailed method description see Appendix A.5).

Table 2.5: OGS API.

Interface Description

Server side

join group(...) Adds the object to a group
leave group(...) Removes the objects from a group
view change(...) Notifies the member about the view change
deliver(...) Delivers the message

Client side

multicast(...) Issues a multicast to the group
get view(...) Gets the latest group view

2.2.6 Eternal System

The Eternal System [52] developed at the University of California, Santa Barbara, uses the interception
approach to provide fault tolerance to CORBA. The interception mechanism is inserted underneath the
ORB and involves “capturing” and modifying specific system calls used by the application and the ORB.
The calls are transparently redirected to the Eternal replication mechanism. The advantage of this ap-
proach is that the application is not aware of its calls being “intercepted” and modified; for this reason
the approach also is called “transparent”. Moreover, neither the application, nor the ORB have to be
modified or even recompiled to provide fault tolerance.

The Eternal system mechanisms underneath the ORB include the Interceptor, the Replication Mech-
anisms and the Logging-Recovery Mechanisms. The Interceptor transparently captures IIOP messages
generated by the application and diverts them to the Replication Mechanisms, which maintains strong
replica consistency. To preserve strong consistency among the object replicas, the intercepted requests
are conveyed using the reliable totally ordered multicast provided by the underlying Totem system [51].
The Logging-Recovery Mechanisms detect faults and manages replica recovery.

The Eternal system underlying Totem communication toolkit provides reliable totally ordered multi-
cast of messages over the local-area network (LAN) or over multiple LANs interconnected by gateways.
It exploits the hardware broadcasts of such networks to achieve high performance. Totem provides mes-
sage delivery service in the presence of various types of communication and processor faults, including
message loss, network partitioning, and processor crash, omission and timing faults. In addition to the
faults, the Eternal system supports byzantine faults. This is provided by the Immune system [55].
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Programming Model. In Eternal system groups are addressed by the Interoperable Group References,
which usually are provided by the naming service. Group membership is dynamic, i.e., the group mem-
bers can join and leave the group after it is created. Groups are open, the client does not have to be
member to send messages to the group. The Eternal system supports group partitioning.

Interface. The interception approach provides transparent fault tolerance for the application. Conse-
quently, the replication and group interfaces in Eternal system are not exposed to the application, except
for some limited application control methods.

For application-level control, Eternal provides the services implemented above the ORB. These ser-
vices, include the Replication Manager that replicates each application object (according to user specified
fault tolerance properties) and distributes the replicas across the system. The Replication Manager inter-
face provided to the application, allows the creation/deletion of object groups, and also of the individual
object replicas on specific locations. The references returned by the Replication Manager interface are
references to the object groups and not to the individual objects. The Replication Manager methods re-
lated to the object group control are given in Table 2.6 (for full signatures and detailed method description
see Appendix A.6).

Table 2.6: Eternal ReplicationManager API.

Interface Description

create object(...) Creates an object group
delete object(...) Deletes an object group
create member(...) Creates a member of an object group
add member(...) Adds an existing member to an object group
remove member(...) Removes a member from an object group

2.2.7 Interoperable Replication Logic

The Interoperable Replication Logic (IRL) [62] developed at University of Rome ”La Sapienza” uses a
three-tier approach to provide fault tolerance to CORBA objects. In a three-tier architecture the clients
do not access an object group (the third-tier) directly; the middle-tier is used to transparently redirect
the requests to the object group. The architecture used by IRL is the fusion of the interception and the
service approach to provide fault-tolerance to CORBA. Portable CORBA request interceptors are used
to transparently intercept the client requests and to redirect them to the IRL management objects. Each
stateful object group member is transparently wrapped by the IRL Incoming Request Gateway Compo-
nent (IRGW), which adopts the same interface as the object. The IRGW intercepts all requests directed
to the group member and provides duplicate filtering, request/reply logging and garbage collects the ex-
pired request/reply pairs. The group members must implement Fault Tolerant CORBA (FT-CORBA) [56]
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Checkpointable interface to enable the logging of its state, but there is no special interface related to
the group. Groups are managed by the middle-tier components.

IRL middle-tier consists of three main entities: ReplicationManager, ObjectGroupHandler and
FaultNotifier. To eliminate the single point of failure, the middle-tier entities are replicated. The
IRL ReplicationManager represents the management interface of the IRL infrastructure. It exports the
ReplicationManager FT-CORBA interface and allows object group creation/disposal, and membership
modification. The IRL ObjectGroupHandler (OGH) component is in charge of maintaining consistency
among the state of the members of a stateful object group. In particular, an OGH component is associated
to each stateful object group. It receives client requests and transforms them in a set of requests addressed
to the object group members. OGH knows the composition of its group and can therefore create the real
request to all server objects belonging to the group. The IRL FaultNotifier (FN) implements a publish
and subscribe engine to provide subscribers with fault notifications. It essentially detects host failures
and propagates object and host fault reports to every object that subscribed for a report of the failure
event.

In order to let client applications benefit from transparent client invocation even on non FT-CORBA
compliant client ORBs, client applications are augmented with the IRL Object Request Gateway (ORGW)
component. In short, ORGW is a CORBA Client Request Portable Interceptor that (i) intercepts requests
addressed to object groups, (ii) uniquely identifies them as the FT-CORBA standard prescribes, and (iii)
iteratively tries to send the request to a correct member, until either it receives a reply (that it returns to
the client application) or it has tried all members in the group without receiving a reply.

Programming Model. In IRL a group of objects is addressed by Interoperable Object Group Reference
(IOGR), which contains the references to all group members. IRL uses the open group model: the clients
do not have to be members of the group to issue a request to the group. Group membership in IRL is
dynamic and is managed by the Object Group Handler entity. IRL uses the primary partition model.

Interface. In IRL client or group members do not have direct access to the group communication
interface. Group management is done by the IRL entity ReplicationManager; part of its interface related
to the group and membership management is given in Table 2.7 (for full signatures and detailed method
description see Appendix A.7). As the reader can notice there is no multicast primitive in the table. The
multicast in IRL is done by OGH entity, which receives the membership of the group from the replication
manager and invokes the requests on each member using their interface obtained from CORBA Interface
Repository.



2.3. Summary 19

Table 2.7: IRL ReplicationManager API.

Interface Description

create object(...) Creates an object group
delete object(...) Deletes an object group
add member(...) Adds a member to an object group
remove member(...) Removes a member from an object group

2.3 Summary

This chapters presented group communication and some of the group communication toolkits with their
interfaces. The properties of the toolkits are summarized in Table 2.8. The API diversity and differences
of the presented toolkits (see Table 2.9) make it difficult for GC to become really popular and widely
used. The ad-hoc interface is common obstacle when integrating GC into the existing enterprise systems.
Consequently, in this thesis we propose to standardize group communication interface. To achieve that
we do not propose a new standard, but we suggest the use of an already existing and accepted standard.
We have chosen JMS API, which is a de facto standard for the Java based message oriented middleware.
JMS and its API are presented in the next chapter.

Table 2.8: Group communication toolkits.

Toolkit Group Membership Group Type Primary Partition

Isis Dynamic Open Yes
Transis Dynamic Open No
Phoenix Dynamic Open Yes
JGroups Dynamic Closed Yes
OGS Dynamic Open Yes
Eternal Dynamic Open No
IRL Dynamic Open Yes
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Table 2.9: API comparison for two methods: Join Group and Multicast.

Toolkit Join Group Multicast

Isis pg join(...) bcast(...)

Transis zzz Join(...) zzz Send(...)

Phoenix Join(...) Multicast(...)

JGroups connect(...) send(...)

OGS join group(...) multicast(...)

Eternal add member(...) CORBA object invocation
IRL add member(...) CORBA object invocation



Chapter 3

Java Message Service

The distributed nature of todays computing environments requires the mean for communication between
the users and between the applications. The usual communication mechanism used by the users around
the world is e-mail. It is simple, and for people usually is enough to exchange the short text messages, oc-
casionally attaching files to them. But take an enterprise system which components might be distributed
all over the world and communicate using complicated semantics. E-mail is too limited for such systems
and instead application-to-application messaging systems are used. They provide much richer message
and communication semantics, and when used in business systems are generally referred as enterprise
messaging systems, or Message Oriented Middleware (MOM).

There are a lot of vendors who develop their own MOM systems ([33], [5], [73]), but the semantics
of sending and receiving messages are similar for all of them. The message must be created, then the
payload (application data) must be attached to it, and the message must be sent using the specific routing
information. Then upon the reception of the message on the destination, the payload must be extracted.
The MOMs are much more complex than that, but the basic principle is the same for almost all the
messaging systems on the market.

All MOM vendors provide the developers with the API for sending and receiving messages. While
the internals differ from implementation to implementation the basic API provided to developers are
closely similar. This similarity in APIs makes the Java Message Service possible.

Java Message Service (JMS) is vendor-independent Java API that can be used to access MOMs from
many different vendors, which support this API. It was developed by Sun Microsystems [49] with col-
laboration from numerous MOM vendors and is a part of the Sun’s Java 2 Enterprise Edition (J2EE) [71].
JMS is not a messaging system itself, rather it is a specification of interfaces and classes for a client ac-
cessing a messaging system [30]. Moreover JMS provides more than just an API, it additionally includes
a rich set of message delivery semantics. Today most of the messaging systems vendors on the market
comply with the JMS specification.

This chapter provides the introduction to JMS; for more in depth information please refer to [30].
The structure of the chapter is the following: Section 3.1 presents the architecture of JMS, Sections 3.2
and 3.3 talk about JMS messaging models, and finally Section 3.5 presents the main JMS interfaces.
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But before let us present some notation used in the JMS specification, and introduce some basic entities,
properties and messaging models.

Basic notation. In the JMS specification, messaging clients are called JMS clients, and the messaging
system is called JMS provider or JMS server.1 In addition, a JMS client that produces and sends a
message is called a producer, while the client that receives a message is called a consumer. A single
JMS client can be both a producer and a consumer.

JMS messages. The main communication entity in JMS, as in all messaging systems, is a message. A
JMS message is an information unit consisting of the message headers, properties and the payload. JMS
message headers contain various metadata related to the individual message, such as message ID, time
to live, delivery mode, priority, etc. JMS message properties are like extended headers. They provide the
possibility to the developer to assign optional name-value properties to each message. The properties can
be of various types, from a simple boolean to an object type. Finally, the JMS message payload (body)
contains the main portion of the application data and also supports various data types.

JMS message delivery mode. Each message sent by a JMS producer has a message delivery mode
specified, which can be persistent or non-persistent. Persistent messages are stored by the JMS server
on a stable storage, and provide delivery guarantees if the server crashes. When a JMS server receives a
persistent message, it acknowledges the reception to the producer only after having stored the message
on persistent storage. If the server later crashes before delivering the message to the receiver, persis-
tent messages are not lost, and will be delivered upon the server’s recovery. In contrast, non-persistent
messages are not saved on persistent storage, and can thus be lost if the JMS server crashes.

The delivery requirement for non-persistent messages is at-most-once, which allows message loss.
Messages are lost if the server crashes before delivering them to the destination. Their recovery is not
possible together with the server, because non-persistent messages are not saved to the stable storage. In
contrary, for persistent messages the delivery requirement is once-and-only-once, which does not allow
message loss. Duplicate delivery is not allowed for the both types of messages.

JMS messaging models. JMS defines two messaging models: publish-subscribe and point-to-point.
The specification requires the vendor to implement at least one of them, but usually both are supported.
In simple terms, publish-subscribe defines one-to-many broadcast of messages, and point-to-point is
intended to one-to-one delivery of messages. The two models in the JMS specification are referred as
messaging domains. We will present each model in more details later in the chapter.

1We will use the notation JMS server throughout this thesis.
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3.1 The architecture

The basic architecture of JMS is shown in Figure 3.1. JMS assumes a central JMS server, which generally
acts as the hub for all communications, and has access to stable storage. The server is transparent to the
application, composed of the JMS clients (message producers and consumers) and a set of application-
defined messages. The JMS specification does not define how the server is implemented. It only defines
the interfaces and the services that the JMS infrastructure must provide.
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Figure 3.1: Basic JMS architecture.

Although JMS specification focuses on the central server design, it does not impose it. The central
server architecture is the easiest to implement and usually is chosen by the developers. But it has a
drawback: the central server is a single point of failure. If it fails the whole messaging systems becomes
nonoperational. To prevent this from happening the JMS server can be replicated. Other architectures
also can be chosen for JMS, e.g., non-centralized architecture, where each client has a layer representing
the server, but there is no central server in the system. Hybrid architectures are possible as well.

The basic communication schema between the JMS client and server is shown in Figure 3.2. The JMS
client usually consists of two layers: the application layer and the JMS client-side layer. The application
layer is implemented by the user. It uses the JMS client-side layer to communicate with the JMS server
and receive the messaging service. The client-side layer is provided by the JMS implementation and
manages the client’s interaction with the JMS server.

The client side communication entities are strictly defined in the JMS specification. This is however
not the case for the communication entities on the server side. The JMS specification does not define how
the server should be implemented, but rather defines the interfaces and services that the JMS infrastruc-
ture must provide. The JMS server providers thus have a large freedom in implementing the server. To
generalize, we however assume that the server side communication entity can be represented as a single
client context entity or simply a context (see Figure 3.2). For every client connected to the server, an
individual context is created. It contains all the necessary information about the client’s communication
with the server, such as the queues of messages received from and to be sent to the client, as well as other
connection related information. The major part of the JMS server state consists of the clients’ contexts,
and the major part of the processing the server does is spent managing these contexts.
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Figure 3.2: JMS client-server communication.

Figure 3.2 shows the very basic client-server communication. In JMS only the clients are message
producers and consumers, i.e., a JMS server does not produce or consume messages.2 Furthermore,
sending messages in JMS is blocking: whenever the client application sends a message, the application
is blocked until the message is received by the server and an acknowledgement is sent back (dashed line
in Figure 3.2).

3.2 JMS publish-subscribe

As noted previously JMS publish-subscribe messaging model is used for one-to-many message commu-
nication (see Figure 3.3). The messages are broadcast through the virtual channel called topic, which is
identified by a name. JMS clients have to connect to the specific topic to send or receive messages. There
are two different connection modes: publisher and subscriber. If a JMS client connects as a publisher it
can publish (send) messages to the topic, e.g., the JMS client on the left in Figure 3.3. If a JMS client
connects as a subscriber, it will receive the messages published to the topic (by the JMS clients on the
right in Figure 3.3). A JMS client can be a message publisher and subscriber at the same time (this is
not illustrated in Figure 3.3). If there are no subscribers, the topic is not obliged to keep the messages,
except for durable subscriptions defined in the next paragraph.

Durable subscriptions. There are two types of topic subscribers specified in JMS: non-durable and
durable. Non-durable subscribers receive the messages published to the topic since their subscription
time, and as long as the physical connection between the subscriber and the topic is active. The con-
nection can break (i.e., become inactive) for example because of a link failure, or because of a crash
of the client, or of the server. Messages published after the connection is broken are not guaranteed to
be received by the client.3 On the contrary, durable subscriptions enable the client to get the messages
even if its physical connection to the topic is not always active. If the physical connection is not active,

2Here we mean the application level messages.
3If the connection is broken, the client can try to subscribe again to the topic. Let us assume that the connection was broken

at time t1, and that a new subscription is received by the JMS server at time t2. With non-durable subscriptions, the messages
published in the interval [t1, t2] may not be received by the client.
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Figure 3.3: JMS publish-subscribe messaging model.

the JMS server keeps the messages for the durable subscriber, and delivers them as soon as the client
reconnects again. Each durable subscriber is assigned a unique ID, which helps the JMS sever to keep
track of its connection status, and respectively, deliver or store the messages.

The durability property does not formally specify the message type (persistent or non-persistent) to
be used. But if non-persistent messages are used, the durability properties cannot be fully satisfied. Take
a simple example: non-persistent messages kept on the server for a durable subscriber will be lost in
the case of the server crash. When the server recovers and the subscriber connects again, the messages
for it cannot be recovered. Indeed, for durable subscriptions persistent messages must be used to avoid
message loss in the case of a JMS server failure.

Assume that all subscribers to a particular topic have the same type of subscription and only persistent
messages are used, also assume that the messages are published to the topic during the time interval
[t1, t2] and the subscribers can crash or loose the connection to the server during that interval; all crashed
subscribers later recover. Then the durability property can be specified as following:

• for non-durable subscriptions the messages are guaranteed to be delivered only to those subscribers
which are not crashed and have physical connection to the server during the time [t1, t2];

• for durable subscriptions messages are guaranteed to be delivered to all topic subscribers.

3.3 JMS point-to-point

On the contrary to the publish-subscribe model, JMS point-to-point messaging is used for one-to-one
communication. The messages in the point-to-point model are sent through the virtual channel called
queue, which is identified by a name. JMS clients have to connect to the queue in order to send and
receive messages (see Figure 3.4). A JMS client sending messages connect as a queue sender, and the
one receiving messages connect as a queue receiver. A queue can have several senders and several
receivers, but every message sent to the queue is delivered only to a single receiver. Its for the JMS
server to decide to which one. A JMS queue holds the messages sent to it until they are consumed by a
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receiver. In contrary to JMS topic, if the queue has no receivers and gets the message, it will not discard
the message, but will keep it until a receiver connects.
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Figure 3.4: JMS point-to-point messaging model.

3.4 JMS message delivery requirements

The JMS specification [30] also defines the order of message delivery on the subscribers. Essentially,
JMS guarantees FIFO ordering of the messages that are sent between two client sessions (see the next
section for the definition of a session). Messages that are sent by a session must be received in the order
in which they were sent.4 However, JMS does not define message delivery order across the subscribers,
when the messages are sent by the different sessions (the message delivery order can be m1,m2 for one
subscriber and m2,m1 for another, if the sender of m1 and the sender of m2 aren’t the same sessions).

The above presented message order requirements are for the publish-subscribe messaging. Point-to-
point messaging is required to provide FIFO message delivery order.

Finally, the JMS specification does not allow duplicate delivery of the acknowledged messages, with
one exception: if a failure occurs between sending a message to a consumer and receiving the acknowl-
edgment from it, the message can be redelivered (as it is not clear if the consumer delivered the message
or not). Only the last message delivered by a consumer is subject to this ambiguity.

3.5 JMS interfaces

Each JMS messaging model defines a set of interfaces (API) that provide access to the messaging mid-
dleware. Besides that, JMS defines common interfaces that give the model independent (point-to-point
or publish-subscribe) access to the messaging system. These interfaces are the superinterfaces of each
messaging model and are used to increase the portability. The common JMS interfaces together with the
corresponding messaging model interfaces are given in Table 3.1. The relationship among the objects

4JMS also provides options such as message types and priorities that can alter the delivery order, but we only consider
messages of the same type and priority here.
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implementing the common JMS messaging interface is given in Figure 3.5. The following is the brief
definition of the common JMS interfaces:

Table 3.1: JMS interfaces.

Common Interfaces Publish-subscribe Interfaces Point-to-point Interfaces

ConnectionFactory TopicConnectionFactory QueueConnectionFactory

Connection TopicConnection QueueConnection

Destination Topic Queue

Session TopicSession QueueSession

MessageProducer TopicPublisher QueueSender

MessageConsumer TopicSubscriber QueueReceiver
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Figure 3.5: JMS object relationship.

• ConnectionFactory - encapsulates a set of connection configuration parameters. A client uses it
to establish (create) a Connection to a JMS server. ConnectionFactory together with Destina-

tion are called administered interfaces. They are used to provide JMS configuration information
to the clients, and are initiated by an administrator. The instances of the administered interfaces
are not the part of the client and usually are accessed remotely. The JMS specification does not
strictly define the means to access them, but establishes a convention that the clients find them
using JNDI. The ConnectionFactory is a superinterface of the TopicConnectionFactory and
QueueConnectionFactory interfaces.

• Connection – encapsulates a client’s active connection to a JMS server. Usually creating a con-
nection involves resource allocation outside the client’s virtual machine (opening a TCP/IP socket);
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also creating a connection usually encapsulates the client’s authentication protocol. Connection
is a superinterface of the TopicConnection and QueueConection interfaces.

• Destination – is also an administered interface, it encapsulates the identity of the message des-
tination together with the provider specific address information. It is a superinterface of the Topic
and Queue interfaces.

• Session – a context for sending and receiving messages. A physical connection between the
JMS client and the server is represented by the Connection interface; similarly the Session

represents a logical connection. One Connection can be a factory for many Sessions; similarly
the Session is used as a factory for JMS messages. It is a superinterface of the TopicSession

and QueueSession interfaces.

• MessageProducer – is used for sending messages to a Destination. The instance of Message-
Producer is created by a Session and associated with a single Destination. It is a superinterface
of the TopicPublisher and QueueSender interfaces.

• MessageConsumer – is used for receiving messages from a Destination. The instance of Mes-
sageConsusmer is also created by a Session and associated with a single Destination. It is a
superinterface of the TopicSubscriber and QueueReceiver interfaces.

3.6 Summary

This section introduced the basics of the Java Message Service. Its central server based architecture,
publish-subscribe and point-to-point messaging models, persistent and non-persistent message delivery
properties, as well as message delivery order defined by JMS. As well, the main user interfaces for the
JMS messaging objects were presented.



Chapter 4

JMS Compliant Group Communication:

Semantics and API Mapping

In this chapter, we propose a standard specification and interface for group communication (GC). In-
stead of specifying yet another GC API with similarly low chances of becoming a standard as existing
GC APIs, we take advantage of the widespread acceptance of JMS and propose to extend the JMS spec-
ification with GC. Currently, JMS supports two paradigms: point-to-point and the publish-subscribe.
We add group communication as the third paradigm to JMS. The resulting specification and interface
is called JMSGroups and should be easily understandable by both the GC community and developers
familiar with JMS. As such, it facilitates the acceptance of group communication by a larger community
and provides a powerful environment for building fault-tolerant applications. JMSGroups is defined in
the spirit of JMS; this forces us to clearly identify the semantic differences between the two technologies
and to bridge this semantic gap. As a consequence, we need to address some of the shortcomings of
traditional GC over MOMs that have been highlighted in [4], such as process recovery after a crash.

Chapter Roadmap. Section 4.1 discusses the semantic mapping of GC to JMS, in Section 4.2, we
give a formal specification of the mapping, Section 4.3 presents a JMS compliant API for GC and finally
Section 4.4 summarizes the chapter.

4.1 GC and JMS: a semantic mapping

4.1.1 The problem: the semantic gap

JMS and GC have been developed by different research communities, have different semantics and use
different APIs. While the problem of mapping one API to the other is not too difficult and will be ad-
dressed in Section 4.3, the semantical mapping raises more difficult and interesting issues. For example,
JMS uses notions that are not present in GC, such as durability and persistence. Moreover, JMS assumes
a model with process recovery, which is not the case for existing GC systems (where crashed processes
recover with a new identity). Consider, for instance, the case of durable subscriptions. Clearly, durable
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subscriptions only make sense if processes can recover after a crash; a process that does not recover
needs no durable subscriptions. As a consequence, in order to support connection durability in GC, we
need to change the failure model that underlies GC specifications.

4.1.2 Bridging the gap

We start the discussion of the semantic mapping between JMS and GC by the key (and simple) idea,
which is to represent process groups as JMS topics.

Mapping groups to JMS topics

We map a group g to a JMS topic t as follows: (i) members of a group g map to the subscribers of the
corresponding topic t, and (ii) broadcasting a message to the members of g corresponds to publishing a
message to the topic t.

The idea of representing a group as a topic is quite natural, since JMS uses the notion of a topic to
indirectly address a set of JMS clients. Note that representing the group as a JMS queue is less natural.
It raises the following semantic issue: while multiple clients can read from the same queue, only one
client gets a particular message (i.e., if client c reads message m, then client c′ cannot read m). Queues
are therefore not suited to express the multicast semantics of GC.

In the context of GC, it is sometimes required that the process that broadcasts a message to group g
is a member of g. This is called the closed group model. In the open group model, no such restriction
exists. In JMS a publisher does not have to be a subscriber to publish to the topic. This corresponds to
the open group model. Since the open group model is more general, it seems natural to adopt this model
for GC based on JMS.

GC message delivery guarantees vs. JMS message persistence

In JMS, QoS is defined by persistence/non-persistence with respect to messages, and by durability/non-
durability with respect to subscriptions (see Chapter 3). Although GC does not consider these properties,
we show how they can be incorporated in a GC specification. We first address message persistence.
Durability is the topic of the next section.

Consider a JMS publisher that publishes message m to topic t. If m is persistent, and the publisher
has received an acknowledgment from the JMS server, then the publisher has the guarantee that message
m will not be lost, even in case of the JMS server crash. In contrast, if message m is non-persistent, then
m may be lost if the JMS server crashes. Note that the loss of m may occur although the publisher does
not crash.

If we transpose the non-persistent case to the context of GC, we have the case of a process that
broadcasts some message m to group g with no guarantee that m is ever delivered by any process, even
if p does not crash. The message loss does not happen if the message is persistent. In other words,
non-persistent messages provide what is usually called best-effort guarantees, while persistent messages
can be seen as providing the strong guarantees of a reliable (logical) channel between the sender and the
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group. As GC traditionally provides more than best-effort guarantees, we assume persistent messages
further in the chapter.

GC crash model vs. JMS subscription durability

The mapping of durable and non-durable subscriptions is more difficult to address than the question
of persistence/non-persistence. The issue cannot be discussed without referring to what happens to the
processes that are members of a group and crash.

In one commonly adopted GC model, processes that crash are eventually removed from the group.
Upon recovery, these processes adopt a new identity before joining again the group. This model is
sometimes called the crash-no recovery model: processes that crash seem not to recover, since they
recover under a new identity. This model is for example the one of the Isis system [8]. Note that, if
p crashes and later rejoins g with a new identity p′, the GC system has no obligation to deliver to p/p′

messages broadcast while the process is down.
If we transpose this in terms of type of subscriptions, we see that the crash-no recovery model can

very nicely be mapped to non-durable subscriptions, in which the JMS server stops to have any obligation
toward a subscriber with respect to message delivery if the connection is broken.

If the crash-no recovery model can be mapped to non-durable subscriptions, what is the GC model
that corresponds to durable subscriptions? With durable subscriptions, even if the connection to a sub-
scriber is broken, the JMS server has the obligation to deliver messages to that subscriber. This can be
interpreted in the following way in terms of GC. Let p be a process member of group g, and let p crash at
time t1, and later recover at time t2. Despite of being down during the interval [t1, t2], process p delivers
all the messages broadcast to the group g. In other words, although p crashes, it is not removed from
the group. This means that the GC system has the obligation to deliver to p all messages broadcast to g,
after p has become a member of g. This model is sometimes called the crash-recovery model [1, 63].

GC service vs. JMS server

The JMS architecture distinguishes between the JMS server and JMS clients (see Fig. 3.1). In the context
of GC, this distinction is rather unusual. GC specifications usually refers only to what JMS calls clients.
However, servers cannot be ignored in the context of JMS. Even if this is unusual, it has a positive
consequence: it decouples explicitly the server(s) that provide the GC service, from the clients that use
this service. Note that this decoupling does not prevent a process, in some implementation, to be at the
same time a client and a server. This special case is the standard case in the context of GC. However, an
implementation is not forced to adopt this solution (e.g., [43, 15, 62]). Moreover, an implementation of
GC could be based on one single (JMS) server. Of course, such an implementation is not fault-tolerant.
Another implementation could be based on multiple (JMS) servers, and so be fault-tolerant. Yet, in
another implementation, the same process could be both a (JMS) server and a (JMS) client.

It is important to have the decoupling between clients and servers clear in mind, in order to avoid
misunderstanding of some issues discussed below. For example, the distinction between crash-recovery
and crash-no recovery can apply both to (JMS) clients, and to (JMS) servers. However, if one model
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is chosen for (JMS) clients, this does not impose the same model on (JMS) servers. Moreover, in the
context of GC specifications, the model issue (crash-recovery vs. crash-no recovery) refers only to (JMS)
clients.

4.2 JMSGroups specification

The specification in [29] is usually considered to be a standard specification for GC. However, as dis-
cussed in the previous section, JMS introduces features that impact the specification of GC, e.g., the use
of stable storage (e.g., message persistence) and the potential recovery of crashed processes (e.g., in the
context of durable subscriptions). In this section, we explain how these features impact the specification
of GC. We first recall some definitions. We then split the specifications of GC into two parts: (1) the
specification of the reliability guarantees provided by the broadcast primitive, and (2) the additional or-
dering guarantees that can be superimposed on top of the reliability guarantees provided by the broadcast
primitive. Since these two issues are orthogonal, we discuss them separately.

4.2.1 Definitions

Correct and good processes

In this section, we use the term process as a synonym for JMS client. A process can be up or down.
A process is up if it is operational, and down if it has crashed. A crashed process, after recovery, is
again up. However, the specification of GC is not given in terms of the status up/down of processes at a
given time. Instead, the specification refers to the status of processes over their entire execution. In this
context, many specifications of GC consider that processes do not recover after a crash.1 In this model,
a process that never crashes is said to be correct and a process that crashes is said to be faulty.

However, because of durable subscriptions, the distinction between correct and faulty processes is
not enough. We have to include in our specification the case of processes that crash and later recover.
As in [1, 63], we say that a process is good if it is eventually always up, i.e., if there is a time t such that
after t the process is always up.2 So, a process that crashes only a finite number of times, and recovers
after each crash, is a good process. Trivially, a process that never crashes (i.e., a correct process) is also
a good process. Processes that are not good are said to be bad.

Membership views

A process group corresponds to a JMS topic. Processes can join a group by subscribing to the corre-
sponding JMS topic; they can leave the group by unsubscribing from the corresponding JMS topic. So,
the membership of a group changes over time. In GC, the current group membership is provided to the

1As already mentioned, this does not prevent a process from recovering after a crash. However, the consequence is that a
process that crashes must recover under a new identity.

2It is usual in a specification to have properties that are eventually true forever. Actually, from a pragmatic point of view, it
is sufficient that the property holds “long enough”, where “long enough” depends on the application.
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current group members. The information about the current membership of the group is called the group’s
view. We do not discuss here the precise specification, we only assume that for every group g, its succes-
sive views are totally ordered. Note that this specification is called primary partition membership [12].3

Broadcast vs. partial broadcast

A process that broadcasts a message can crash during the execution of the broadcast primitive. This is
usually not a problem for specifications. If the broadcast has started, it is considered to be executed; if
the sender crashes (during the broadcast or later) there is no obligation for the message to be delivered.

In the context of JMS, the situation is different. This is related to the acknowledgment mecha-
nism provided by JMS. With persistent messages,4 when some publisher process p (or JMS client) has
received an acknowledgment from the JMS server, we have the guarantee that the message will be de-
livered by the destination processes, even if p later crashes. This leads us to distinguish broadcast from
partial broadcast. Consider some process p that broadcasts (i.e., publishes) message m. If p receives
the acknowledgment from the JMS server, we say that p has broadcast message m. If p crashes before
having received the acknowledgment, we say that p has partially broadcast message m. Indeed, if no
acknowledgment is received by p before the crash, there is no guarantee that the message is received by
the JMS server.

4.2.2 Reliability guarantees of the broadcast primitive

We now formally define the guarantees provided by the broadcast primitive. The properties are expressed
in terms of broadcast or partial broadcast, and deliver. 5 Delivery of some message m is the event
by which a message is provided to a process (JMS client). We first discuss the case of non-durable
subscriptions, and then the case of durable subscriptions.6 These specifications are adapted from those
in [66], which extends the specification in [29] to the case of dynamic groups.

Non-durable subscriptions

In the case of non-durable subscriptions (see Section 4.1.2), the specification distinguishes between
correct and faulty processes:

• (P1) Uniform Validity: If a process broadcasts message m to the group g, then some correct process
in g eventually delivers m, or no process in g is correct.

3In the specification we assume primary partition membership, but the API presented can also be applied to partitionable
groups.

4Recall that we have excluded non-persistent messages from our discussion (Sect. 4.1.2).
5We could define partial deliver as well, but it does not influence the specification.
6To simplify the specifications, we assume here that all members of some group g have the same QoS for the subscription:

either all have durable subscriptions, or all have non-durable subscriptions. However, note that in practice different subscription
types for the members of the same group are possible.
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• (P2) Uniform Agreement: If a process p delivers message m in view v, then all processes that are
correct in v eventually deliver m.7

• (P3) Uniform Integrity: For any message m, every process in g delivers m at most once, and only
if m was previously broadcast to g.

• (P4) Uniform Same View Delivery: If two processes p and q deliver m, in view vi for p, and in
view v j for q, then i = j.8

The Uniform Validity property (P1) is similar to the one in [29]. It is the property we need in the open
group model (Sect. 4.1.2), i.e., the model in which the process broadcasting a message to group g does
not need to be a member of g. Note that the property is uniform, which means that the delivery is also
ensured if the sender crashes after the broadcast has been executed (see the discussion in Sect. 4.2.1).

The Uniform Agreement property (P2) requires agreement on message delivery. While (P1) requires
that some correct process delivers the message, (P2) requires that if some process (correct or not) delivers
message m, then all correct processes also deliver m.

The Uniform Integrity property (P3) prevents the delivery of duplicate messages. It also requires that
the delivery of message m is justified by a corresponding broadcast of m. Note that partial broadcast of
m is not enough to guarantee the delivery of m, and duplicate delivery of partially broadcast messages is
allowed by this property9.

The Uniform Same View Delivery property (P4) requires that all processes deliver message m in the
same view. This is a standard property in the context of GC. The property is sometimes replaced by a
stronger property, called Sending View Delivery [12]. However, sending view delivery does not make
sense in the open group model.

Durable subscriptions

In Section 4.1.2 we have discussed the link between durable subscriptions and the crash/recovery model.
In the case of durable subscriptions, a process p that crashes at time t1 and recovers at time t2, after
recovery is expected to deliver all messages it has missed in the interval [t1, t2]. This requirement can only
be expressed if the specification distinguishes between good and bad processes, and not only between
correct and faulty processes, as for non-durable subscriptions (see Section 4.2.1). Hence, for durable
subscriptions, we simply replace correct by good in the properties (P1)-(P4) above (actually only in (P1)
and (P2), since (P3) and (P4) do not refer to correct processes).

A comment is needed here for the reader familiar with the GC literature. In most existing GC
systems, if process p crashes while in some view vi, then p is removed from the group. This means that
a new view vi+1 is defined, from which p is excluded. If p later recovers, and requests to join again,

7The notion of correct in a view or v-correct is defined as follows [66]: process p is v-correct if: (i) p installs view v, and (ii)
p does not crash while its view is v, and (iii) if v is not the last view of some process in v, then ∃ view v′ installed immediately
after v by some process in v such that p is in v′.

8We say that process p delivers message m in view vi, if the current view of p is vi when m is delivered.
9This complies with the JMS specification, but as described there the potential duplicate messages resulting from partial

broadcast must be marked with JMSRedelivered header field (we also keep this requirement for JMSGroups).



4.3. Mapping GC primitives to JMS API 35

then a new view vi+2 is defined, which includes p again. In this case, all messages delivered in view
vi+1, will not be delivered by p. JMS forces us to handle the case differently with durable subscriptions:
a process p that crashes and later recovers, remains a member of the group, even while being down.
A process is removed from the group only as a result of an explicit request to leave the group (i.e.,
unsubscription from the corresponding topic). This is the behavior that users familiar with JMS expect
from a durable subscription, and would be surprised not to have similar guarantees in the context of GC.
Our specification enforces this behavior.

4.2.3 Ordering guarantees of the broadcast primitive

After the specification of the reliability guarantees, we now specify additional ordering guarantees for
the delivery of messages. Traditionally, the choice is between no ordering requirement (called reliable
broadcast), and total order (called atomic broadcast).10

There is however a more general and elegant solution; the solution consists in using the GC primi-
tive called generic broadcast [58]. Generic broadcast orders messages according to a conflict relation.
Generic broadcast ensures that two messages that conflict are delivered in the same order everywhere.
Two messages that do not conflict do not need to be ordered.

For example, we can define that all messages tagged “reliable broadcast” conflict with all messages
tagged “atomic broadcast”. This ordering guarantee, which is very useful as illustrated in [48, 58], is not
provided by the traditional approach. In our specification it can be adapted from [66] as follows:

• (P5) Uniform Generic Order: If some process delivers message m in view v before it delivers
message m′, and the two messages m, m′ conflict, then every process p that is in view v delivers m′

only after it has delivered m.

Note that specification (P5) is the same for non-durable and durable subscriptions.
For a process p that broadcasts a message to the group g, the “generic broadcast” approach has

the following consequence. Instead of choosing a broadcast primitive (reliable broadcast or atomic
broadcast), process p simply tags its message with one of the tags (e.g., tag=ReliableBroadcast or
tag=AtomicBroadcast) defined for group g (there can be more than just two tags). The corresponding
conflict relation (see Figure 4.1) is attached to the group, and defined at group creation time.

4.3 Mapping GC primitives to JMS API

The previous section has specified JMSGroups semantics. In this section, we present the JMSGroups
API, more specifically, we show the mapping of traditional GC primitives onto the JMS methods related
to the publish-subscribe paradigm. Clearly, a direct mapping is not always possible, as some GC concepts
do not exist in JMS.

10We do not discuss causal order here.
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Figure 4.1: Conflicts between two messages that are reliably or atomically broadcast.

There are two possible approaches here: (1) rely strictly on the interfaces and standard mechanisms
offered by JMS, or (2) add new interfaces to JMS where needed (e.g., for functionality specific to GC).
Both approaches have advantages and drawbacks. Approach (1) has the important advantage not to
modify the existing JMS API, whereas approach (2) violates JMS compatibility and thus might confuse
developers familiar with JMS. On the other hand, approach (1) might, for some features, not be very
natural from the perspective of GC. Approach (2) does not have this problem.

We have chosen approach (1). By not extending the JMS API for GC, we believe that we increase
the acceptance of our proposal. In the following, we show how the additional GC functionality can be
mapped onto existing JMS interface methods.

We have to devise a mapping for the GC functionality such as providing views in JMS to group
members or issuing the requests to add and remove a process from a group. Moreover, while in GC
systems, a process p can usually issue a request to add another process q to the group, the JMS API
does not allow a client p to request a subscription for another client q. A similar issue arises for leaving
the group, in the case of non-durable subscriptions (JMS provides the interface for topic subscribers to
remove a durable subscriber from the topic subscriber list). So we have to provide a mechanism for client
p to add another client q, and in the case of non-durable subscription to remove client q.

For this purpose, we use an extension mechanism provided by JMS. Indeed, JMS allows to attach
arbitrary properties to messages. Using these properties, we can attach membership information to
messages and construct special messages to add/remove other members to/from the group. With the
same technique, we can map all the GC primitives to the existing JMS API, and remain fully compliant
with the JMS API. In the next section we briefly present the JMS classes whose interfaces are relevant in
this context.

4.3.1 Relevant JMS classes and methods

We represent groups as JMS topics and group members as the subscribers to these topics. So, in terms
of JMS API, each client is connected to the JMS server using the TopicConnection class. The cre-
ation of a TopicConnection instance is expensive (it opens a TCP socket), thus the client usually uses
one TopicConnection and from it creates different TopicSession class instances, usually one for each
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topic it wants to subscribe and/or to publish. Once instantiated, the TopicSession class is used to create
instances of TopicPublisher and TopicSubscriber classes, which are used to publish and to receive
messages, respectively. When creating TopicPublisher and TopicSubscriber, the client has to pro-
vide a reference to the instance of the Topic class that represents the topic the client is interested in
or wants to publish to. Topics are located on the JMS server and their creation is not defined by the
JMS specification, i.e., different JMS implementations have their own ways to create topics. Provid-
ing the Topic instance reference to the client is also outside the scope of the JMS specification; most
implementations for this purpose use the Java Naming and Directory Service (JNDI).

ReceiverSender
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publish() onMessage()
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Messages
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Figure 4.2: JMS classes (the arrow shows the logical flow of the messages).

To publish a message to a particular topic the client uses method publish of the TopicPublisher

class instance. The reception is done either by (1) calling a method receive on the class TopicSub-

scriber instance (the call can be blocking if no message is available, or can return immediately), or
(2) using a callback. If the client wants to use a callback, it has to provide TopicSubscriber with a
reference to a class instance that implements MessageListener interface. Upon message arrival, the
method onMessage of this interface is called. The messages are created by the TopicSession instance
and are represented by instances of the class Message.

Figure 4.2 depicts the client side classes just presented. We rely on these classes to present the
JMSGroups API in the next section.

4.3.2 JMSGroups API

The JMSGroups methods can be separated into two basic categories: communication methods and ad-
ministrative methods. The latter are used to set up and maintain the group, while the former represent the
interface used for the actual communication, i.e., for message broadcasts and delivery. Administrative
methods and communication methods can further be characterized as down calls or up calls. Down calls
correspond to usual method calls, and up calls correspond to callbacks. Tables 4.1 and 4.2 summarize the
API mapping, which we now discuss in more details. Where needed, we indicate whether the primitive
is a down or up call.
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Representing GC’s communication primitives using JMS API methods

The GC’s communication primitives in the JMSGroups API are represented by the following methods
(see Table 4.1):

Table 4.1: The Mapping from GC primitives to JMSGgroups API (communication methods).

Communication methods

GC Primitive JMSGroups API Call Description

broadcast(g,m) TopicPublisher.pub-

lish(m)

down Broadcasts a message to a
group.

deliver(g,m) m=TopicSubscriber.re-

ceive(), or m=Topic-

Subscriber.receiveNo-

Wait()

down Delivers a message.

MessageListener.onMe-

ssage(m)

up

viewChange(g,m) m=TopicSubscriber.re-

ceive(), with the property
“JMS view” containing a
new view.

down Notifies about a view change.

MessageListener.onMes-

sage(m) with the property
“JMS view” containing a
new view.

up

getGroupView(m) m.getStringProper-

ty("JMS view")

down Returns the view in which
message m was delivered.

suspect(g, processName) Deliver a special JMS
message with the property
“JMS suspect” containing a
suspected process name.

up Delivers a suspicion notifica-
tion.

• broadcast(g,m). The broadcast primitive sends a message to all members of a group. In order
to broadcast a message m to some group g, a client simply calls the method publish(m) on the
instance of the JMS TopicPublisher class that corresponds to g. The client uses this method to
send all messages, regardless of the type of ordering properties he expects (order or no order). The
ordering constraints are defined by the message conflict relation (see Sect. 4.2.3), and the client
just needs to attach the appropriate tag to each message.
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• deliver(g,m) — down call. In order to deliver a message broadcast to group g, a client simply calls
the method receive() on the instance of the JMS TopicSubscriber class that corresponds to
g. The call is blocking if no message is available. Note that a non-blocking JMS method, called
receiveNoWait(), is also available.

• deliver(g,m) — up call. To enable the delivery of a message broadcast to group g, a client can also
register a callback provided by the JMS interface MessageListener.

• viewChange(g,m). Traditionally GC systems have a special call to notify group members about
a view change. However, JMS has no such interface, but allows the attachment of properties to
messages. So, a simple solution is to consider that delivering a new view v for group g is like
delivering a message m for group g. A view message is distinguished from a normal message by
its “JMS view” property with a value equal to the new view. Similarly to normal messages, a view
change message can be received either by a down call or an up call (callback).

• getGroupView(m). Traditionally, GC systems provide the means to query the current membership
(i.e., view) of the group. JMS does not provide an interface method for this. As for view messages,
we propose to attach a property “JMS view” to the ordinary messages, whose value is the view
in which the message was delivered. So, calling the method m.getStringProperty(‘‘JMS -

view’’) returns the view in which message m was delivered. To get the current view, the client
must call this method on the last message delivered, where the last message is either a normal
message, or a view message.

• suspect(g, processName). The application can have their own fault detection mechanism or use a
separate service. But as we mentioned in Section 4.1.2, the JMS server can be seen as an entity
providing a GC service for the clients, in some implementation it can be used to provide a fault
notification service as well. For such cases we introduce an interface for the suspicion delivery. As
we did for the view change, here we also rely on a message with the dedicated properties. If the
infrastructure suspects a process in the group g, then a special JMS message must be constructed
with a property “JMS suspect” containing a suspected process name as a value, and broadcast
to the group (i.e., published to the topic). The client’s reaction to the suspicion is application
dependent.

Representing GC’s administrative primitives using JMS API methods

The GC’s administrative primitives in the JMSGroups API are represented by the following methods (see
Table 4.2; the “Impacts” column in the table marks what process(es) the given method affects):

• createGroup(g). Creating a new group corresponds to creating a new JMS topic. This is done with
Session.createTopic(topicName) method, where the argument topicName is the name for the
newly created topic. The JMS specification notes that this method is provided for rare cases and
clients that depend on this method are not portable. We provide this method for those applications



40 Chapter 4. JMS Compliant Group Communication: Semantics and API Mapping

that need to create new groups dynamically. For those that do not need the dynamic group creation,
to achieve better portability we suggest that groups are created by the administrator at the system
initialization time, using proprietary server methods or from the configuration files.

• setMessageConflictRelation(g,con f lict). Message conflict relation can be set with a special mes-
sage that contains a conflict description as a payload and is tagged with a property “JMS set -
conflict”. The server upon the reception of such message would set the conflict table for the
corresponding topic and would not multicast the message to the subscribers. Similarly, as for the
previous method, if the conflict relation does not need to be set dynamically, this can be done at
the server initialization time with proprietary methods or configuration files.

• joinGroup(g) — non-durable subscription – self. As explained before, JMS API provides only the
interface for a client to subscribe itself to a topic (the subscription of another client is discussed
below). In the case of non-durable subscriptions, the client calls the JMS method TopicSes-

sion.createSubscriber(g), where g is the topic representing a group.

• joinGroup(g, processName) — durable subscription – self. Joining a group with a durable sub-
scription requires an additional parameter, namely the process name (provided by processName).
In JMS, this parameter is used to uniquely identify a durable subscription. To join a group using
durable subscription, the client thus calls the JMS method TopicSession.createDurableSub-

scriber(g, processName), where g is the topic representing the group. Note that in this case
processName corresponds to the name of the process executing this primitive.

• joinGroup(g, processName) — non-durable and durable subscription – other. The subscription of
a client to a topic by another client is not specified in JMS. If GC needs this option, we propose
the following solution using JMS properties. A special message containing two properties can
be used to tell the JMS server that it should invoke a mechanism to subscribe another client.
These properties are: “JMS join process”, containing process name, and “JMS subscription”,
containing subscription type for the newly joined process.

• leaveGroup(g) — non-durable subscription – self. The JMS API provides an interface for the
client to unsubscribe itself from the topic. With non-durable subscriptions the client calls the
method close() of the TopicSubscriber class associated with group g in order to leave it.

• leaveGroup(g, processName) — non-durable subscription – other. In GC, members can generally
remove other members from the group, but JMS does not provide a mechanism to remove other
subscribers from the topic, if they have non-durable subscription. Similarly as to joinGroup(g,
processName) method we thus define a special message with a property “JMS remove” containing
the name of the process to be removed. When the JMS server gets such message, it removes the
subscription for the specified client.

• leaveGroup(g, processName) — durable subscription – other. For durable subscriptions, JMS al-
lows a client to unsubscribe another client. To remove a client from the group, a member client
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calls the JMS method TopicSession.unsubscribe(processName). Note that the JMS specifi-
cation requires the process name to be unique not only in the group, but in the entire system.

4.4 Summary

In this chapter we have presented JMSGroups, a novel specification and API for group communication.
JMSGroups adds GC as a third paradigm, besides point-to-point and publish-subscribe, to the JMS stan-
dard. For this purpose, we have shown how the features provided by GC can be mapped onto the JMS
standard and thus bridge the semantic gap between GC and JMS. In particular, we have addressed the
issue of durable/non-durable subscriptions and persistant messages, concepts that are not available in
GC.
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Table 4.2: The Mapping from GC primitives to JMSGgroups API (administrative methods).

Administrative methods

GC Primitive JMSGroups API Call Impacts Description

createGroup(g) Session.createTo-

pic(topicName)

down all Creates a new group.

setMessageConflictRela-
tion(g, conflict)

TopicPublisher.pub-

lish(m), where m has
the property “JMS -
set conflict” and its
body contains a conflict
definition.

down all Defines message conflict
relation for group g.

joinGroup(g) TopicSession.crea-

teSubscriber(g)

down self Adds the calling process
to the group (non-durable
subscription).

joinGroup(g, processNa-
me)

TopicSession.crea-

teDurableSubscri-

ber(g, processName)

down self Adds the calling process
to the group (durable
subscription).

TopicPublisher.-

publish(m), where
m has the properties
“JMS join process”
(containing process
name) and “JMS sub-
scription” (containing
subscription type).

down other Adds other process to the
group.

leaveGroup(g) TopicSubscriber.-

close()

down self Removes the calling
process from the group
(non-durable subscrip-
tion).

leaveGroup(g, process-
Name)

TopicSession.unsub-

scribe(processName)

down other Removes other process
from the group (durable
subscription).

TopicPublisher.pub-

lish(m), where m has
the property “JMS re-
move”, indicating the
name of the process to
be removed.

down other Removes other process
from the group (non-
durable subscription).
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Architectural issues

In Chapter 4 we proposed a standard specification and interface for GC. Instead of specifying yet an-
other GC API, we took advantage of the widespread acceptance of the Java Message Service (JMS) and
presented a GC API that was extended from the JMS API. The resulting specification and interface is
called JMSGroups and is easily understandable both by the GC community and by developers familiar
with JMS.

In this chapter we focus on the architectural issues for the JMSGroups implementation. Two main
architecture types might be considered for JMSGroups: 1) a centralized server architecture and 2) a non-
centralized architecture. The centralized server architecture is similar to the one used by JMS. In such
architecture the GC service is provided by a separate middleware entity (the server). The group members
are the clients communicating with each other through the server. The second architecture type is the
classical GC model, without a central entity. Each group member has a GC layer which is responsible for
group communication. Such architecture has been well studied in the group communication context [8,
57, 43, 75, 51, 15, 9] and will be only briefly presented in this chapter. Our discussion will focus on the
centralized server architecture.

The JMSGroups centralized server architecture can be implemented by modifying the existing JMS
server, i.e., by extending it to provide a GC service in addition to JMS. The specification of such a
modification was presented in the previous chapter. However, since the server is a communication hub
for all its clients, it becomes a single point of failure in the system. The crash of the server blocks
the entire system. And since GC is used to provide fault-tolerance to the application, a single point of
failure in its architecture is not acceptable. To avoid that, the JMS server used for the implementation
of JMSGroups must be fault tolerant, i.e., replicated. Therefore, the presentation of the JMSGroups
central server architecture issues in this chapter is divided into two parts. The first part focuses on the
architecture of a replicated JMS server, in order to remove a single point of failure in the system (but
without providing a group communication service yet). Different replicated architecture options are
presented and compared. Then, by using the replicated JMS server architecture as a base, the second
part presents the modifications that are needed to implement the JMSGroups server (and thus provide a
group communication service in the JMS-based system).

43
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Chapter Roadmap. Section 5.1 gives a brief explanation of the terms we use in this chapter, Sec-
tion 5.2 presents the architecture options for the fault tolerant JMS server, whereas Section 5.3 analyzes
how the replicated JMS server should be modified to provide a group communication service. Section 5.4
briefly presents the non-centralized server architecture for JMSGroups. Related work is then presented
in Section 5.5 and finally Section 5.6 summarizes the chapter.

5.1 Notation

To avoid the confusion for the reader let us give the explanation of the terms we use in this chapter:

1. Single JMS server or just JMS server - a server that complies with the Suntm JMS specification
and provides the JMS service for its clients.

2. JMS client - a stand alone application which uses the service provided by the JMS server.

3. JMSGroups server - a server which provides a JMS compliant group communication service (it
can provide the JMS service as well).

4. Replicated JMS/JMSGroups server - a JMS/JMSGroups server replicated to provide fault toler-
ance.

5. JMSGroups member - a stand alone application that uses the group communication service pro-
vided by JMSGroups server.

6. JMSGroup - a set of JMSGroups members belonging to the same group.

7. JMSGroups client - a stand alone application that uses the service provided by a JMSGroup.

8. Server communication channel - the communication channel used by a replicated JMS or JMS-
Groups server for communication between the server replicas.

9. Client communication channel - the communication channel used between the server and the
clients. This channel is different from the one between the replicated servers.

5.2 Fault tolerant JMS server architecture

As already stated, our goal is to build a JMS compliant group communication service. The service must
be as close as possible semantically and in terms of the interface to JMS. If a server is used to provide
such a service, clearly the server itself must be fault tolerant.

Fault tolerance is achieved through replication and in this section we present the architecture for a
replicated JMS server. Note that here we talk about “pure” JMS, i.e., without a group communication
service. The architecture we present below can be applied to any JMS server to make it fault tolerant.
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Figure 5.1: Replicated JMS server.

Understanding the replicated JMS server architecture will allow us to introduce the changes needed to
provide a group communication service; we discuss these changes in Section 5.3.

A typical example of a replicated JMS server architecture is shown in Figure 5.1. The JMS server
consists of three replicas {S1,S2,S3}. Six clients {C1,C2,C3,C4,C5,C6} are connected to the different
server replicas. The server contains a replicated topic T , i.e., each server replica hosts a replica of T .
The clients can connect to the topic as publishers or subscribers, or both. In our example client C5 is a
publisher, and the rest are subscribers to T . When C5 publishes a message m to the topic T , the message
is first received by the server replica S3. S3 then sends (broadcasts) the message to the server replicas,
so that every replica receives it. After that m can be dispatched to the subscribers of T . On their behalf,
server replicas S1 and S2 also dispatch m to the subscribers of T , if any.

The JMS server replication does not influence the properties of the client communication channel
(the channel between the server replica and the clients connected to it). We assume that this channel
satisfies reliable FIFO message delivery. We also assume that server replicas process the messages in
sequential order, i.e., do not reorder them. These assumptions will remain valid throughout the chapter.

As already mentioned in Section 3.1, when the JMS client connects to the server, a client context for
that connection is created on the server (see Figure 3.2). Depending on how the client context is managed
on the replicated server we distinguish two JMS server replication options: (1) server replication with
non-replicated context and (2) server replication with replicated context. In case (1), which is illustrated
in Figure 5.2(a), a single client context is created on the server replica when the client connects to it,
i.e., this context is not replicated on the other server replicas. Thus the server replicas do not hold any
state related to the contexts managed by the other replicas. On the contrary, in case (2), illustrated in
Figure 5.2(b), each client’s context is replicated on all server replicas and their state is kept consistent.
These two JMS server replication options are presented in detail in the following sections.
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(a) Non-replicated client context
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(b) Replicated client context

Figure 5.2: Different JMS server replication options.

5.2.1 Non-replicated context

In JMS server replication with non-replicated context, each client chooses one server replica to connect
to and receives the requested messaging service from it. The client context is created only on the server
replica to which the client connects, and it is not shared between the other server replicas. Thus each
server replica hosts only a subset of the client contexts in the system (see Figure 5.2(a)).

The problem of such an architecture is that, in the case of a server replica crash, the clients of the
crashed replica cannot connect to the other server replicas as those do not have the sufficient information
to restore the clients’ context. Therefore, the clients of the crashed server replica are isolated from the
whole system. This situation lasts until the recovery of the crashed server replica. After the recovery, the
clients can reconnect to the same server replica and continue to receive messages. Stable storage must
be used on the server replica to prevent the context loss in case of a crash. Recovery and stable storage
are not specific requirements for the replicated JMS server as they are defined in the JMS specification.
Because the crashed server replicas recover there is no need to remove them from the group (they recover
with the same identity). Therefore, the static group membership model suits the best for the JMS server
replication with non-replicated context.

As stated above, in server replication with non-replicated context a server replica is responsible only
for the subset of the clients connected to it. In the case of a server replica crash this subset is isolated
from the rest of the system. However, the clients connected to the non-crashed server replicas still have
access to the service, i.e., only part of the system is not functioning. The other part is still operational
and can produce and consume messages (which is not the case in a single server architecture). Therefore,
the overall server state changes even when there is a crashed replica. This poses a problem to the durable
subscribers.

Durable subscription requires to deliver even those messages which were produced when the sub-
scriber was not connected to the server. Consequently, in server replication with non-replicated context,
the durable subscribers connected to the server replica which crashed and recovered, must also receive
the messages produced during the down time of the replica. To solve this problem, the non-crashed repli-
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cas have to store the part of the system state on behalf of the crashed replicas until they recover. This
state consists of the messages addressed to the crashed replica, which were produced between the crash
and the recovery.

The other problem is the message delivery order between the clients of a replicated JMS server. As
mentioned in Section 3.4, JMS requires FIFO message delivery. We will show that to ensure FIFO order
between the clients, a reliable FIFO broadcast primitive is sufficient for communication between the
server replicas (the server communication channel).

Lemma 1. For server replication with non-replicated context, reliable FIFO message delivery is suf-
ficient between the server replicas to provide the reliable FIFO message delivery order between the
clients.

Proof sketch. To deliver the messages between the clients both communication channels in the system
are used: the client channel and the server channel (the communication channel between the server
replicas). For each client, a separate client communication channel connects the client to a server replica
and as defined earlier, this channel satisfies reliable FIFO message delivery property. Also, we assume
that server replicas do not lose messages and process them in sequential order, i.e., do not reorder them.
Thus, the communication primitive between the server replicas must preserve the FIFO message order it
receives from the client communication channel. For that, a FIFO communication primitive is enough. In
addition, this primitive must be reliable in order not to lose any messages between the server replicas.

5.2.2 Replicated context

In server replication with replicated context architecture, each client also connects to one of the server
replicas and receives the messaging service it requests from that replica. Here, in contrast to the previous
solution, each client context is replicated on all server replicas and the state of the context replicas is kept
consistent during the system execution (see Figure 5.2(b)). As the JMS client connects and interacts with
a single server replica, its context on that replica is called active (shown with color filling and shadow
in Figure 5.2(b)). The same client’s contexts on the other server replicas are not active (shown in white
in Figure 5.2(b)), but their state is kept up to date with the active one. This is similar to primary-backup
replication.

In the case of a server replica failure, all the clients connected to that replica are automatically
reconnected to another non-failed server replica and continue getting the messaging service. When the
client reconnects to another server replica, its context on that replica becomes active. The reconnection
is done automatically without any user intervention.

Due to the replicated context and the client reconnection mechanism, the clients connected to a given
server replica do not lose the service when the replica crashes. In other words, unlike in the non-replicated
context solution, a server replica crash does not render part of the system non-operational. Therefore, the
recovery of a crashed server replica is not as crucial as before. Moreover, if there are enough non-crashed
server replicas, the service continues to be provided to the whole system, even if the crashed replicas do
not recover. This allows a different failure model to be used for the server. Instead of the crash-recovery
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model required by the non-replicated context, the crash-stop model can be used for the server replicas.
In the crash-stop model the crashed replicas do not recover and are removed from the group.1

To keep the desired number of server replicas, new replicas can be created and added to the group
dynamically. A state transfer mechanism must be provided to synchronize the state of the added replicas
with the rest of the system. The removal and addition of members during the runtime corresponds to the
dynamic group membership model for the JMS server replicas.

With the replicated context and the assumption that the majority of the server replicas do not crash,
there is no need for stable storage on the server replicas. The client contexts (including messages) are
replicated on the server and are not lost. Without such assumption, stable storage and the crash-recovery
failure model must be used for the server replicas.

For the replicated context, the states of client’ context on the different server replicas must be consis-
tent to satisfy the JMS message delivery requirements. The message delivery properties must be satisfied
even when a server replica failure occurs and the affected clients reconnect to another server replica. We
show that reliable FIFO for the server communication channel is still enough to satisfy the JMS message
delivery requirements.

Lemma 2. For server replication with replicated context, reliable FIFO message delivery is sufficient
between the server replicas to provide the reliable FIFO message delivery order between the clients.

Proof sketch. The proof is similar to the one of Lemma 1. The difference with the replicated context is
that the state of the context is present on each server replica. That state consists of the message queues
which contain the messages from/to the client. To comply with the JMS specification, the order in which
messages are received in the queues for different context replicas can be different, but must satisfy FIFO.
As the client communication channel satisfies the reliable FIFO message order and the server replicas do
not reorder messages and process them sequentially, the reliable FIFO message communication primitive
is sufficient between the server replicas to keep the FIFO message delivery order to the client context
replicas.

Client reconnection example. For a better understanding of the client reconnection mechanism, let us
additionally illustrate it by an example and show how the FIFO order is preserved on the JMS clients
during the reconnection. Let’s take an example of a replicated JMS server with replicated context shown
in Figure 5.3. The JMS server consists of three replicas S1, S2 and S3 connected with reliable FIFO
communication channel. Client C2 is connected to the replica S2. Assume that C2’s context on each
replica contains two messages produced by different producers (the producers are also the clients, but
are not shown in Figure 5.3): on replica S1, the message order is {m1,m2}, on replica S2 it is {m2,m1}
and on replica S3, the order is {m1,m2}. The order on S2 is different, because the messages are produced
by different producers and FIFO channels guarantee the same message order only for messages produced
by the same producer. Assume that the first message in the queue on S2 (message m2) is delivered to
C2 and that after that S2 crashes. After the crash, C2 reconnects to S1. Here, depending on C2’s context

1In fact, a server replica can recover, but must join the group as a new member, i.e., with a new identity.
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state there are two possible scenarios: a) message m2 was acknowledged by C2 and garbage collected on
the server replicas before the crash of S2, and b) message m2 was acknowledged by C2, but not garbage
collected on server replicas.
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Figure 5.3: Client reconnection scenario.

In case (a), message m2 will have been garbage collected before C2 reconnects to S1. For C2 there
is therefore no risk that m2 will be redelivered. After the reconnection S1 will send m1 to C2 and the
message delivery order on C2 will thus be {m2,m1}. If there were other message consumers for m1 and
m2 on S1, they would deliver the messages in the order they were delivered on S1, i.e., {m1,m2}. Thus,
after the reconnection, the order of message delivery can differ on the clients connected to the same server
replica, but this does not violate the JMS specification as the FIFO order is preserved. Since the client
context on each server replica receives the messages in FIFO order and processes them sequentially, the
FIFO order for the messages will be preserved even in the case of a reconnection.

Case (b) is more complicated because of a possible message duplicate, since message m2 is delivered
to C2, but not garbage collected by the server replicas before the client reconnection. Thus after the
reconnection, S1 will send message m1 to C2, as it is the first in its queue. When m1 is acknowledged
and garbage collected S1 will send m2 to C2, which would be a duplicate of the one received by C1
from S2 before the crash of S2. However, this still satisfies the JMS specification for duplicate of the
last delivered message in the case of a JMS server crash (see Section 3.4). C2 must be ready to handle
the duplicate of the last delivered message (in our case m2) after the reconnection. Except for this, the
message delivery order issue is the same as in case (a), i.e., the reconnection to another server replica
won’t violate FIFO order on the client.

5.2.3 Comparison of the JMS server replication options

Table 5.1 presents the comparison between the non-replicated context and replicated context options.
The replicated context uses the simpler crash-stop failure model, has an option not to use the stable
storage and most importantly does not isolate the clients in the case of a server replica crash, which
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greatly improves system liveness. But on the other hand, every server replica keeps the client context
of the whole system, which can cause a resource problem with a large number of clients, and makes the
system less scalable.

On the contrary, the non-replicated context, for a large number of clients, can fully exploit load
balancing by distributing the clients between the server replicas, whereas with the replicated context
load balancing is less efficient. Moreover, the static group membership model used by the non-replicated
context is simpler and easier to implement than the dynamic one used by the replicated context. However,
the non-replicated context option requires server replica recovery, which in general is more difficult to
implement, but is required in the JMS specification and is already implemented in most of the non-
replicated JMS servers. Also the reconnection protocol to the same recovered server replica is simpler
than the one required by the replicated context, when the client reconnects to a different server replica.

While the replicated context option seems to be a more attractive choice for the replicated JMS server,
it is hard to draw a strict line between the two. The choice depends on the needs and properties of the
particular application that uses the replicated JMS server.

Table 5.1: Replicated JMS server: comparison between replicated and non-replicated context.

Non-replicated context Replicated context

Failure model Crash-recovery Crash-stop
Group membership model Static membership Dynamic membership
Communication primitive Reliable FIFO Reliable FIFO
Client behavior for failures Wait until the replica recovers Reconnect to an available

replica
Stable storage needed YES NO, if a majority of replicas do

not crash
Number of client contexts in the

system

|Clients| |Clients|× |Server replicas|

5.3 JMSGroups based on JMS server

Our JMSGroups specification can be implemented using an existing JMS server. For that the JMS server
must be changed internally to provide group communication as a service to its clients. Let us remind, that
such a modified JMS server is called a JMSGroups server. A JMSGroups server contains special topics
called group topics. The clients form a group by subscribing to the corresponding group topic. Compared
to JMS, JMSGroups provides additional group communication services to the clients subscribed to the
group topics (group members): group membership information, member suspicions, etc. It can also
optionally provide JMS service to the clients that do not need GC.

As discussed before, for the JMSGroups implementation based on a JMS server, a replicated JMS
server must be used, such as the one presented in the previous section. As such, JMSGroups adds some
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additional requirements to the replicated JMS server architecture. We will present these requirements in
the following paragraphs, but first, we define the two replication levels that exist in JMSGroups central-
ized server architecture.

Two level replication in JMSGroups. The replicated JMSGroups server provides GC as a service used
for replication by its clients. This forms a system with two replication levels: (1) a server replication level
and (2) an application replication level (see Figure 5.4). The server replication level is responsible for the
server replication and the application level for the application replication. Each level uses a distinct group
communication infrastructure to provide the replication. The server level uses GC provided to the server
replicas by a group communication toolkit. The application level on the other hand uses the GC provided
by the JMSGroups server. The server level consists of a single group (the one of the server replicas),
whereas the application level supports many groups, as well as standalone clients (see Figure 5.4).

Both levels define distinct communication primitives to provide message delivery guarantees. Mes-
sage delivery at the application level depends on the primitives at the server level, but not vice versa.
To distinguish to which level the primitive belongs we add the corresponding prefix to the name of the
primitive, e.g., S-ABcast is a server level ABcast and A-ABcast is an application level ABcast.
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Figure 5.4: Two replication levels in JMSGroups.

Server replication options in JMSGroups. In Section 5.2 we presented two different options for
replicated JMS server architectures: replication with non-replicated context and replication with repli-
cated context. They differ in the way the client context is kept on the server and in the behavior of the
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clients when the server replica fails. The same two solutions apply to the JMSGroups architecture, more
precisely to the server replication level. If the non-replicated context is used at the server replication
level, a failure of a server replica will not be transparent at the application replication level. Indeed, the
clients connected to the failed replica lose the connection and are isolated from the rest of the system
until the server replica recovers. Depending on the application requirements, the time until the server
replica recovers can be too long for the group members to wait for the reconnection. In such a case, the
replicated context is an alternative. With replicated context, the clients do not wait for the failed replica
recovery, but instead reconnect to another available one. The time taken by the clients to reconnect to
another server replica is much shorter than the server replica recovery delay, and therefore the clients are
not isolated from the rest of the system. Unfortunately, replicated context has a higher communication
cost between the server replicas and uses more resources on the server.

The choice between the non-replicated context and replicated context must be done considering the
nature and the requirements of the application using JMSGroups: a server with non-replicated context
will perform better than the one with replicated context as long as no failures occur. If a failure occurs, a
system using a non-replicated context will however isolate a number of clients until their server replica
recovers.

Message delivery order in JMSGroups. In JMSGroups, as in JMS, all communication between the
group members goes through the JMSGroups server. This implies that the application level primitives
A-ABcast and A-ADeliver are composite primitives, i.e., they are implemented using primitives of the
server level (see Figure 5.5). Indeed, A-ABcast consists of reliable FIFO between the JMSGroups
client and the server, plus S-ABcast between the server replicas. Similarly, A-ADeliver consists of a
S-ADeliver between the JMSGroups server replicas, plus a reliable FIFO delivery between the server
and the JMSGroups client.

In Section 5.2 we showed that reliable FIFO message delivery is enough for the server communi-
cation channel in order to comply with the JMS specification. Group members in JMSGroups require
stronger message delivery guarantees than JMS clients, and consequently reliable FIFO is not enough for
the server communication channel. A common GC requirement is the total message delivery order for
the group members. To provide total order in JMSGroups application replication level, stronger message
delivery properties (e.g., ABcast) must be used for the server replication level.

Lemma 3. For the JMSGroups server replication level, a total message order primitive (S-ABcast) al-
lows us to provide the total order message delivery to the group members at the application replication
level.

Proof sketch. The S-ABcast primitive used by the JMSGroups server replicas guarantees the total order
of message delivery between the server replicas. As there is a FIFO communication link between the
server replica and each client, and the server replicas do not reorder or lose the messages, the delivery
order of messages on the server replicas will be preserved on the clients as well. Total order between the
server replicas ensures total message delivery order for the group members.
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A-ABcast(m) {
Member: FIFO send m to the Server;
Member: wait for the Ack(m) from the Server;

Server: receive(m) from a member;
Server: S-ABcast(m) between the Server replicas;
Server: S-ADeliver(m);
Server: send Ack(m) to the Member;

}

A-ADeliver(m) {
Server: S-ADeliver(m);
Server: FIFO send m to the Member;
Server: wait for the Ack(m) from the Member;

Member: receive m from the Server;
Member: send Ack(m) to the Server;

}

Figure 5.5: JMSGroups member’s composite total order communication primitives.

5.4 Non-centralized architecture

The alternative architecture to the centralized server based JMSGroups is the non-centralized architec-
ture. An example of the non-centralized JMSGroups architecture is shown in Figure 5.6. In this archi-
tecture clients do not rely on the server for communication, but each client has an independent commu-
nication unit with the underlying protocol stack, which is responsible for group communication. In other
words, each JMSGroups member or client corresponds to a group member. This is exactly the same ar-
chitecture as in most of the GC toolkits. The only difference is the additional JMSGroups adapter layer
between the GC protocol stack and application layer, which is responsible to provide JMS compatible
interface to the application and convert its JMSGroups calls to GC and vice versa.

Having a GC toolkit, the non-centralized architecture is relatively easy to implement: basically the
JMSGroups layer must be adapted for the given GC toolkit interface. Unfortunately, such architecture
suffers from the semantic inconsistencies between JMS and GC described in Section 4.1. Namely JMS
durable subscription, which in GC maps to the static group membership model with process recovery
(see Section 4.1.2) is imposed for all group members, because the whole group must use the same group
membership and failure model. This differs from the standard JMS, where durable subscription can be
chosen or not by each subscriber individually. As a result subscription durability which is a member
property in JMS, in non-centralized JMSGroups architecture becomes a topic (group) property, which is
not compatible with the JMS specification.

The centralized server architecture, on the contrary, does not suffer from this problem as it does not
have one-to-one mapping between the underlying GC and JMSGroups members.
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Figure 5.6: Non-centralized JMSGroups architecture.

5.5 Related work

The open source JMS implementation called JORAM [64] as an option provides high availability for the
JMS server by replication. JGroups [2], a Java group communication toolkit, is used for the communica-
tion between the server replicas. A replicated JORAM server uses primary backup replication, i.e., only
one server replica is communicating with all the clients, and its state change is synchronously propagated
to the backup replicas. In the case of a failure of the primary replica, a new primary is elected among
the backup replicas and the clients reconnect to it. The client reconnection mechanism preserves JMS
message delivery properties for the clients. This architecture is similar to the JMS server replication with
replicated context described in Section 5.2.2. However, in our proposed architecture primary-backup
replication is used only for the client context and not for the server replicas. The advantage is that the
clients can connect to any of the server replicas, not only to the primary as in the case of JORAM.

Another replication mode provided by JORAM is called collocated client mode. In this mode JMS
clients are collocated and replicated together with the server replicas. However, only stateless clients
can be used in this mode and only one client replica (the one located on the primary server replica) is
receiving and processing the messages. For the other client replicas the communication with the server is
blocked. This can be compared with the non-replicated context described in Section 5.2.1. However, in
our architecture the clients do not have to be collocated together with the server and can contain a state.
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Although JORAM’s collocated client mode deals with client replicas, it is too constrained and cannot be
compared with the GC service provided by JMSGroups

Another JMS implementation called SonicMQ, which is a commercial product from the Sonic Soft-
ware Corporation, also provides a replicated JMS service [72]. JMS topics in SonicMQ are replicated
together with the server, which allows to apply a load balancing mechanism for the connecting clients.
The replicated server uses non-replicated client contexts. Additionally, for durable subscriptions, the
client contexts are replicated on the server and a similar client reconnection technique to the one of the
replicated context described in Section 5.2.2 can be used. However, unlike in the replicated context, the
state of these client contexts on the server replicas are not kept consistent with the replica communicat-
ing with the client. The risk therefore exists to lose messages after the reconnection to a different server
replica. If the option not to lose the messages is chosen, the client is required to reconnect to the same
replica and a part of the system is blocked until the failed server replica recovers.

5.6 Summary

JMSGroups provides a JMS compliant group communication, whose specification and API were defined
in Chapter 4. As a follow-up, this chapter focused on the architectural issues related to the JMSGroups
implementation.

We have chosen to implement JMSGroups by internally modifying the existing JMS server and
adding group communication service to it. It is clear that such a service itself must be tolerant to fail-
ures. Therefore, JMSGroups must be based on the replicated JMS server. We proposed two different
approaches for replicating the JMS server: non-replicated context and replicated context. In the first
approach, each server replica contains only the contexts of the clients connected to it. In such a system
load balancing between the server replicas can be used more efficiently. But in the case of a crash, clients
connected to the crashed server replica are isolated from the system until the replica recovers. Further-
more, since recovery is needed, the server replicas need access to stable storage in order to periodically
save their state. In the second approach each server replica stores the contexts of all clients connected
to the system. This allows the clients to reconnect to the other server replica, when the one they are
connected to crashes. Moreover, server replicas do not need stable storage anymore (as long as the ma-
jority of replicas do not crash), since each replica has a copy of all client contexts. The drawbacks of this
approach are: a bigger resource requirements by the server replicas and a higher network communica-
tion cost, since the server replicas need to exchange more information to keep the client contexts’ states
consistent.

The second part of the chapter addressed the issue of providing a group communication service on top
of the replicated JMS server. To provide a group communication service, we proposed the JMSGroups
server architecture defining two levels of replication: the server level and the application level. For the
server replication level the same replication approaches as for the JMS server are used, but with the
stronger communication primitives. At the same time, the service provided to the application level en-
ables the clients to delegate the complicated and expensive communication primitives (e.g., total message
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order) to the server, and still profit from the group communication to create fault tolerant applications.
Non-centralized JMSGroups architecture was presented in brief, which is identical to the architec-

tures used by the GC toolkits. With this architecture, JMS durable subscriptions do not comply with the
JMS specification any more.



Chapter 6

JMSGroups Implementation

In the previous chapters we presented the JMSGroups specification and the possible architectures for
the replicated JMS server. This chapter presents the JMSGroups implementation. We have done two
implementations: one is based on the modified JORAM server [64] (version 3.6), the other based on
Component Chain and is built from scratch. The first implementation was done like a proof of concept,
but because of poor documentation provided for JORAM it was hard to track all the details of the server
internals and to extend it. For that reason we decided to make our own implementation. The two imple-
mentations are presented at a high level, more details can be found in the manuals attached to the each
of them.

Both implementations are based on the component architecture which consists of components and
the container. The components are small objects providing basic functions, they are created, held and
managed by the container. Inside the container the components exchange messages and collaborate to
provide the service. Some dedicated components communicate with clients that are outside the container
and/or other components on the different containers. The general scheme of such architecture is shown
in Figure 6.1.

Chapter Roadmap. Before presenting JMSGroups implementation Section 6.1 introduces the Fortika
group communication toolkit, that is used in both implementations. The JORAM based implementation
is presented in Section 6.2 and the Component Chain based implementation in Section 6.3. Performance
evaluation and a use case example are given in Section 6.4 and Section 6.5 respectively.

6.1 Fortika

The Fortika group communication toolkit [48, 47] developed at École Politechnique Fédérale de Lau-
sanne (EPFL) provides a new architecture for the group communication protocol stack. The protocol
stacks, used in the popular group communication toolkits rely on the architecture historically influenced
by the pioneer in this domain namely the Isis toolkit [8]. In the “traditional architecture” group member-
ship and view synchrony services are the basic components in the system [12]. Other group communi-
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Figure 6.1: General component architecture.

cation services, e.g., atomic broadcast, are implemented using these services.
The Fortika framework architecture adopts a new approach to the group communication protocol

stack architecture [66]. The first feature of the new architecture is atomic broadcast as a basic component,
instead of group membership and view synchrony. Atomic broadcast is used to build other group services
on top of it, e.g., group membership, and not vice versa. The second feature of the architecture is the
absence of the view synchrony component, which is replaced by more general and powerful abstraction,
called generic broadcast [58]. The third feature is the decoupling of the group membership and failure
detection services. Such decoupling allows the system to distinguish between failure suspicion and
membership exclusion. As a result, a failure detection does not necessarily lead to the exclusion of the
suspected process.

The benefits of the Fortika new architecture are: (1) less complex group protocol stack thanks to
the relocated atomic broadcast component, which enables us to use the same ordering for messages
and views; (2) more flexibility and power, thanks to generic broadcast, which gives more control over
message order; (3) higher responsiveness, thanks to the decoupling of group membership and failure
detection, which allows to reduce failure detection timeouts.

The Fortika architecture is implemented using two different protocol composition frameworks: Ap-
pia [50] and Cactus [32]. We used the Fortika implementation based on the Cactus framework.

6.2 JORAM based implementation

This section presents JMSGroups implementation based on the modified JORAM server (v3.6) [64]. It
gives an introduction to the JORAM architecture and explains the changes we made to it to implement
JMSGroups specification.

JORAM is the open-source JMS implementation based on the ScalAgent distributed asynchronous
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agent platform [65]. ScalAgent is a proprietary message oriented middleware (MOM), with its own
defined message types and API. JORAM is the JMS API wrapping around the ScalAgent MOM. First
we introduce the basic notions of the ScalAgent/JORAM architecture.

6.2.1 ScalAgent asynchronous agent platform

ScalAgent is an asynchronous distributed agent platform which provides a framework for distributed
systems development. The communication between its agents is based on asynchronous message pass-
ing [6]. The ScalAgent architecture (see Figure 6.2) contains three main types of components: agents,
agent servers and channels. Agents are “passive” units of execution, that are “woken up” for a particular
event (message) to process. They have persistent state, i.e., in the case of a crash the state of the agent is
preserved. Agent’s event processing is atomic, i.e., the event is either fully processed, or the processing
is aborted without any impact on the agent’s state. Agents are managed by the agent server (container), a
single process that contains a set of agents. An agent server has an entity called Engine running inside it.
The Engine is responsible for finding the corresponding agent, when given its ID, “waking it up” when
the event of interest happens, transferring the message to it and making sure that agent’s processing is
transactional. The third type of components, channels, are message queues which receive, hold and dis-
patch the events (messages) in the ScalAgent system. The agents residing on the same or on the different
agent servers do not communicate directly with each other, but rather they use channels to exchange the
messages. This decouples the agents and provides asynchrony, i.e., if agent A sends a message to agent
B, there is no need that both of them are active at the same time. A puts a message in the channel and
B takes it when ready to process it. ScalAgent channels are also transactional and can provide causal
message ordering.

������

��	���


�����������

��������������� �����

��������������� �����

Figure 6.2: ScalAgent architecture.
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6.2.2 Clustered topics in JORAM

As already mentioned, JORAM provides JMS wrapping of the ScalAgent framework. It consists of a set
of specialized agents which provide JMS functionality and the entities which expose the JMS API to the
client. The main JMS entity in JMSGroups, the topic, is represented in JORAM by a Topic agent.

In JMS a topic is represented as a single entity created and residing on the server and dispatching
the messages to its subscribers. The users connect to the server in order to subscribe to the topic. If one
server fails the topic becomes unavailable for all subscribers. To avoid this problem, JORAM provides
the possibility to introduce several servers, and to cluster JMS topics residing on the different servers to
a ”single” topic. The client subscribing to such topic can choose to which JMS server to connect. When
a message is published to such topic on one server, it is received by the subscribers on all the servers (see
Figure 6.3). If the server fails, the subscribers connected to that server loose the connection, but sub-
scribers on the functioning servers are still able to publish and receive the messages. Clustered JORAM
topics correspond to the JMS server replication with non-replicated context presented in Section 5.2.1.
To implement the JMSGroups specification presented in Chapter 4, we implemented a new agent called
GroupTopic. The main features added to the GroupTopic are the group view and suspicion notifications
dispatched to the group members.
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Figure 6.3: Clustered topic in JORAM.

The communication protocol used between JORAM servers hosting clustered topic is TCP/IP. Nev-
ertheless, the delivery order of messages produced on different servers can differ between the servers
since each pair of them have a separate TCP/IP connection for communication. However, as described
in Chapter 5 this complies with the JMS specification which only requires the FIFO order (ensured by
the TCP/IP protocol). But for JMSGroups stronger order requirements are needed, i.e., total order. To
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provide total message order for clustered JORAM topics, we integrated Fortika ABcast protocol stack
into the JORAM architecture. The integration is described in the next section.

6.2.3 Integrating Fortika ABcast stack into JORAM

As mentioned above the JORAM JMS server is based on the ScalAgent messaging middleware, where
the processing of messages is done by entities called agents, each agent being responsible for processing
certain types of messages. In JORAM the messages coming from and going to the network are processed
by Network agents. Depending on the communication properties chosen by the system user (e.g., TCP/IP
communication channels, causal message ordering, etc.), the server is initialized with the Network agent
type providing these communication properties.

For the total order communication protocol between the JORAM servers we implemented an Abcast-
Network agent, which wraps the Fortika ABcast protocol stack in the Network agent interface. It takes
the same input as the Network agent and returns the same output. Internally agent notifications are
wrapped to/from ABcast messages.

The following two paragraphs go more into details describing the integration of the Fortika ABcast
protocol stack into the JORAM JMS server. The first paragraph shortly gives a more detailed overview
of the actual JORAM Network agent structure, and the second informally describes the changes made
for the integration.

JORAM AgentServer structure

A Network agent in JORAM has three components running in separate threads: NetServerOut, Net-
ServerIn and WatchDog (see Figure 6.4).

NetServerOut is responsible for sending the messages to other AgentServers through the physical
network. It waits on the Network message queue and when there is a message, it checks for which server
it is, opens a socket connection to that server and sends the message. NetServerOut then waits for the
acknowledgment and if everything went well, commits the action. The messages to the Network queue
are put by the Engine when it receives the notification of the type TopicForwardNot from the Topic

agent.

NetServerIn thread is waiting on the network socket and if the connection is established to this
socket, reads the message, passes it to the destination agent for processing and sends an acknowledgment.

WatchDog is responsible for the messages whose destination server is not available at the time when
the NetServerOut thread sends them. Those messages are put in the list of delayed messages and the
WatchDog thread periodically tries to reach the server.

Different Network implementations can be chosen at the AgentServer initialization time to pro-
vide, for instance, causal ordering of the messages or no ordering at all. By default JORAM uses the
SimpleNetwork implementation, which provides causal message order.
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Figure 6.4: Network agent structure.

AbcastNetwork

To integrate the ABcast stack into a JORAM server, a SimpleNetwork component was replaced with the
one using the Fortika ABcast for the inter server communication instead of a simple TCP/IP protocol.
This component is called AbcastNetwork. The architecture of AbcastNetwork is similar to the one of
the Network agent (at least NetServerOut and NetServerIn threads remain), but the functionality of
these threads is changed. NetServerOut uses the ABcast stack instead of a simple socket to send the
messages to the other servers. NetServerIn accordingly handles message A-delivery. In Fortika ABcast
stack A-delivery is done using a callback, which was not designed to perform complicated actions. We
solved the problem by adding a message queue for the delivered messages and connected NetServerIn

to it as a consumer. The ABcast callback puts the messages into the queue and the NetServerIn thread
reads the messages from there. The WatchDog thread is no more needed. If some server is not available
for some time, the ABcast stack keeps the messages in its buffers.

6.3 Component Chain based implementation

The Component Chain based implementation (CCB) does not provide the full JMS API, but only a part
of it, which is needed to implement the JMSGroups specification (given in Chapter 4). This section
shortly presents the architecture of the framework on which the implementation is based and explains
how the JMS interface and server replication is provided.
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6.3.1 Framework architecture

We developed a small component based framework which is equivalent to the ScalAgent framework. Our
framework architecture consists of the three main parts: components, component chain and container.

Components. As already mentioned, in our framework the main building block is a Component ob-
ject. A component receives the incoming messages, processes them and optionally produces the output
messages. A single component usually implements a limited set of functions. More complicated service
is implemented by using various types of components connected together. Components, similarly to the
ScalAgent framework, communicate with each other using asynchronous messaging, but the way the
components communicate in our framework is different from ScalAgent (we describe these differences
in the next paragraph).

Figure 6.5 shows the internals of the basic Component type object. A single component can be seen
as a box with in and out interfaces for the messages. The processing inside the component depends on
the input message type. Clearly different types of components process messages differently. Inside the
component there are two message queues, “input” and “output”, one for each interface. For example,
the messages received on in interface are put to the “input” queue. These queues are blocking, i.e.,
if the queue is empty, taking a message from the queue is blocking. Putting a message to the queue is
non-blocking and returns immediately. The messages in the queues preserve FIFO order. Optionally the
queues can be automatically saved (persisted) to the stable storage.

Together with the message queues, each component has two threads, one for each queue. The “in”
thread takes the messages one by one from the “input” queue and processes them using the component’s
process(m) method. This method is not implemented in the basic class: different component types
provide their own implementation for it. The processing can optionally produce output messages. If this
is the case, these messages are put in the “output” queue. The “out” thread reads the messages from
the “output” queue and sends them to the component’s out interface.
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Figure 6.5: The structure of a component.
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Component chain. The key feature of our framework is the way the communication is done between
the components, which we call a “component chain” (or just a “chain”). The “component chain” is
constructed by connecting the component’s out interface to the other component’s in interface. Then, if
the first component produces a message, it will be automatically forwarded to the connected component.
Moreover, component’s out interface can be connected to several components. In that case, the message
is sent to all of them. An example of “component chain” is shown in Figure 6.6.

The “chain link” between two components is established using component’s connect method. It
connects the calling component’s out interface to the specified component’s in interface. The method
has an option to define the type of the messages to be forwarded. This enables to filter the messages that
are forwarded through the “chain link” to the connected component. If the option is “ALL TYPE”, the
filtering is not done and all messages are forwarded. The filtering options are valid on a per link basis.
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Figure 6.6: Component chain.

The way the communication between the components is implemented is the main difference between
our framework and ScalAgent. In the ScalAgent architecture the messages are sent to the central channel
and each message contains the ID of the destination agent. The channel finds an agent with the specified
destination ID and forwards the message to it. In our framework sending the messages directly to the
component using its ID is also possible, but the main communication is done using the “component
chain”. The drawback of the “chain” is that it needs to be established during the initialization phase, i.e.,
no communication is done before the “chain” is ready. The advantage is that using the “chain”, the source
component requires no knowledge of the component to whom it has to send messages (this knowledge
is encoded in the “chain” structure). The “chain” also provides easier means to send messages to several
components at a time and it makes the developing process more structured and less error-prone.
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Container. The third entity in our framework is Container. Its role is to initialize and manage the
components, so it keeps the references to all the components it contains. The Container has a mecha-
nism to send a message to the input interface of any of its components using the component ID. But it
does not have the control of the message flow between the components once the “chain” is constructed.

6.3.2 JMS wrapping

When implementing JMSGroups we used the object adapter design pattern [23] to provide the JMS
interface for our framework. The object adapter pattern provides an interface wrapper around the original
object. The adapter implements the required interface and wraps it around the object; it also has a
reference to the wrapped object. In this way the adapter method calls can be easily translated to the
wrapped object calls. In Component Chain based (CBB) implementation the adapters wrap the JMS
interface around the corresponding component type.

Two containers with the corresponding component sets were derived from the framework: server
side and client side. Both sets comply with the JMSGroups specification given in Chapter 4. Naturally
the JMS wrapping was provided only to the client side components, as the server side interface is not
directly accessed by the user.

In CCB the main server and client side components are: ServerConnection / ClientConnec-
tion, ServerSession / ClientSession and ServerTopic. The components ServerConnection and
ClientConnection provide the implementation for the JMS connection interface. These component are
responsible for the network communication between the CCB server and clients. The ServerSession

and ClientSession represent a JMS session: they are responsible for managing message producers
and consumers for the topics. JMS message acknowledgment is also implemented by these components.
JMS topics are implemented by the ServerTopic components. These components manage the list of
subscribers (in the case of GroupTopics - group membership) and are also responsible for message
persistence.

6.3.3 CCB server replication

As described in Chapter 5 the JMSGroups server has to be replicated and strong message delivery order
(total order) between the server replicas must be provided. As for the JORAM based implementation,
we again used the Fortika ABcast protocol stack for the CCB server replication.

The Fortika protocol stack integration into our component architecture was similar to the one done
for JORAM architecture. Special components (ABcastNetwork) were developed and integrated into the
CCB server. These components communicate using the ABcast protocol stack instead of usual TCP/IP.
The ABcastNetwork components are only used when sending the messages between the server replicas.
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6.4 Performance

For performance measurements we used a replicated server providing the JMSGroups service and a
process group. Group members were distributed equally between the server replicas. We used one client
(not a member) as a message producer to ABcast messages to the group. The members were just message
consumers and did not produce messages. The producer was publishing messages at a full speed. Each
message contained a single string of text. The experiments were run for different client group sizes (from
1 to 30) and for different number of server replicas (3 and 5).

Table 6.1 visualizes the set of implementations we used to measure the performance. For each
option we used two performance benchmarks: ABcast early latency1 vs. group size, and ABcast average
throughput.

Performance measurements were done on a local area network. We used one machine per server
replica, group member, or client. The machines used for the tests were Sun Microsystems Sun Ultra
5/10 workstations, with system clock frequency 110 MHz, each equipped with 256MB of RAM and one
Sun UltraSPARC-IIi CPU running at 440MHz. Machines were connected with a 100BaseT local area
network. They were running SunOS v5.8 and Java 2 Standard Edition (build 1.5.0-b64).

Replicated Context Non-Replicated Context

JORAM � �
CCB � �

Table 6.1: Tested implementations.

Figures 6.7 and 6.8 show early latency and average throughput benchmarks for the JORAM and the
CCB replicated context implementations (the first column in Table 6.1). Note that with the replicated
context option the servers do not use stable storage. For both server sizes (3 and 5 replicas) the CCB
implementation performs better that the one based on JORAM (approx. 55% and 50% better for the
early latency and approx. 60% and 55% better for the average throughput).

Figures 6.9 and 6.10 show early latency and average throughput benchmarks for the JORAM and
the CCB non-replicated context implementations (the second column in Table 6.1). Note that with the
non-replicated context option the servers must be able to recover after the crash, so they use stable
storage to log their state. For the JORAM implementation the early latency stabilizes only for the larger
group sizes (approx. larger than 15 members) and stays relatively very high (approx. 10 times higher
than CCB). The reason for this is the acknowledgment mechanism used in the JORAM non-replicated
context implementation: the published messages are acknowledged immediately when they are received
on the server replica where the publisher is connected, and only then they are sent to the other server
replicas. This means that the publisher is capable to publish quickly a large number of messages, but
later they stay in the server buffers, which gives high latency for the messages. Differently, the CCB
implementation has flow control at the publisher level. It delays the acknowledgment for the publisher

1“Early latency” is the latency for a message from its A-broadcast to the first A-deliver in the group.
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Figure 6.7: ABcast early latency vs. group size (replicated context).
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until the message reach all server replicas. This keeps the server less loaded and the messages spend less
time in the buffers, which gives better latency.

On the contrary the average throughput for the JORAM non-replicated context implementation is
better compared to CCB as shown by Figure 6.10 (approx. 65% for 3 server replicas and even approx.
80% better for 5 server replicas). This shows that the messages from the JORAM server buffer are
dispatched much more efficiently than it is done with CCB publisher flow control.
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Figure 6.9: ABcast early latency vs. group size (non-replicated context).
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It is interesting to observe that for large groups the JORAM server shows better performance for 5
replicas than for 3 replicas, see Figures 6.9 and 6.10. The reason for that is that with larger groups the
server with smaller replica number handles more clients (group members) per single server replica. This
means more logging which is costly and slows down the server.

The given performance figures compare JORAM and CCB implementations for each replication
option. The different replication options for the same implementation can be compared relating the
Figures 6.7 and 6.9, and the Figures 6.8 and 6.10. For the CCB implementation the replicated context
option performs slightly better than the non-replicated context one (approx. 20% for the early latency
and approx. 17% for the average throughput), because the stable storage is not used to save the servers
state. For the JORAM implementation the replicated context option shows better early latency, but worse
throughput compared to the non-replicated context option. But because of different acknowledgment
mechanisms the comparison of these two options for the JORAM implementation is not accurate.

6.5 Use case - A Replicated Table

As a use case example of JMSGroups we present a simplified version of a replicated table. A table is a
popular data structure containing a set of key-value pairs. A key-value pair can be added to the table as
well as removed. The values from the table are retrieved by their keys.

The table is replicated for fault tolerance using JORAM server based implementation (see Sec-
tion 6.2). Active replication is used, i.e., all replicas of the table are identical, receive identical requests in
the same order and perform the same operations. The replicated table is used by the clients. The logical
view of the application is shown in Figure 6.11.

The replicated table implementation consists of two Java class files: ReplTable and ReplTable-

MsgListener. The ReplTable class is the implementation of the table replica: it keeps its state and
contains the methods for the client to invoke. The ReplTableMsgListener class implement the JMS
MessageListener interface and provides the table replica with the “reaction” to the incoming messages.
The source code for these classes is given in Appendix B.1 and Appendix B.2 respectively. The third
Client class implements the client of the replicated table; its source code is given in Appendix B.3.

To the clients, the table provides four methods: put, get, containsKey and remove. The methods
are similar to those of the java.util.Hashtable. We use this class as a base for your replicated table.
The interface of the methods is the following:

1. Object put(Object key, Object value) - adds a key-value pair to the table.

2. Object get(Object key) - returns the value from the table associated with a given key. If the
table does not contain the given key, null is returned.

3. boolean containsKey(Object key) - returns true if the key is associated with a value in the
table, false otherwise.

4. void remove(Object key) - removes the key and its corresponding value from the table. If the
key does not exist, the method does nothing.
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Figure 6.11: Replicated table.

Clients invoke the method on the replicated table by sending the predefined JMS message to the
replica group. The structure of the message for each method invocation and its result are defined. To
form a group each table replica subscribes to the group topic on a replicated JMSGroups server. Messages
published to that topic are broadcast to the group members. The answers are not returned through the
group topic, but rather through the client’s private destination, which is specified in the request messages
(using JMS temporary queues). Table replicas also handle the following group events:

1. Joining of the new members, which includes the state transfer.

2. Suspicion and removal of the crashed replicas.

The replicated table is functional if at least one replica is correct. The sample architecture of the
system is shown in Figure 6.12. Solid lines show the requests and messages related to the group com-
munication, dashed lines show the replies to the client.

6.5.1 Table group

As mentioned above, JMSGroups are based on the JMS publish-subscribe paradigm, i.e., a group is
represented by a topic. But in standard JMS, topics do not provide group information, such as group
view, for the subscribers. Therefore JMSGroups has a special topic called GroupTopic, which has the
same interface as a standard JMS topic and provides the subscribers with the group information. Group-
Topic is a server side object and is created by the JMSGroups administrator upon the start of the server.

The subscription to the group topic is equivalent to the subscription to a standard JMS topic. The
main difference is that the user subscribed to the group topic receives the view of the group, i.e., the
IDs of the members already in the group. A view is delivered as a JMS message to all subscribers of
the group topic. The message is of the type ObjectMessage; its structure is given in Table 6.2. It has
two String type properties. One has a name “JMS view”, it contains an empty string and is used to
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Figure 6.12: Replicated table architecture.

tag the view messages. The second property name depends on the event which triggered the sending of
the view. If the view was broadcast to the group because some new member(s) have joined, the view
message contains property with name “JMS join”. The value of this property contains the IDs of the
joined processes in the String format. If the view was broadcast because some member(s) have left the
group, the view message contains property with name “JMS leave”. The String value of this property
contains the IDs of the processes, that have left.

The object in the view message’s body contains the current view of the group; it is of the type
View. The class View extends java.util.Hashtable and has two additional fields: (1) int ID - view
sequence number and (2) String procID - the member ID of the process. Because the member IDs are
assigned on the server, initially a process does not know its ID; it finds it out upon the first view delivery.
The table of the view stores the IDs of the members of the group. The IDs correspond to the keys in the
table; the value fields are empty strings (see Table 6.3).

6.5.2 Member suspicions and removal

In JMSGroups the crashed group members are not removed from the group automatically: only a sus-
picion is returned to the other members. Once a member is suspected, all correct group members get
the suspicion message. Then it is up to the group members to exclude the suspected member from the
group. In our case the server acts as a failure detector and sends the suspicion message to the correct
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Property Name Property Type Explanation

“JMS view” String Contains an empty string
“JMS join” String This property is present if some pro-

cess(es) have joined the group. Con-
tains the ID(s) of the process(es), that
have joined.

“JMS leave” String This property is present if some pro-
cess(es) have left the group. Contains
the ID(s) of the process(es), that have
left.

Message Body Type Explanation

View Object Contains the group view.

Table 6.2: The structure of a view message.

Key Value

#0.0.1032-c1sub1 “”
#0.0.1032-c2sub1 “”
#0.0.1029-c1sub1 “”

Table 6.3: View table example.

group members. The suspicion message is of the type javax.jms.Message. It contains a property of
type String with name “JMS suspect”: its value contains the ID(s) of the suspected members.2 The
structure of the suspicion message is shown in Table 6.4.

Property Name Property Type Explanation

“JMS suspect” String Contains the ID(s) of the suspected
group member(s).

Table 6.4: Suspicion message structure.

Group members can exclude other members from the group, e.g., members can decide to exclude the
suspected member. Member exclusion from the group is done by publishing an exclude message to the
group topic. The message must contain the property of type String with name “JMS remove”, which
value contains the ID(s) of the members to be excluded. The members of the group get a new view after
the exclusion. The structure of exclude message is shown in Table 6.5.

2Because of the JORAM architecture, two identical suspect messages are sent upon a suspicion.
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Property Name Property Type Explanation

“JMS remove” String Contains the suspected group mem-
ber(s) ID(s) to be excluded.

Table 6.5: Exclude message structure.

6.6 Summary

This chapter presented two centralized server based implementations of JMSGroups: the JORAM server
based and the Component Chain based. Preliminary performance measurements were presented; more
detailed performance study will be presented in the final version of the thesis. Also a use case example
of a replicated table implemented using JMSGroups was presented.
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Chapter 7

Replicated Invocation

In today’s systems, applications are composed from various components that can be collocated but may
also be located on different machines (e.g., in J2EE [71], CORBA [56]). These components collaborate
in order to service a client request. More specifically, a client request executed in one component may
trigger a request to another component. While acting as a server component1 to the client, the component
at the same time assumes the role of a client, by invoking a service on another server.

To ensure that applications work even in the face of failures, replication is generally used within the
components. While the problem of replicating a server and invoking a replicated server has been thor-
oughly studied [10, 28, 61], the problem of a replicated server invoking another (replicated) server has not
been addressed in a satisfactory manner. We call the latter invocation a replicated invocation. Replicated
invocation in the context of deterministic servers causes a problem of duplicate requests. This problem is
addressed in [45], where proxies are presented to filter the requests using their ID numbers. However, the
proxy solution assumes deterministic replicas. Hence, it is not applicable for non-deterministic servers,
because the requests sent by the replicas of non-deterministic servers may not be identical [60]. In the
context of non-deterministic servers, replicated invocation causes a different problem: the problem of
orphan requests.

The problem of orphan requests described in this chapter was first mentioned in [59] in the context
of transactional agents. There the specification and the solution of the problem were presented in terms
of invocations between the clients and the servers. Here we present a new specification of the problem
and a new protocol to solve it, both in terms of transactions.

Informally, an orphan request occurs if a server processes a request from another server, but this
request is not valid any more. Consider, for instance, a system where client C invokes replica Ri of
replicated server R (see Figure 7.1(a), in our case i = 0). To process C′s request, Ri invokes another
server S, i.e., Ri itself acts as a client to server S. We denote by ri (resp. s) the processing on Ri (resp. S).
We say that s is a subinvocation or nested invocation of ri. If no failures occur the servers update their
states and Ri sends the reply to the client. However, a component may be subject to a failure. If Ri fails
before sending the reply to C (see Figure 7.1(b)), C will eventually notice the failure, but not S (since S

1In the following, a server component is called a server.

75
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already finished the processing). The state of S will reflect invocation ri, which has not finished properly.
Hence, the state of S is inconsistent. In this case we call s an orphan request. If at this point some other
client accesses S, there is a danger that the inconsistent state of S will propagate in the system. Note that
the failure of S causes a different problem. Indeed, it does not result in an orphan request; rather, the
state of S is no longer available.
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(b) With a failure.

Figure 7.1: Nested request invocations (the processing of the request is shown by gray bars).

As mentioned above, and as described in details further in the chapter, the orphan request problem can
occur when the invoked replicated server is non-deterministic. The work in [36, 54] provides mechanisms
to enforce deterministic execution. In contrast, our approach supports non-determinism and at the same
time prevents orphan requests. It is based on the idea of exchanging sufficient undo information prior to
the server invocation to allow other client replicas to undo the requests of failed client replicas. In contrast
to [21], we do not limit our approach to three-tier architectures (consisting of presentation, application
logic, and data tier) [39] and stateless clients. Rather, we assume that replicas R j do maintain their own
state. Moreover, we show that our approach allows us to prevent blocking when the server uses locking
to ensure concurrency control [27]. Indeed, a failure of Ri in such a scenario may prevent the termination
of the processing on server S, and thus no other client can access the locked data items.

JMSGroups context. In the JMSGroups central server architecture presented in Chapter 5 the server
is replicated in order to be fault tolerant. In providing a group communication service it acts as a middle-
ware for its clients, either groups of clients implementing replicated services or single clients accessing
these services (see Figure 5.4). In other words, the JMSGroups server replication level in Figure 5.4
corresponds to replicated server R in Figure 7.1, the services implemented by JMSGroups correspond to
server S and the client of JMSGroups services corresponds to client C. As such, we have the architecture
where the client invokes a replicated server, which to process the client’s request invokes another service.
As described above, this architecture is prone to the orphan request problem.

In both our implementations presented in Chapter 6 the replicated servers providing JMSGroups
service are deterministic and are not subject to the orphan request problem. But non-deterministic JMS-
Groups server is also possible. For example, if JMS message expiration time is used for messages, the
messages are held on the server until they expire. In such case server replica state is dependent on time,
which can lead to non-determinism. For the non-deterministic JMSGroups server the orphan request
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problem should be taken into account.

Chapter Roadmap. We first introduce replicated invocation in Section 7.1. In Section 7.2 we specify
the problem of replicated invocations in terms of transactions. Using the transaction model, an orphan
request becomes an orphan subtransaction (Section 7.3). The core contribution of the chapter is presented
in Section 7.4. In this section, we present an orphan-subtransaction-free replicated invocation protocol
in the context of non-deterministic execution. Finally, we relate our solution to the existing work in
Section 7.5 and summarize the chapter in Section 7.6.

7.1 Replicated Invocation

We assume an asynchronous system which has no bounds on communication delays nor relative process-
ing speeds. Processes can crash and do not recover.2 In such a system, accurate failure detection is im-
possible and consensus cannot be solved [20]. However this issue is orthogonal to the problem addressed
in the chapter. Processes communicate via quasi-reliable channels: if processes p and q are correct (i.e.,
do not crash) and p send message m to q, then q eventually receives m. Note that quasi-reliable channels
provide a more accurate model for TCP connections than reliable communication channels, which do
not require p to be correct.

Replication is a widely used technique to address failures of a server. Instead of relying only on a
single server, the service is provided by multiple server replicas. If a failure of one server replica occurs,
another replica takes over and services the clients’ requests. As a consequence, the service is available
to the clients despite of a failure. We say that a client invokes a replicated server or rather a service on it.
If the client itself is replicated, we speak of a replicated invocation.

Definition 1 (Replicated Invocation). A replicated invocation occurs if a replicated client invokes a
server (not necessarily replicated).

In Fig. 7.2, the invocation from replicated server R to server S is a replicated invocation. If S is
replicated, we do not make any assumptions about the replication strategy that can be used by S (e.g.,
passive [28], active [70], semi-passive [14], or semi-active [61]), as the replication strategy of S is not
relevant for our contribution. Indeed, although S may be replicated, its replication strategy makes it
behave like a non-replicated server from the point of view of R. For simplicity we represent server S as
a single, non-replicated server, which is sufficient to illustrate the problem addressed in the chapter and
our solution. However, in real systems S would be replicated in order to prevent the existence of a single
point of failure.

The replicated invocation problem can be addressed in the context of a deterministic or a non-
deterministic server, R. Non-determinism can occur with respect to communication and computation.
The former is caused by a different order of message arrivals at the replicas. The latter, i.e., non-
determinism related to computation, occurs if the replica, for instance, is multithreaded or uses asyn-

2Actually, crashed processes can recover with a different process ID. From the application’s perspective this corresponds to
a new process.
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chronous system calls (e.g., interrupts). A deterministic server (or non-deterministic server) is determin-
istic (non-deterministic) with respect to its computation, but not necessarily with respect to communica-
tion. In other words, the order in which client requests arrive at a deterministic server is arbitrary.

7.1.1 Deterministic servers

Server replicas are said to be deterministic if, given the same initial state and the same request, all transit
to the same state and return the same reply. We show that orphan requests do not occur with replicated
deterministic servers.

In the case of deterministic servers active replication [70] can be used. In active replication clients
multicast (using total order multicast) the request to all server replicas, which process the requests in
parallel (see Fig. 7.2, 1©). If this processing requires the invocation of another server, each replica
issues exactly the same invocation 2©. Because these invocations are identical, duplicate invocations can
easily be detected and filtered, in order not to process them multiple times 3©. This is done by having
the replicas Ri assign IDs to their invocation.3 Duplicate invocation filtering is addressed for instance
in [45, 54]. The result of the processing on S is valid for every replica Ri and is multicast to them 4©.
Also, each replica Ri sends the reply back to the client C 5©. Generally, the client accepts the first one
and discards the others.

C

R0 r0

R1

R2

S s

r1

r2

Filter
duplicates

Filter
duplicates

1

2

3

5

4

Figure 7.2: Deterministic server R is replicated using active replication.

As long as there is at least one correct (not failed) replica Ri, the orphan request problem does not
occur with replicated deterministic server R.4 The reason is that all replicas share the same request s (see
Fig. 7.2) and thus the failure of one or multiple Ri does not leave s as an orphan.

7.1.2 Non-Deterministic servers

Non-deterministic execution of Ri prevents the use of active replication; rather, it requires another repli-
cation strategy, such as passive (also called primary-backup [10]), semi-passive, or semi-active replica-

3One could argue that the client can assign a unique ID to its invocation, which can be reused for the nested invocations as
well. Unfortunately, this does not always work. Indeed, assume that processing on R leads to a number of invocations to S that
is not known a priori. Hence, the request ID must be assigned by R.

4Usually, replication techniques in the asynchronous system model assume that a majority of replicas do not fail [28].
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tion. Without loss of generality, we discuss the use of passive replication for the server R. However,
our approach is also valid in case the server R is semi-passively or semi-actively replicated. In passive
replication only one replica, the primary, executes C’s request. The update is then sent to the backup
replicas. The backup replicas do not directly communicate with C; rather, they only communicate with
the primary. As only the primary executes the request, passive replication supports non-deterministic
execution. However, a passively replicated server needs to handle failures of the primary. If the primary
fails or is erroneously suspected, one of the backups takes over the role of the primary (Fig. 7.3). The
client C eventually times out, has to learn the identity of the new primary (e.g., R1), and reissues the
request.

C

R0 r0

r1
R1

R2

S s

d

orphan
request

2

3

4

1

D

Figure 7.3: Non-deterministic server R is replicated using passive replication (with a failure of the pri-
mary).

Consider nested invocation in the context of the passively replicated non-deterministic server R (see
Fig. 7.3). To service client C’s request 1©, the primary replica R0 invokes server S 2©, but fails before
updating the backups. A new primary, say R1, is elected and the client C resends its request 3©. As the
replicas of R are non-deterministic, R1 might issue a different invocation to server S to serve the same
request from C. It might even choose a different server D 4©, or it might not issue the invocation at all.
The result computed for r0 thus cannot be reused for r1, and d must be processed separately. This leaves
s as an orphan request, which has a pending effect on the state of S. A new invocation of S at this point,
would likely lead to an inconsistent reply. So the problem of the orphan request s needs to be addressed.
In the rest of the chapter we focus on replicated invocation in the context of non-deterministic replicated
servers. In the next section, we introduce the specification and notation we use to model this problem.

7.2 Specification with Non-Deterministic Servers

In this section, we give a specification of replicated invocation in terms of transactions. The problem
of orphan requests is caused by a partial execution of C’s request. As the transaction model addresses
the issue of atomicity of a set of operations it is useful to model replicated invocation. Informally, a
transaction always terminates by either committing its modifications, or aborting them.
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Transactions (recursively) decomposed into subtransactions are called nested transactions [53]. Ev-
ery subtransaction forms a logically related subtask. A successful subtransaction becomes permanent,
i.e., commits, if all its parent transactions (the transaction that encompasses this subtransaction) commit
as well. In contrast, a parent transaction can commit (provided its parent transaction commits) although
some of its subtransactions may have aborted. A subtransaction is ready to commit, if it has successfully
executed and is waiting for the commit or abort decision of its parent transaction. A ready-to-commit
transaction t, denoted ReadyToCommitt , can no longer spontaneously abort (i.e., itself decide abort),
but only aborts if its parent transaction aborts. Finally,→ denotes the precedence operator as specified
in [37]. More specifically, if t1 → t2, t1 is executed before t2. In other words, any operation of t1 that
conflicts with an operation of t2 is executed before that operation of t2.

We first specify the invocation between the client C and the server R (i.e., the traditional passive
replication approach) in terms of transactions (Section 7.2.1), and then extend this specification to also
encompass the invocation between server R and server S (Section 7.2.2).

7.2.1 Invocation C←→ R

We model the execution of C’s request on server R as follows. Upon reception of C’s request, the primary
replica R0 starts transaction t0 (see Fig. 7.4). This transaction contains subtransactions pr0 (pr stands for
processing) and up0 (up stands for update). For the moment, we ignore the invocation to server S in
Fig. 7.4. Subtransaction pr0 executes the client request on the primary, subtransaction up0’s task is to
update the backup replicas of R, i.e., R1 and R2.

R0

R1

R2

S

C

transaction t0

pr0

up0

est0

processing of client request
request reply

Figure 7.4: Representation in terms of (sub)transactions (invocations between C, R, and S).

The specification is stated in terms of properties of transactions. We mention only those that are
related to the replicated invocation, and omit basic transaction properties. The full set of properties
for nested transactions can be found in [13]. The invocation C←→ R can be specified as follows (the
subscript prim refers to the primary replica, e.g., R0 in Fig. 7.4):

1. (Abort Atomicity) If transaction tprim aborts, all of its subtransactions (i.e., prprim and upprim) must
abort.
Aborttprim ⇒ (Abortprprim ∧Abortupprim)
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2. (Cruciality) If one of subtransactions prprim or upprim aborts, tprim also aborts: prprim and upprim

are crucial for tprim. Transaction tprim doesn’t make sense without either of these transactions.
Abortprprim ∨Abortupprim ⇒ Aborttprim

3. (Sequence) Transaction prprim always executes before upprim. This is because upprim updates the
backups with the results of the execution of prprim.
prprim→ upprim

4. (Termination) If Rprim executes tprim, then all correct replicas of R eventually know the outcome
(i.e. commit or abort) of tprim. This is modeled by either an abort or a commit of transaction
upprim.
ReadyToCommittprim ⇒ ♦(Abortupprim ∨Commitupprim)

5. (Non-triviality) If both subtransactions prprim and upprim have successfully executed (i.e., are ready
to be committed), eventually transaction tprim is committed.
ReadyToCommitprprim ∧ReadyToCommitupprim ⇒Committprim

Property 1 is a standard nested transaction property. The success of subtransactions prprim and upprim

is crucial for the success of tprim: in other words, tprim can only commit if the processing transaction
prprim and the update transaction upprim of the backup replicas have succeeded (Property 2).

The sequence property (Property 3) is inherited from passive replication: first the client request
is processed on the primary, then the backups are updated with the result obtained from the processing.
Note that this property, together with Property 2, specifies a particular case of nested transactions, namely
a distributed flat transaction [27]. We use the nested transaction model because it is needed when we
extend our specification to the invocation between R and S in Section 7.2.2.

The termination property (Property 4) ensures that once transaction tprim is ready to commit, its
subtransaction upprim eventually terminates by either commit or abort. Although the primary may fail,
transaction upprim eventually must be terminated. As a consequence, the other replicas need to somehow
learn of the failure of upprim. Property 4 is thus also a liveness property, which ensures that the outcome
of transaction tprim is eventually decided and that all subtransactions executing on correct processes
eventually terminate. This property is essential in preventing orphan requests or subtransactions.

Finally, the non-triviality property (Property 5) specifies, that if both subtransactions prprim and
upprim are ready to be committed, then the outcome of tprim is commit. Note that we do not require that
tprim be committed by Rprim (where tprim executes), as Rprim may have failed. Moreover, the specification
still allows Rprim to always immediately abort prprim despite this property.

In our system model, we assume that crashed processes do not recover5 (see Section 7.1). Conse-
quently, the failure of a replica Rprim erases all traces of the transaction on R, unless the other replicas
have been updated.

5This is the standard assumption that forces a protocol to be non-blocking. In other words the protocol presented later is
non-blocking.
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7.2.2 Invocation R←→ S

In the previous section, we have specified the invocation between C and R. In this section, we extend this
specification to the cases where the primary R0 invokes transaction est0 (external server transaction) on
another server S (see Fig. 7.4). The invocation between R and S corresponds to the replicated invocation
presented in Section 7.1.2. Transaction est0 is a subtransaction of transaction pr0. Recall that server S is
represented as a single, non-replicated server. For our discussion, it is not relevant whether S is replicated
or not.

Compared to the model of the invocation C←→ R, the invocation of S adds another level of nesting.
Indeed, the subtransaction pr now contains subtransaction est. While subtransactions pr and up are cru-
cial for the successful outcome of t, subtransaction est may not be. In other words, in some applications
pr can commit although est aborts.

Replicated invocation between R and S can thus be specified by the properties mentioned in Sec-
tion 7.2.1 and the following two additional properties:

6. (Remote Abort Atomicity) If subtransaction pri is aborted, esti is aborted as well.
Abortpri ⇒ Abortesti

7. (Remote Commit Atomicity) If subtransaction esti has successfully executed and is ready to be
committed, and its parent transaction pri commits, then esti is also committed.
ReadyToCommitesti ∧Commitpri ⇒Commitesti

Properties 6 and 7 ensure that subtransaction esti eventually is terminated, i.e., either commits or
aborts. Clearly, we assume here that server S is available, which is the case if S is fault-tolerant (i.e., if S
is itself replicated). Note that properties 6, 1 and 2 specify that if up aborts then est must also be aborted.

7.3 The Problem of Orphan Subtransactions with Replicated Invocation

According to Properties 1 to 7 the outcome of the entire execution (i.e., commit or abort) is decided
by the top-level transaction, and then this decision is propagated to the subtransactions, which in turn
propagates to their subtransactions. However, the failure of a replica Ri may interrupt the mechanism that
notifies the subtransactions of the commit or abort decision. In this case, est0 is unaware of the outcome
of t0 and thus cannot terminate (see Fig. 7.4): est0 is called an orphan subtransaction. Clearly, orphan
subtransactions are undesirable, because they maintain locks on data items and prevent other transactions
from accessing these items. Note that subtransaction est0 cannot spontaneously abort, because its parent
transaction decides the final outcome.

Depending on the processing of server S (optimistic or pessimistic) orphan subtransactions cause
different problems.
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7.3.1 Pessimistic vs. optimistic server S

To ensure transaction atomicity, data items are locked. When a transaction starts, the needed locks are
acquired; when the transaction finishes, the locks are released, and the result of the processing becomes
visible in the system. If the locks are not available for some transaction t, the processing blocks until
the locks are released by the transaction holding the locks. A subtransaction holding the locks has two
options upon finishing its processing: (1) it can release the locks immediately (i.e., temporary commit),
or (2) it can wait for the commit/abort decision from a higher entity (i.e., parent transaction), keeping
the locks on the data. The latter option, i.e., option (2), is called pessimistic processing, and the server
is called a pessimistic server. Option (1) is called optimistic processing, and the server is called an
optimistic server.
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processing of
client request 1

transaction t1

pr1

est1

transaction t0
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Figure 7.5: An orphan subtransaction est0 on pessimistic server S.

Blocking with Pessimistic Server S. Consider the case of an orphan subtransaction (Fig. 7.5) with a
pessimistic server S. Assume that after the crash of the primary R0, the new primary R1 calls the same
server S, and executes subtransaction est1, which accesses some of the same data items accessed by est0.
In this case est1 has to wait until est0 releases the locks. Hence, the entire client R is blocked. Blocking
of R is undesirable, as it acts itself as a server for other applications. Moreover, other clients may also
block when accessing server S.

Inconsistency with Optimistic Server S. The problem with optimistic servers is different: the tem-
porary commit might have to be undone. This can be handled by compensating actions: to abort a
committed transaction a compensating transaction [24, 26] is executed on the server. A compensating
transaction tcomp semantically undoes the modifications caused by the original transaction. Assume, for
instance, that transaction t reserves a ticket on a flight, then tcomp simply cancels this reservation.

Using an optimistic approach, blocking is prevented. Indeed, the locks held by subtransaction est0
(Fig. 7.6) are immediately released and the data items are again accessible by est1 (unless another trans-
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action has acquired them in the meantime). However, in this case, subtransaction est0 needs to be com-
pensated, since the state of server S reflects est0, but after the crash of R0, est0 is not valid any more.
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Figure 7.6: An orphan subtransaction est0 on optimistic server S.

In the next section we present solutions for pessimistic and optimistic servers.

7.4 Replicated Invocation Protocol

In the previous section we have used transactions to model the problem of replicated invocation in the
context of a passively replicated client R. In particular, we have used orphan subtransactions as a model
of orphan requests. In this section, we show an approach that prevents orphan requests. For this purpose,
we first present the basic idea to solve the problem of orphan requests/subtransactions in the context of
replicated invocation, and then the protocol that implements this idea.

7.4.1 Basic idea: sharing undo information among replicas of R

The Problem of Finding Out About S. To prevent orphan requests in replicated invocations, it is
crucial that a new primary replica R j is able to find out the identities of the servers that have been accessed
by the previous primary Ri. This allows R j to send abort message(s) or compensating transaction(s) to S.
How can S be known to R j? The identity of S is trivially known if (1) it can be deterministically computed
by the replicas of R, or (2) the set of servers is sufficiently small. Note that in case (1), the replicas still
may generate different requests to S, or not send any request to S at all. In case (2), a message is sent to
all servers to find out which one has been invoked by R j. In the following, we address the more complex
cases in which the identity of S cannot be deduced a posteriori. This is especially the case if:

• the identity of S is dynamically computed during the processing of R j. In other words, the identity
of S is not known to the replica prior to the processing of C’s request, and it is impossible for R j to
find out the identity of S computed by another replica Ri, and

• the set of potential servers is large.
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Sending Undo Information. We call undo information, the information that allows a particular request
to be undone; it includes the name of the server S to which the request is sent, and the description of an
action to perform. The solution to orphan requests consists of making the undo information available to
other replicas of R before the primary invokes S. In the context of the undo information, we distinguish
between termination requests and compensation requests:

(1) non terminated orphan requests (or subtransactions) on pessimistic servers need to be terminated,
and

(2) terminated orphan requests (or subtransactions) on optimistic servers need to be compensated.

In case (1), termination requests are COMMIT and ABORT messages.6 In case (2) compensating
actions are included in the undo information in order to restore the consistent state of the system. How-
ever, note that compensating the request of a replica is not easy. For example the sequence of requests
(rqx;rqy;rqcomp

x ) must be a valid sequence and must be semantically equivalent to the sequence that con-
sists only of rqy. Note that this is not a consequence of our solution; rather, this assumption is required
also in the case S is accessed by multiple different clients.

If a new primary R j is elected as a result of an erroneous suspicion of the old primary Ri, Ri can
itself send the termination or compensation request to S, if needed. However, from the perspective of the
replicas Rk (k �= i) it is impossible to distinguish between an erroneous and a correct suspicion of Ri (see
Section 7.1).

7.4.2 The protocol

The Replicated Invocation Protocol for non-deterministic execution is presented in Figures 7.7 and 7.8.
The protocol consists of six procedures executed on the primary of R. When the primary gets a request
from client C, Procedure 1 (Fig. 7.8) is executed. If the request was not processed previously, the primary
starts processing it. This corresponds to transaction t0 in our model (see Fig. 7.4). After executing
procedures Process Request (Procedure 2) and Update Backups (Procedure 3) the processing on remote
pessimistic servers must be committed and undo information sent to backups during the processing must
be garbage collected. Procedure 1 terminates after sending the reply to the client.

Procedure 2 corresponds to transaction pr0 in our model (see Fig. 7.4). Assume that during pro-
cessing, the primary needs to send a nested request to some other server S. Before doing so, a message
of type UndoInfo is prepared for that request and multicast to the backups (this multicast is denoted by
Uniform-VScast).7 The content of the undo message depends on the type of server the original request

6We assume that the execution of termination requests is idempotent.
7In the context of group communication, this multicast corresponds to what is called uniform view synchronous broad-

cast [12, 68]. Roughly speaking, uniform view synchronous broadcast ensures that if some process VSdelivers the message,
then all correct processes eventually VSdeliver the message. For simplicity, we assume Sending View Delivery [12]. However,
our approach can be easily extended to encompass also Same View Delivery. More information about using group communi-
cation for passive replication can be found in [28]. We do not discuss these issues here, since they are not needed to understand
the contribution of the chapter.
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New Message TYPE StandardRequest = {req, ID};
req - (the request to be sent);
ID - (ID, which uniquely identifies the request);

New Message TYPE UndoInfo = {comp, reqID, parentID, target};
comp - (compensating request, used only with optimistic servers);
reqID - (ID of the request this undo information corresponds to);
parentID - (ID of request from client C, whose processing

triggered the undo message);
target - (the server, to send this undo message to, if needed);

Pessimistic(S) - (predicate that evaluates to true if S is pessimistic);
Optimistic(S) - (predicate that evaluates to true if S is optimistic);

Figure 7.7: Message type declaration and predicate definition.

is sent to. Upon delivery, the undo information messages are stored locally on backups R j in the set Uj.
Then, server S is invoked.

Procedure 3 multicasts the result of the request processing to the backups. It corresponds to the trans-
action up0 in our model (see Fig. 7.4) and to uniform VScast traditionally used in passive replication.8

Procedure 4 is called when a replica becomes a primary, which occurs if the previous primary fails or
is wrongly suspected to have failed. Before starting to serve the clients’ requests, the new primary takes
care of orphan requests.

Managing orphan requests in Procedure 5 depends on the type of server: pessimistic or optimistic.
In the following two paragraphs, we describe each case separately. We assume the same system as in the
Fig. 7.3, i.e. R0 is the initial primary. If R0 crashes, R1 takes the role of the primary.

Procedure 6 enables garbage collection (GC) of the undo information on the backups. It multicasts
(using uniform VScast, mentioned above) the set of request IDs whose undo information has become
obsolete. In a practical setting, the messages related to garbage collection can be piggy backed on the
messages of the next uniform VScast in Procedure 3. Upon reception of the messages related to garbage
collection (not shown in Fig. 7.8) the backups discard all the corresponding undo information. If they
have not yet received the undo information that corresponds to a particular request ID, they store this GC
information for later use.

Pessimistic Server S. If server S executes pessimistically, a termination message is always required.
Indeed, assume that primary R0 fails after updating the backups, but before sending the result to the
client. In this case, as the new primary R1 has received the update, a COMMIT message is sent to S
together with the ID of the request to be committed. In contrast, an ABORT message is sent to S by R1, if

8If processes can communicate using reliable communication channels, then uniform VScast is not needed to send the undo
information to the backups. Rather, simple point-to-point communication is sufficient.
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r: StandardRequest;1

u: UndoInfo;2

Uprim: set of UndoInfo messages;3

Procedure 1. Upon reception of r from C on primary Rprim4

begin5

// a set of IDs for Garbage Collection
UReqIDs← /0;6

if update for request ID=r.ID is available on Rprim then7

send(reply for r) to C;8

else9

Process Request(r);10

Update Backups(update for r);11

foreach u : u ∈Uprim and u.reqID = r.ID do12

if Pessimistic(u.target) then13

send(COMMIT,u.reqID) to u.target;14

Uprim←Uprim \{u};15

UReqIDs←UReqIDs∪{u.reqID};16

Garbage Collection(UReqIDs);17

end18

end19

send(reply for r) to C;20

end21

end22

Procedure 2. Process Request(r) on the primary Rprim23

begin24

. . .25

if primary needs to send nested request to S then26

new s: StandardRequest;27

s.req← request to S;28

s.ID← assign unique ID;29

new u: UndoInfo;30

u.parentID← r.ID;31

u.target← S;32

if Pessimistic(S) then33

u.comp← NULL;34

u.reqID← s.ID;35

else if Optimistic(S) then36

u.comp← compensating request for s;37

u.reqID← NULL;38

end39

Uprim←Uprim∪{u};40

Uniform-VScast(Uprim);41

wait to deliver(u);42

send(s) to S;43

wait for reply;44

end45

. . .46

end47

Procedure 3. Update Backups(update for r)48

begin49

Uniform-VScast(update for r);50

wait to deliver(update for r);51

end52

Procedure 4. When Ri becomes a primary53

begin54

// set of IDs for Garbage Collection
UReqIDs← /0;55

foreach u : u ∈Uprim do56

Manage Orphan(u);57

Uprim←Uprim \{u};58

UReqIDs←UReqIDs∪{u.reqID};59

end60

Garbage Collection(UReqIDs);61

end62

Procedure 5. Manage Orphan(u)63

begin64

if update available for request ID=u.parentID then65

if Pessimistic(u.target) then66

send(COMMIT,u.reqID) to u.target;67

end68

else69

// if no update is available
if Pessimistic(u.target) then70

send(ABORT,u.reqID) to u.target;71

else if Optimistic(u.target) then72

send(u.comp) to u.target;73

end74

end75

end76

Procedure 6. Garbage Collection(UReqIDs: set of IDs)77

begin78

Uniform-VScast(UReqIDs);79

wait to deliver(UReqIDs);80

end81

Figure 7.8: Replicated invocation protocol.
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R0 fails before it updates the backups (see Fig. 7.9). When C resends its request, this request is executed
by R1.

Consider the particular case of R0’s failure after sending the undo information, but before sending
the request to S. In the case of pessimistic server S, no special mechanisms are needed: termination
messages not related to an actual request are simply ignored by S.

R0

R1

R2

S

C
r

s0

resend
request

VScast
undo info for s 0

(ABORT, s0)

crash

reply

r

s
1

VScast undo
info for s 1

ReadyToCommit s0

Figure 7.9: Primary R0’s failure after invoking pessimistic server S (the primary fails before backups are
updated).

Optimistic Server S. To undo request s that has been sent to the optimistic server S, a compensating
request is used. Consider first the case where no compensating request is required. In this case, the
primary (i.e., R0) executes C’s request (which requires the sending of a request to S), updates the backups,
and crashes. As the state of the backups has been updated, the new primary R1 simply returns the result
previously computed by R0 when C resends its request.

However, if R0 fails before updating the backups, the processing on S needs to be undone. Hence, a
compensating request is sent to server S. Eventually, C resends its request to the new primary R1, which
recomputes the result. Note that the order of compensating an original request is not significant. This is
a consequence of the properties of the compensating request (see Section 7.4.1).

A particular case arises if R0 fails after having sent the undo information to the backup replicas,
but before sending the request to S. As the backup replicas have received the undo information u (see
Procedure 2, lines 41-42), the new primary will use this undo information to send a compensating request
to S (see Procedure 5, line 73). Similarly, the undo information may arrive at S before the original request.
Server S must handle this case: if the original request has not been received, then the undo information
is not executed, but stored to be reused in case it eventually arrives (if it does at all). Such early undo
messages are possible even if R0 fails after sending the original request.

7.4.3 Correctness Issues

In this section, we argue about the correctness of the replicated invocation approach. Basically, we have
to show that our algorithm satisfies Properties 1 - 7. As Properties 1 to 5 are already satisfied by passive
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replication based on uniform VScast, the reader is referred to [69] for the proofs.
We only give an informal proof of properties 6 and 7. For this purpose, we first prove the following

lemma:

Lemma 4. If primary p VSdelivers undo information u and a new primary q takes over (because of a
failure of p or an erroneous suspicion), q has also VSdelivered u.

Proof sketch. The proof of this lemma is based on the specification of uniform VScast. Indeed, unifor-
mally vscasting u (see Procedure 3 in Fig. 7.8) ensures exactly this property. Note that the uniformity is
needed here. Indeed, assume that the primary VSdelivers the undo information message u, invokes S and
then fails. Although the primary has failed, the other group members must also VSdeliver u to prevent
orphan requests on S.

From this lemma, the proof of Properties 6 and 7 is immediate. When q becomes primary, it first
processes all undo information by sending it to the corresponding servers S. This and the fact that undo
information is only garbage collected when an ACK has been received ensure that Properties 6 and 7 are
satisfied.

7.4.4 Evaluation

Message Costs. Compared to the costs of passive replication (more specifically VScast) our mecha-
nism adds an additional overhead. We are interested in the costs of the execution in which no processes
fail (which generally is the case most of the time) and compute (1) the total number of messages and
(2) the messages on the critical path of the execution. A message is on the critical path if the algorithm
cannot proceed until this message is received.

If we assume that R consists of n replicas, then the total number of additional messages is (n−1)2 +
3(n−1), the cost of Uniform VScast. Indeed, sharing the undo information among the replicas requires
to send additional (n−1)2 +(n−1) messages, (n−1) ACKs and (n−1) notifications to deliver. Among
these messages, � n+1

2 �n + (n− 1) are on the critical path. Clearly, if a broadcast medium is available
among the replicas, then the costs of sending undo information is greatly reduced. However, the ACKs
are still sent using point-to-point communication.

The costs of the undo messages are added to every single remote server invocation. Hence, response
time has increased. On the other hand, these messages are usually very small and thus not very expensive.

Limitations. The approach presented in Section 7.4.2 has two limitations. However, we believe that
these limitations are inherent to the replicated invocation itself, and not at all related to our solution.

The first drawback is that server(s) S are not allowed to spontaneously abort unterminated invoca-
tions. In our solution, the client replicas R are responsible for terminating pending invocations, and the
server(s) S relies entirely on the replicas R. In other words, the server(s) S must trust the clients R to do
their job.

A pessimistic server S needs to support the abort/commit of a transaction (i.e., invocation) by another
process than the one that has issued the invocation (see Section 7.4.2). To our knowledge, although a
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mechanism to pass on the responsibility for a transaction to another process is foreseen in the XA Speci-
fication for distributed transaction processing [35], this mechanism seems not to encompass the situation
where processes fail. Rather, in this case, the unterminated transaction is simply aborted.

7.5 Related Work

Most of the work performed in the context of replicated invocation assumes deterministic execution.
For example, Mazouni’s work [45] addresses transparency of the replication technique in the context of
replicated invocation. More specifically, the replication mechanism of the client needs to be hidden from
the server, and vice-versa. Mazouni advocates the use of proxies to achieve transparency, for both the
invocation and the reply to the invocation. Hence, a proxy is located with each client and server replica.
To achieve transparency, these proxies also filter duplicate invocations and results, assuming that the
clients and the actively replicated servers are deterministic.

Zhao, Moser, and Melliar-Smith [76] unify fault-tolerant CORBA (FT-CORBA) and the CORBA
Object Transaction Service (OTS) in the context of a three-tier architecture. Their work also assumes de-
terministic execution. The proposed infrastructure replicates transactional application servers (business-
logic tier) to protect them from failures. Moreover, they are augmented with an automatic transaction
retry mechanism, which in the case of failure prevents the client from reissuing the request (this prevents
duplicate invocations from the client tier). Replicated gateways are introduced between the business-
logic tier and the data tier: they are responsible for filtering duplicate invocations and manage transaction
retry. If a failure occurs and an ongoing transaction is not ReadyToCommit, the infrastructure, transpar-
ently to the client, aborts and retries the transaction. For this purpose, the state of all objects involved in
the transaction is checkpointed [27].

Similarly in [19] Felber and Narasimhan use fault-tolerant CORBA and the CORBA Object Trans-
action Service in the context of a three-tier architecture. Additionally they allow middle tier (server)
non-determinism. FT-CORBA mechanisms are used for the middle tier replication and CORBA OTS is
used for the transactional invocation of the third (data) tier. The protocol in [19] is an implementation
example of the more general protocol presented in this chapter. In such implementation the complexity
of undoing orphan requests is hidden inside the CORBA OTS service. Also the protocol in [19] considers
only the pessimistic data tier servers.

In contrast, Narasimhan enforces determinism (in the context of multithreaded applications) instead
of assuming determinism. The work was performed in the context of Eternal [54], a replication infras-
tructure for CORBA objects. It introduces the notion of MT-domain (MT stands for multithreaded), to
refer to any CORBA client or server that supports multiple (application level or ORB level) threads,
which may access shared data. The Eternal system enforces deterministic behavior within the MT-
domain by allowing only a single logical thread of control within each replica of the MT-domain at any
point in time. Although multiple threads may exist in a MT-domain, all of them relate to the same logical
thread of control, and only one is allowed to execute at a time. Consistent dispatching of threads within
replicated MT-domain is achieved using deterministic operation scheduler.
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Jimenez et al. [36] enforce determinism of transactional multithreaded replicas in the context of
active replication. More specifically, they identify two levels of non-determinism: external and inter-
nal. External non-determinism corresponds to non-determinism related to communication, while inter-
nal non-determinism relates to computation, in particular thread scheduling. External non-determinism is
handled using totally ordered multicast. Internal non-determinism is addressed with deterministic thread
scheduling and selective message reception from two-level queues. In [36], no replicated invocation is
considered.

Frølund and Guerraoui present a correctness criterion for exactly-once in the context of replica-
tion [22], that also addresses non-determinism in the execution and external side-effects. They also
propose a replication protocol, called asynchronous replication [21]. The protocol is targeted towards
the classical three-tier architecture, with slim client, stateless application servers, and databases. In con-
trast, our approach is more general in that it also addresses stateful components (our approach does not
make the distinction between clients and servers). Rather, any client can at the same time act as a server
for another client. Assuming stateful components clearly leads to stronger requirements, e.g., the update
of all replicas.

A large body of work in the context of checkpointing and rollback recovery exists [16]. However,
even if undo messages appear in this chapter and in checkpointing/rollback recovery, the issues are only
loosely related. Checkpointing techniques do not address availability: progress is only possible upon
recovery. In contrast, the chapter addresses issues in the context of replication, a technique masking
failures, i.e., allowing progress even while processes are down.

7.6 Summary

In the chapter we have presented the problem of orphan requests. In the context of replicated invocations,
orphan requests occur when a server replica Ri invokes another server S, but fails before updating the
other replicas R j ( j �= i). Hence, the results of the execution on Ri are lost. As the state of server S
reflects the invocation by Ri, the state of S may become inconsistent with respect to the other replicas
R j. This problem, which is easily addressed with deterministic replicated servers R [45], has not been
solved in the context of non-deterministic replicated servers. We proposed a protocol for preventing
orphan invocations based on undo information shared by Ri with other replicas of R. More specifically,
Ri sends undo information to its replicas before issuing the nested invocation to S. Based on this undo
information, another replica Rk (k �= i) can undo Ri’s invocation on S in case Ri fails or is erroneously
suspected. Our protocol handles both pessimistic and optimistic execution of the invocation on S.
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Chapter 8

Conclusion

8.1 Research Assessment

In the thesis we propose a standard interface for group communication (GC) based on JMS. We believe
that its acceptance will enable the wider use of GC not only in the academic community, but also in the
enterprise world. The adoption of the JMS interface for GC led to three major assessments:

The mapping and specification. When defining a standard for GC we provided an API mapping
between GC primitives and JMS. But we did not constrain the standard only to the API. We wanted to
profit from the properties provided in the JMS specification. This lead to the semantic mapping between
the JMS and GC. Based on this mapping a new GC specification that incorporates JMS properties was
proposed. As the API and the specification reflect the spirit of JMS, we hope that our proposal will
contribute to a wider use of the GC abstractions, and that GC will become an integral part of future
applications.

The architecture and implementation. To implement our specification we have chosen a centralized
architecture. It provides GC as a service. Two implementations were proposed: a JORAM based and a
Component Chain based. Both rely on the component architecture. The two implementations differ in
the way the service is composed from the smaller components. In the JORAM based implementation the
components (agents), in order to send the message to the right component, need the information about
the other components and the services they provide. In the Component Chain based implementation the
components are concerned only with their own task (with just a few exceptions for efficiency): they do
not have the information who will use the results they produce. This information is provided by the
“component chain” which is constructed at the system initialization time.

The replicated invocation. In the centralized server architecture when the server providing GC itself
is replicated, we have two level of replication. This raises the problem of replicated invocation, when
a replicated server invokes another replicated server and the invoking server is non-deterministic. We
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specified the replicated invocation problem in the transactional environment and presented the solution
to it.

In our implementations the server is deterministic and uses active replication. So our solution is not
needed here. But in a case of non-deterministic server, the problem must be taken into account.

8.2 Open Questions and Future Research Directions

Performance. Middleware systems in general does not show good performance. The performance
is the price for the high abstraction level that middleware provides. Our JMSGroups implementation
(CCB) also suffers from the performance problem. But we think that its performance can be improved
by refactoring and optimizing the code. Performance improvement is one of the top priorities for the
future development of the JMSGroups implementation.

Transactions. The JMS specification specifies a basic transaction mechanism. Transactions were not
included in our mapping and specification. The open questions is “How can GC be mapped to JMS
transactions and what are the benefits of such mapping for GC?”.

Further J2EE integration. In the thesis we focused only on the JMS specification, but JMS is a part
of the Java Enterprise Edition specification (J2EE). Further GC integration into J2EE would make GC
even more popular among the industry users, which could benefit from the GC services.
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Switzerland, September 1996.

[43] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A toolkit for building fault-tolerant
distributed applications in large scale. In Workshop on Parallel and Distributed Platforms in In-
dustrial Products, San Antonio, Texas, USA, October 1995. Workshop held during the 7th IEEE
Symp. on Parallel and Distributed Processing, (SPDP-7).

[44] C. Marchetti. Interoperable Replication Logic, http://www.dis.uniroma1.it/˜irl.

[45] K.R. Mazouni, B. Garbinato, and R. Guerraoui. Filtering duplicated invocations using symmetric
proxies. In Proc. of the 4th IEEE International Workshop on Object Orientation in Operating
Systems (IWOOOS’95), Lund, Sweden, August 1995.

[46] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for Distributed Systems.
IEEE Transactions on Parallel and Distributed Systems, 1(1):17–25, Jan 1990.
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Appendix A

Group Communication Toolkits API

A.1 Isis

Isis interface description (the full description can be found in [34]).

isis remote init() Full signature: int isis remote init(host list, lport no, rport -

no, flags). Connects to the Isis backbone, the set of machines running Isis system,
in order to use the group communication services provided. Argument host list

specifies the list of the machines in the backbone; the lport no and rport no give
the port numbers to be used for connecting, and are respectively the Isis “TCP” port
number and the “bcast” port number; the flags argument specifies a number of flags
which control the actions Isis will take on the connection.

site getview() Full signature: sview* site getview(). Returns a pointer to the member view
structure. The Isis system keeps track of which members are currently active and stores
this information in the site view structure. The structure is automatically updated when
members join or leave.

bcast() Full signature: int bcast(addr p, entry, fmt1, arg1, arg2, ..., nwanted,

fmt2, rep1, rep2,...). Broadcasts message and collects the replies. The argu-
ment addr p is the pointer to the address of the group to which to deliver the mes-
sages; in Isis each of the recipients must have an associated entry number with a task
(callback). The argument entry is the entry number in recipient process; fmt1 is the
format string for the data to be put into the outgoing message (format strings are used
to denote the number and the type of the arguments following the string); argument
nwanted specifies number of reply messages wanted (ALL or MAJORITY); argument
fmt2 is a format string for data to be read from the reply messages (this and the fol-
lowing arguments can be omitted if nwanted=0). There are four different broadcast
primitives in Isis: fbcast, cbcast, abcast and gbcast. They use the same interface
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as bcast, but differ in the type of multicast ordering they provide. Also there is long
form of the broadcast method bcast l, which provides more options upon the call,
but we do not include the full description of it here.

pg join() Full signature: address* pg join(gname, ... PG KEYWORDi, argi1, argi2,

..., 0). Adds a process to the group. Argument gname is the name of the group to
join; options to the method are placed between the first argument and the last, which
is always 0. Each option consists of a keyword followed by the arguments required
by that option and specifies additional tasks such as state transfer, setting membership
monitoring callback, etc. The method returns the address of the group.

pg subgroup() Full signature: address* pg subgroup(pgaddr p, sgname, incarn, members,

NULL). Creates a process group with the prespecified initial membership. Argument
pg subgroup is the address of the parent group, the caller must be a member; sgname
the name of the new subgroup, as in pg join; incarn is the incarnation number; mem-
bers null-terminated list of initial members, subset of the parent group membership.
Return value is the address of the subgroup.

pg leave() Full signature: pg leave(gaddr p). Makes a calling process leave a group. gaddr p

pointer to the address of the group to leave.

pg client() Full signature: pg client(gaddr p, credentials). Registers the calling process
as a client of the group. gaddr p the pointer to the group address; credentials

null-terminated string used as credentials.

pg getview() Full signature: groupview* pg getview(gaddr p). Returns a pointer to a group
view structure. Argument gaddr p is the pointer to the address of the group.

sv monitor()† Full signature: int sv monitor(routine, arg). Sets the routine (function) to
monitor the site view changes; arg is the argument to be passed for the routine. Re-
turns monitor ID as an integer.

sv watch()† Full signature: int sv watch(sid, event, routine, arg). Registers a routine

to monitor the given site to fail or recover. Argument sid is the ID of the site to
monitor; event is the event on which to invoke the routine (W FAIL or W RECOVER);
arg is the argument to be passed to the routine.

pg monitor()† Full signature: int pg monitor(gaddr p, routine, arg). Registers a routine

(function) to monitor changes of the membership of a process group. gaddr p is the
pointer to the group address; arg is the argument to be passed to the routine. Returns
an integer monitor ID.

†The method has the corresponding cancel method.
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A.2 Transis

Transis interface description (the full description can be found in [40]).

zzz Connect() Full signature: zzz mbox cap zzz Connect(char *mbox name, char *select-

layers, int flags). Method to connect to Transis. mbox name string specifies a
unique name for the program, select-layers string specifies the list of layers to be
activated, flags bit mask specifies option flags. The return value of type zzz mbox -

cap is used for the all further calls on the Transis Groups Facility.

zzz Join() Full signature: void zzz Join( zzz mbox cap mbox c, char *set name). Join
the group named set name. mbox c the reference to the group control object assigned
by Transis upon connecting, set name the name of the group to join.

zzz Leave() Full signature: void zzz Leave(zzz mbox cap mbox c, char *set name). Leave
the group named set name. mbox c the reference to the group control object assigned
by Transis upon connecting, set name the name of the group to leave.

zzz Send() Full signature: void zzz Send(zzz mbox cap mbox c, int send type, int fl-

ag, int len, char *buf, char *targets[]). Send an untyped message buf, of
length len bytes, to the specified target groups. send type may be one of ATOMIC,
CAUSAL, AGREED, SAFE. Return value indicates the number of bytes sent.

zzz Receive() Full signature: int zzz Receive(zzz mbox cap mbox c, char buf[],

int max len, int *receive type, view **view). Attempts to receive the next
message, of at most max len bytes into buf. It returns the number of bytes received.

zzz Add Upcall() Full signature: void zzz Add Upcall(zzz mbox cap mbox c,

void (* func)(int, void *), int priority, void *param). Add an upcall
event handler, that will be invoked automatically whenever there are pending mes-
sages. This call together with the corresponding zzz Remove Upcall() are used in
the Transis Event mechanism ([40], Chapter 4).

A.3 Phoenix

Phoenix interface description (the full description can be found in [42]).

SinkSubscribe() Full signature: void SinkSubscribe(char *groupname). Allows a sink to
become sink of a group groupname.

SinkUnsubscribe() Full signature: void SinkSubscribe(char *groupname). Allows a sink to
leave the group groupname to which it is a sink.
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ClientSubscribe() Full signature: void ClientSubscribe(char *groupname). Makes an ob-
ject a client of the group groupname.

ClientUnsubscribe() Full signature: void ClientUnsubscribe(char *groupname). Makes
an object to leave the group groupname of which it is a client.

ViewChangeDeliveryCB() Full signature: void ViewChangeDeliveryCB(View view). This
method is invoked on the client of the group each time the view of the group changes.
Argument view contains the new membership of the group.

Join() Full signature: void Join(char *groupname). Adds the calling object to the group
groupname.

Leave() Full signature: Leave(). Makes the object leave the group of which it is currently a
member.

Multicast() Full signature: void Multicast(Message msg, Order ord). Multicast the mes-
sage msg to the group. Optional parameter ord specifies the order type for the multi-
cast: FIFO, uniform, weak total, strong total or global order.

IntermediateViewDelivery() Full signature: void IntermediateViewDelivery(View

view). This method is invoked each time a different intermediate view is delivered by
the Phoenix system at the beginnind and during the execution of view change protocol.

A.4 JGroups

JGroups interface description (the full description can be found in [3]).

connect() Full signature: void connect(String groupname). Adds a calling client to the
group. The argument groupname specifies the name of the group to join. If the group
with the given name does not exist, this method will create it. The method changes
group membership.

getView() Full signature: View getView(). Returns the current view of the group, to which
channel is connected to.

send() Full signature: void send(Message msg). Sends a message msg to the group mem-
bers (including itself). If the message contains a destination address, it can also be sent
to a single group member.

receive() Full signature: Object receive(long timeout). Receives the next available mes-
sage from the channel. The method is blocking, i.e., if there are no available messages
it will block until a message arrives. If the argument timeout is greater than 0, and the
message does not arrive until the timeout expires, the exception will be thrown. The
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received object can be an ordinary message, or can contain some special object such
as view, suspicion, state transfer, etc.

disconnect() Full signature: void disconnect(). Disconnects the calling client from the chan-
nel, this is equivalent to leaving the group. The method changes the group’s member-
ship.

receive() Full signature: void receive(Message msg). This MessageListener interface
callback is automatically called when the message is received by the Channel. The ar-
gument msg contains the message received. The MessageListener interface must be
provided by the application, which wants to receive the messages using this callback.

viewAccepted() Full signature: void viewAccepted(View new view). This MembershipLis-

tener interface callback is automatically called when the new member joins the group,
or the existing member leaves or crashes. The new view argument contains the new
view of the group. MembershipListener interface must be provided by the applica-
tion, which wants to be notified about the group membership events.

suspect() Full signature: void suspect(Object suspected mbr). This MembershipLis-

tener interface callback is automatically called when a member is suspected of having
crashed, but not yet excluded from the view. The argument suspected mbr identifies
the suspected member.

A.5 Object Group Service

OGS interface description (the full description can be found in [17]).

join group() Full signature: void join group(Groupable member, InterfaceSemantics se-

mantics). This GroupAdministrator interface method adds the specified member to
the group; the member must implement the Groupable interface. The argument se-
mantics specifies the semantics associated with each of its operations.

leave group() Full signature: void leave group(Groupable member). This GroupAdminis-

trator interface method removes the specified member from the group. The argument
member is the member to be removed.

view change() Full signature: void view change(GrouView view). This Groupable interface
method is called on the member of the group upon membership change. The argument
view contains the new view of the group.

deliver() Full signature: any deliver(any msg). This Invocable interface method is called
to deliver a message to the individual group member. The argument msg contains the
message to deliver.
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multicast() Full signature: AnySeq multicast(any msg, NumReplies replies, Semantics

semantics). This GroupAccesor interface method issues a multicast to the group.
The argument msg is a message to multicast, the argument replies specifies the
number of replies to wait for (ONEWAY, ZERO, ONE, MAJORITY, ALL), and the
argument semantics specifies the semantics of the multicast (UNRELIABLE, RE-
LIABLE, FIFO, TOTAL ORDER). The method returns the replies as a sequence of
objects of type Any.

get view() Full signature: GroupView get view(). This GroupAccessor interface method re-
turns the view of the group to the client in the GroupView structure. There is no
guarantee that the view is up to date as the client is usually not a member of the group.

A.6 Eternal System

Eternal system interface description (the full description can be found in [54]).

create object() Full signature: Object create object(TypeId type id, Criteria

the criteria, FactoryCreationId factory creation id). Creates an object
group. The argument type id is the repository identifier for the object type, the ar-
gument the criteria contains the parameters to be passed for the object factory,
the argument factory creation id is the factory local identifier used to delete the
object. The method returns the created object group reference.

delete object() Full signature: void delete object(FactoryCreationId

factory creation id). Deletes an object group. The argument factory cre-

ation id is the local factory identifier specified at the object group creation time.

create member() Full signature: ObjectGroup create member(ObjectGroup object group,

Location the location, TypeId type id, Criteria the criteria). Creates
a member of the specified object group object group at the location the location.
The argument type id is the repository identifier for the object type, the argument
the criteria contains the parameters to be used for the member creation. The
method returns the object group reference with the member added.

add member() Full signature: ObjectGroup add member(ObjectGroup object group,

Location the location, Criteria the criteria). Adds the existing member
to an object group at a particular location. The argument object group is the group
to which the member is added, the argument the location is the location at which
the member resides, the argument member is the reference to the object to be added.
The method returns the object group reference with the member added.
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remove member() Full signature: ObjectGroup remove member(ObjectGroup object group,

Location the location). Removes the existing member from an object group at a
particular location. The argument object group is the group from which the member
is removed, the argument the location is the location at which the member resides.
The method returns the object group reference with the member removed.

A.7 Interoperable Replication Logic

IRL interface description (the full description can be found in [44]).

create object() Full signature: org.omg.CORBA.Object create object(String type id,

org.omg.CORBA.FT.Property[] the criteria, org.omg.CORBA.AnyHolder

factory creation id). Creates an Object Group. The argument type id is the in-
terface repository ID type for the created group. The second argument the criteria

is the array of properties for the created group. The factory creation id is the ID
of a factory, which is responsible to create the group object. The method returns the
created object group.

delete object() Full signature: void delete object(org.omg.CORBA.Any

factory creation id). Deletes an Object Group. The argument factory cre-

ation id is the ID of a factory, which is responsible to delete the group object.

add member() Full signature: org.omg.CORBA.Object add member(org.omg.CORBA.Object og,

org.omg.CosNaming.NameComponent[] the location, org.omg.CORBA.Object

member). Adds a member into an Object Group. The argument og is the object group
to use. The second argument the location is the CORBA naming service reference
to the new member. The last argument member is the object to be added to the object
group. The method returns the object group with the new member.

remove member() Full signature: org.omg.CORBA.Object remove member(org.omg.CORBA.Ob-

ject og, org.omg.CosNaming.NameComponent[] the location). Removes a
member from an Object Group. The argument og is the object group to use. The sec-
ond argument the location is the CORBA naming service reference to the member
to be removed. The method returns the object group without the removed member.
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Appendix B

Replicated Table Source Code

B.1 ReplTable.java

/∗1

∗ JORAM: Java (TM) Open R e l i a b l e Asynchronous Messaging2

∗ C o p y r i g h t (C) 2001 − S c a l A g e n t D i s t r i b u t e d T e c h n o l o g i e s3

∗ C o p y r i g h t (C) 1996 − Dyade4

∗5

∗ T h i s l i b r a r y i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / or6

∗ mo di f y i t under t h e t e r m s o f t h e GNU L e s s e r Genera l P u b l i c7

∗ L i c e n s e as p u b l i s h e d by t h e Free S o f t w a r e Founda t ion ; e i t h e r8

∗ v e r s i o n 2 . 1 o f t h e L i c e n s e , or any l a t e r v e r s i o n .9

∗10

∗ T h i s l i b r a r y i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,11

∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f12

∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e GNU13

∗ L e s s e r Genera l P u b l i c L i c e n s e f o r more d e t a i l s .14

∗15

∗ You s h o u l d have r e c e i v e d a copy o f t h e GNU L e s s e r Genera l P u b l i c16

∗ L i c e n s e a long w i t h t h i s l i b r a r y ; i f not , w r i t e t o t h e Free S o f t w a r e17

∗ Foundat ion , I n c . , 59 Temple Place , S u i t e 330 , Boston , MA 02111−130718

∗ USA .19

∗20

∗ I n i t i a l d e v e l o p e r ( s ) : F r e d e r i c M a i s t r e ( INRIA )21

∗ C o n t r i b u t o r ( s ) :22

∗ /23

package l s r . e p f l . hash . a c t i v e ;24

25

import j a v a . i o . ∗ ;26

import j a v a . u t i l . ∗ ;27

import j a v a x . jms . ∗ ;28

import j a v a x . naming . ∗ ;29

import f r . dyade . aaa . jo ram . TemporaryQueue ;30

import j a v a . u t i l . l o g g i n g . Logger ;31

32

/∗ ∗33

∗ H a s t a b l e r e p l i c a c l a s s . S u b s c r i b e s and s e t s a l i s t e n e r t o t h e GroupTopic .34

∗ /35

p u b l i c c l a s s Rep lTab le {36

/ / v a r i a b l e f o r t h e l o g g i n g messages37

p r i v a t e s t a t i c Logger l o g = Logger38

. g e t L o g g e r ( ” l s r . e p f l . hash . a c t i v e . Rep lTab l e ” ) ;39

40

s t a t i c C o n t e x t i c t x = n u l l ; / / i n i t i a l c o n t e x t f o r NamingServ i ce41

42

/ / v a r i a b l e s t o s u b s c r i b e t o t h e t o p i c43

T o p i c S e s s i o n g r o u p S e s s i o n = n u l l ;44

T o p i c S u b s c r i b e r g r o u p S u b s c r i b e r = n u l l ;45

T o p i c P u b l i s h e r g r o u p P u b l i s h e r = n u l l ;46

47

/∗ ∗ Data s t r u c t u r e where t h e s t a t e o f a H a s t a b l e i s k e p t . ∗ /48

H a s h t a b l e t a b l e = n u l l ;49
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50

/ / c o n s t a n t s f o r t h e h a s h t a b l e i n v o c a t i o n message p r o p e r t y names51

p u b l i c s t a t i c f i n a l S t r i n g KEY = ” # key ” ;52

p u b l i c s t a t i c f i n a l S t r i n g VALUE = ” # v a l u e ” ;53

p u b l i c s t a t i c f i n a l S t r i n g PUT PROPERTY = ” # p u t p r o p e r t y ” ;54

p u b l i c s t a t i c f i n a l S t r i n g REMOVE PROPERTY = ” # r e m o v e p r o p e r t y ” ;55

p u b l i c s t a t i c f i n a l S t r i n g GET PROPERTY = ” # g e t p r o p e r t y ” ;56

p u b l i c s t a t i c f i n a l S t r i n g REPLY PROPERTY = ” # r e p l y p r o p e r t y ” ;57

p u b l i c s t a t i c f i n a l S t r i n g STATE = ” # s t a t e ” ;58

59

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /60

/∗ ∗ C o n s t r u c t o r f o r H a s h t a b l e r e p l i c a . ∗ /61

p u b l i c Rep lTab le ( S t r i n g ID ) {62

t a b l e = new H a s h t a b l e ( ) ;63

}64

65

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /66

/∗ ∗67

∗ E s t a b l i s h e s t h e c o n n e c t i o n w i t h t h e s e r v e r , i n i t i a l i z e s p u b l i s h e r and68

∗ s u b s c r i b e r t o t h e GroupTopic .69

∗ /70

p u b l i c vo id j o i n ( S t r i n g [ ] a r g s ) {71

t r y {72

i c t x = new I n i t i a l C o n t e x t ( ) ; / / o b t a i n NamingServ i ce i n i t i a l c o n t e x t73

/ / g e t t h e GroupTopic r e f e r e n c e74

Topic t o p i c = ( Topic ) i c t x . lookup ( ” g r o u p t o p i c ” ) ;75

/ / g e t t h e T o p i c C o n n e c t i o n F a c t o r y r e f e r e n c e76

T o p i c C o n n e c t i o n F a c t o r y t c f = ( T o p i c C o n n e c t i o n F a c t o r y ) i c t x . lookup ( ” t c f ” ) ;77

i c t x . c l o s e ( ) ; / / c l o s e t h e NamingServ i ce c o n t e x t78

79

/ / s e l e c t which s u b s c r i b e r t o c r e a t e : d u r a b l e or n o t80

/ / t h i s i s s p e c i f i e d from t h e command l i n e argument81

boolean d u r a b l e = f a l s e ;82

S t r i n g i d = n u l l ;83

i f ( ( a r g s . l e n g t h == 2) && ( a r g s [ 0 ] . e q u a l s I g n o r e C a s e ( ” d u r a b l e ” ) ) ) {84

i d = a r g s [ 1 ] ;85

i f ( i d != n u l l ) {86

d u r a b l e = t rue ;87

l o g . f i n e ( ” C r e a t i n g d u r a b l e s u b s c r i b e r wi th ID=” + i d ) ;88

} e l s e {89

System . e r r . p r i n t l n ( ” The ID f o r t h e d u r a b l e s u b c r i p t i o n i s n o t ”90

+ ” s p e c i f i e d , c r e a t i n g NON DURABLE s u b s c r i b e r ” ) ;91

}92

} e l s e {93

l o g . f i n e ( ” C r e a t i n g non d u r a b l e s u b s c r i b e r . ” ) ;94

}95

96

/ / c r e a t e a T o p i c C o n n e c t i o n97

T o p i c C o n n e c t i o n g r o u p C o n n e c t i o n ;98

i f ( d u r a b l e )99

g r o u p C o n n e c t i o n = t c f . c r e a t e T o p i c C o n n e c t i o n ( ” d u r a b l e u s e r ” ,100

” d u r a b l e u s e r ” ) ;101

e l s e102

g r o u p C o n n e c t i o n = t c f . c r e a t e T o p i c C o n n e c t i o n ( ” g r o u p u s e r ” ,103

” g r o u p u s e r ” ) ;104

105

/ / c r e a t e a T o p i c S e s s i o n106

g r o u p S e s s i o n = g r o u p C o n n e c t i o n . c r e a t e T o p i c S e s s i o n ( f a l s e ,107

j a v a x . jms . S e s s i o n .AUTO ACKNOWLEDGE) ;108

109

/ / c r e a t e a T o p i c S u b s c r i b e r : d u r a b l e or n o t110

i f ( d u r a b l e )111

g r o u p S u b s c r i b e r = g r o u p S e s s i o n . c r e a t e D u r a b l e S u b s c r i b e r ( t o p i c , i d ) ;112

e l s e113

g r o u p S u b s c r i b e r = g r o u p S e s s i o n . c r e a t e S u b s c r i b e r ( t o p i c ) ;114

115

/ / s e t t h e message l i s t e n e r t o ha nd l e t h e messages116

g r o u p S u b s c r i b e r . s e t M e s s a g e L i s t e n e r ( new R e p l T a b l e M s g L i s t e n e r ( t h i s ) ) ;117

/ / s t a r t t h e c o n n e c t i o n118

g r o u p C o n n e c t i o n . s t a r t ( ) ;119

120

/ / c r e a t e a T o p i c P u b l i e s h e r : j o i n t h e group121

g r o u p P u b l i s h e r = g r o u p S e s s i o n . c r e a t e P u b l i s h e r ( t o p i c ) ;122

123

/ / w a i t u n t i l l t h e key i s p r e s s e d t o t e r m i n a t e124

t r y {125
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System . i n . r e a d ( ) ;126

} catch ( IOExcep t ion e ) {127

e . p r i n t S t a c k T r a c e ( ) ;128

} / / c a t c h129

/ / c l o s e t h e c o n n e c t i o n130

g r o u p C o n n e c t i o n . c l o s e ( ) ;131

132

System . o u t . p r i n t l n ( ” Tab le R e p l i c a t e r m i n a t e d . ” ) ;133

} catch ( NamingExcept ion e ) {134

e . p r i n t S t a c k T r a c e ( ) ;135

} catch ( JMSExcept ion e ) {136

e . p r i n t S t a c k T r a c e ( ) ;137

}138

} / / J o i n139

140

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /141

/∗ ∗ I m p l e m e n t s H a s h t a b l e ” g e t ” method . ∗ /142

p u b l i c vo id g e t ( S t r i n g key , TemporaryQueue answer q ) {143

t r y {144

S t r i n g v a l u e = ( S t r i n g ) t a b l e . g e t ( key ) ;145

i f ( v a l u e != n u l l ) {146

/ / c o n s t r u c t and send t h e r e p l y t o t h e c l i e n t147

TextMessage msg = g r o u p S e s s i o n . c r e a t e T e x t M e s s a g e ( ) ;148

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e . REPLY PROPERTY , ” ” ) ;149

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .KEY, key ) ;150

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .VALUE, v a l u e ) ;151

152

j a v a x . jms . MessageProducer a n s w e r p r o d = g r o u p S e s s i o n153

. c r e a t e P r o d u c e r ( answer q ) ;154

a n s w e r p r o d . send ( msg ) ;155

} / / i f156

157

} catch ( JMSExcept ion e ) {158

e . p r i n t S t a c k T r a c e ( ) ;159

}160

}161

162

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /163

/∗ ∗ I m p l e m e n t s H a s h t a b l e ” p u t ” method . ∗ /164

p u b l i c vo id p u t ( S t r i n g key , S t r i n g v a l u e ) {165

t a b l e . p u t ( key , v a l u e ) ;166

}167

168

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /169

/∗ ∗ I m p l e m e n t s H a s h t a b l e ”remove” method . ∗ /170

p u b l i c vo id remove ( S t r i n g key ) {171

t a b l e . remove ( key ) ;172

}173

174

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /175

/∗ ∗ T r a n s f e r t h e s t a t e t o t h e new member . ∗ /176

p u b l i c vo id s t a t e T r a n s f e r ( ) {177

t r y {178

Objec tMessage m = g r o u p S e s s i o n . c r e a t e O b j e c t M e s s a g e ( ) ;179

m. s e t O b j e c t ( t a b l e ) ;180

m. s e t S t r i n g P r o p e r t y ( Rep lTab l e . STATE , ” ” ) ;181

g r o u p P u b l i s h e r . p u b l i s h (m) ;182

} catch ( JMSExcept ion e ) {183

e . p r i n t S t a c k T r a c e ( ) ;184

}185

}186

187

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /188

/∗ ∗ Remove t h e s p e c i f i e d members from t h e group . ∗ /189

p u b l i c vo id removeMembers ( S t r i n g members ) {190

t r y {191

TextMessage msg = g r o u p S e s s i o n . c r e a t e T e x t M e s s a g e ( ) ;192

msg . s e t S t r i n g P r o p e r t y ( ‘ ‘ JMS remove ’ ’ , members ) ;193

g r o u p P u b l i s h e r . p u b l i s h ( msg ) ;194

} catch ( JMSExcept ion e ) {195

e . p r i n t S t a c k T r a c e ( ) ;196

}197

}198

199

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /200

/∗ ∗ P r i n t t h e t a b l e t o t h e c o n s o l e . ∗ /201
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p u b l i c vo id p r i n t ( ) {202

l o g . i n f o ( ”TABLE IS : ” + t a b l e . t o S t r i n g ( ) ) ;203

}204

205

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /206

/∗ ∗ S e t t h e new H a s t a b l e s t a t e . ∗ /207

p u b l i c vo id s e t T a b l e ( H a s h t a b l e n e w t a b l e ) {208

t a b l e = n e w t a b l e ;209

}210

211

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /212

/∗ ∗ The e x e c u t i o n e n t r y method . ∗ /213

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {214

Rep lTab le r e p l T a b l e = new Rep lTab le ( a r g s [ 0 ] ) ;215

r e p l T a b l e . j o i n ( a r g s ) ;216

}217

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /218

} / / R e p l T a b l e219
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B.2 ReplTableMsgListener.java

package l s r . e p f l . hash . a c t i v e ;1

2

import j a v a x . jms . ∗ ;3

import l s r . e p f l . u t i l . ∗ ;4

import j a v a . u t i l . ∗ ;5

import f r . dyade . aaa .mom. messages . GroupMessage ;6

import j a v a . u t i l . l o g g i n g . Logger ;7

8

/∗ ∗9

∗ I m p l e m e n t s t h e <code>j a v a x . jms . M e s s a g e L i s t e n e r </code> i n t e r f a c e ,10

∗ which h a n d l e s t h e incomming messages a c c o r d i n g t o t h e i r t y p e11

∗ and p r o p e r t i e s .12

∗ /13

p u b l i c c l a s s R e p l T a b l e M s g L i s t e n e r implements M e s s a g e L i s t e n e r {14

/ / v a r i a b l e f o r t h e l o g g i n g messages15

p r i v a t e s t a t i c Logger l o g = Logger16

. g e t L o g g e r ( ” l s r . e p f l . hash . a c t i v e . R e p l T a b l e M s g L i s t e n e r ” ) ;17

18

i n t p r e v c o u n t = 1 ; / / p r e v i o u s v iew member c o u n t19

20

Rep lTab le m a s t e r = n u l l ; / / r e f e r e n c e t o t h e H a s h t a b l e r e p l i c a21

22

View c u r r v i e w = n u l l ; / / c u r r e n r t v iew o f t h e group23

24

/ / v a r i a b l e t o know f o r t h e member t h a t i t i s j o i n e d a goup25

boolean m e j o i n e d = f a l s e ;26

27

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /28

/∗ ∗ The c o n s t r u c t o r f o r t h e message H a s h t a b l e s M e s s a g e L i s e n e r . ∗ /29

p u b l i c R e p l T a b l e M s g L i s t e n e r ( Rep lTab le m a s t e r ) {30

t h i s . m a s t e r = m a s t e r ; / / r e f e r e n c e t o t h e H a s h t a b l e31

}32

33

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /34

/∗ ∗ P r o c e s s t h e r e c e i v e d messages . ∗ /35

p u b l i c vo id onMessage ( Message msg ) {36

t r y {37

/ / i f t h e r e c e i v e d message i s TEXT MESSAGE38

i f ( msg i n s t a n c e o f TextMessage ) {39

l o g . f i n e ( ” Text message r e c e i v e d ” ) ;40

i f ( msg . p r o p e r t y E x i s t s ( Rep lTab le . PUT PROPERTY ) ) {41

p r o c e s s P u t M e s s a g e ( msg ) ;42

} e l s e i f ( msg . p r o p e r t y E x i s t s ( Rep lTab le . GET PROPERTY ) ) {43

p r o c e s s G e t M e s s a g e ( msg ) ;44

} e l s e i f ( msg . p r o p e r t y E x i s t s ( Rep lTab le . REMOVE PROPERTY ) ) {45

processRemoveMessage ( msg ) ;46

} e l s e i f ( msg . p r o p e r t y E x i s t s ( ‘ ‘ JMS suspec t ’ ’ ) ) {47

p r o c e s s S u s p i t i o n M e s s a g e ( msg ) ;48

} e l s e49

l o g . f i n e ( ( ( TextMessage ) msg ) . g e t T e x t ( ) ) ;50

51

/ / i f t h e r e c e i v e d message i s OBJECT MESSAGE52

} e l s e i f ( msg i n s t a n c e o f j a v a x . jms . Objec tMessage ) {53

l o g . f i n e ( ” O b j e c t message r e c e i v e d ” ) ;54

Objec tMessage ob msg = ( Objec tMessage ) msg ;55

i f ( msg . p r o p e r t y E x i s t s ( ‘ ‘ JMS view ’ ’ ) ) {56

processViewMessage ( ob msg ) ;57

} e l s e i f ( msg . p r o p e r t y E x i s t s ( Rep lTab le . STATE ) ) {58

p r o c e s s S t a t e M e s s a g e ( ob msg ) ;59

}60

}61

/ / Other message t y p e s : do n o t p r o c e s s62

e l s e {63

l o g . f i n e ( ” Othe r message r e c e i v e d : ” + msg . g e t C l a s s ( ) . getName ( ) ) ;64

} / / e l s e65

66

} catch ( JMSExcept ion jE ) {67

System . e r r . p r i n t l n ( ” E x c e p t i o n i n l i s t e n e r : ” + jE ) ;68

}69

}70

71

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /72

/∗ ∗ P r o c e s s t h e s t a t e u pd a t e message .73
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∗ Updates t h e s t a t e o f t h e H a s h t a b l e r e p l i c a . ∗ /74

p u b l i c vo id p r o c e s s S t a t e M e s s a g e ( Objec tMessage msg ) {75

t r y {76

i f ( m e j o i n e d ) {77

l o g . f i n e ( ” S e t i n g t h e s t a t e ! ” ) ;78

Objec tMessage m = ( Objec tMessage ) msg ;79

H a s h t a b l e r e c e i v e d t a b l e = ( H a s h t a b l e ) m. g e t O b j e c t ( ) ;80

l o g . f i n e ( ”To r e c e i v e d t a b l e : ” + r e c e i v e d t a b l e . t o S t r i n g ( ) ) ;81

m a s t e r . s e t T a b l e ( r e c e i v e d t a b l e ) ;82

m a s t e r . p r i n t ( ) ;83

} / / m e j o i n e d84

} catch ( JMSExcept ion e ) {85

e . p r i n t S t a c k T r a c e ( ) ;86

}87

}88

89

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /90

/∗ ∗ P r o c e s s View change message . ∗ /91

p u b l i c vo id processViewMessage ( Objec tMessage msg ) {92

t r y {93

/ / new view r e c e i v e d , e x t r a c t i t94

View v = ( View ) msg . g e t O b j e c t ( ) ;95

v . p r i n t ( ) ; / / p r i n t t h e v iew on c o n s o l e96

/ / i f i t i s t h e f i r s t v iew I r e c e i v e , meens I j u s t j o i n e d97

i f ( c u r r v i e w == n u l l )98

m e j o i n e d = t rue ;99

e l s e {100

/ / o t h e r w i s e remember how many members were i n t h e p r e v i o u s v iew101

/ / i n o r d e r t o d e t e c t i f somebody j o i n e d102

m e j o i n e d = f a l s e ;103

p r e v c o u n t = c u r r v i e w . s i z e ( ) ;104

} / / e l s e105

c u r r v i e w = v ; / / make new view t h e c u r r e n t my v iew106

/ / i f somebody j o i n e d and i t s n o t me : t r a n s f e r t h e s t a t e107

i f ( msg . p r o p e r t y E x i s t s ( ‘ ‘ JMS jo in ’ ’ ) && ! m e j o i n e d ) {108

m a s t e r . s t a t e T r a n s f e r ( ) ;109

}110

} catch ( JMSExcept ion e ) {111

e . p r i n t S t a c k T r a c e ( ) ;112

}113

m a s t e r . p r i n t ( ) ; / / p r i n t t h e s t a t e o f t h e t a b l e114

}115

116

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /117

/∗ ∗ P r o c e s s ” p u t ” r e q u e s t . ∗ /118

p u b l i c vo id p r o c e s s P u t M e s s a g e ( Message msg ) {119

t r y {120

m a s t e r . p u t ( msg . g e t S t r i n g P r o p e r t y ( Rep lTab le .KEY) , msg121

. g e t S t r i n g P r o p e r t y ( Rep lTab l e .VALUE ) ) ;122

m a s t e r . p r i n t ( ) ;123

} catch ( JMSExcept ion e ) {124

e . p r i n t S t a c k T r a c e ( ) ;125

}126

}127

128

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /129

/∗ ∗ P r o c e s s ” g e t ” r e q u e s t . ∗ /130

p u b l i c vo id p r o c e s s G e t M e s s a g e ( Message msg ) {131

t r y {132

m a s t e r . g e t ( msg . g e t S t r i n g P r o p e r t y ( Rep lTab le .KEY) ,133

( f r . dyade . aaa . jo ram . TemporaryQueue ) msg . getJMSReplyTo ( ) ) ;134

} catch ( JMSExcept ion e ) {135

e . p r i n t S t a c k T r a c e ( ) ;136

}137

}138

139

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /140

/∗ ∗ P r o c e s s ”remove” r e q u e s t . ∗ /141

p u b l i c vo id processRemoveMessage ( Message msg ) {142

t r y {143

m a s t e r . remove ( msg . g e t S t r i n g P r o p e r t y ( Rep lTab le .KEY ) ) ;144

m a s t e r . p r i n t ( ) ;145

} catch ( JMSExcept ion e ) {146

e . p r i n t S t a c k T r a c e ( ) ;147

}148

}149
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150

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /151

/∗ ∗ P r o c e s s a s u s p i t i o n . ∗ /152

p u b l i c vo id p r o c e s s S u s p i t i o n M e s s a g e ( Message msg ) {153

t r y {154

S t r i n g s u s p e c t e d = msg . g e t S t r i n g P r o p e r t y ( ‘ ‘ JMS suspec t ’ ’ ) ;155

f o r ( Enumera t ion e = GroupMessage . g e t S u b s c r i p t i o n s ( s u s p e c t e d ) . e l e m e n t s ( ) ;156

e . hasMoreElements ( ) ; ) {157

l o g . i n f o ( ”GOT SUSPITION FOR MEMBER: ” + e . n e x t E l e m e n t ( ) ) ;158

} / / f o r159

/ / Remove t h e s u s p e c t e d member from t h e group160

l o g . i n f o ( ”REMOVING MEMBER( S ) : ” + s u s p e c t e d ) ;161

m a s t e r . removeMembers ( s u s p e c t e d ) ;162

} catch ( JMSExcept ion e ) {163

/ / TODO Auto−g e n e r a t e d c a t c h b l o c k164

e . p r i n t S t a c k T r a c e ( ) ;165

}166

}167

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /168

} / / R e p l T a b l e M s g L i s t e n e r169
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B.3 Client.java

package l s r . e p f l . hash . a c t i v e ;1

2

import j a v a x . jms . ∗ ;3

import j a v a x . naming . ∗ ;4

import j a v a . u t i l . l o g g i n g . Logger ;5

6

/∗ ∗7

∗ R e p l i c a t e d H a s h t a b l e c l i e n t . The r e q u e s t s t o i n v o k e on t h e H a s h t a b l e are8

∗ s u p p l i e d t h r o u g h t h e command l i n e .9

∗ /10

p u b l i c c l a s s C l i e n t {11

/ / v a r i a b l e f o r t h e l o g g i n g messages12

p r i v a t e s t a t i c Logger l o g = Logger . g e t L o g g e r ( ” l s r . e p f l . hash . a c t i v e . C l i e n t ” ) ;13

14

/ / c o n s t a n t s t o mark t h e r e q u e s t messages15

p u b l i c s t a t i c f i n a l S t r i n g PUT = ” p u t ” ;16

p u b l i c s t a t i c f i n a l S t r i n g GET = ” g e t ” ;17

p u b l i c s t a t i c f i n a l S t r i n g REMOVE = ” remove ” ;18

19

/ / v a r i a b l e s t o s u b s c r i b e t o t h e t o p i c20

I n i t i a l C o n t e x t i c t x = n u l l ;21

T o p i c C o n n e c t i o n t o p i c C o n n e c t i o n = n u l l ;22

T o p i c S e s s i o n t o p i c S e s s i o n = n u l l ;23

S e s s i o n s e s s i o n = n u l l ;24

T o p i c P u b l i s h e r t o p i c P u b l i s h e r = n u l l ;25

26

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /27

/∗ ∗28

∗ S u b s c r i b e s t o t h e GroupTopic , c a l l s t h e method t o i n v o k e t h e s p e c i f i e d29

∗ o p e r a t i o n s .30

∗ /31

p u b l i c vo id j o i n ( S t r i n g [ ] o p e r a t i o n s ) {32

t r y {33

/ / g e t i n i t i a l JNDI c o n t e x t34

i c t x = new I n i t i a l C o n t e x t ( ) ;35

36

/ / t h e t o p i c from JNDI37

Topic t o p i c = ( Topic ) i c t x . lookup ( ” g r o u p t o p i c ” ) ;38

39

/ / g e t t h e t o p i c c o n n e c t i o n f a c t o r y40

T o p i c C o n n e c t i o n F a c t o r y t c f = ( T o p i c C o n n e c t i o n F a c t o r y ) i c t x41

. l ookup ( ” t c f ” ) ;42

i c t x . c l o s e ( ) ;43

44

/ / Cr ea t e t h e u s e r c o n n e c t i o n45

t o p i c C o n n e c t i o n = t c f . c r e a t e T o p i c C o n n e c t i o n ( ” g r o u p u s e r ” ,46

” g r o u p u s e r ” ) ;47

48

/ / Cr ea t e t o p i c s e s s i o n49

t o p i c S e s s i o n = t o p i c C o n n e c t i o n . c r e a t e T o p i c S e s s i o n ( f a l s e ,50

S e s s i o n .AUTO ACKNOWLEDGE) ;51

52

/ / S t a r t t h e c o n n e c t i o n53

t o p i c C o n n e c t i o n . s t a r t ( ) ;54

55

/ / c r e a t e a p u b l i s c h e r56

t o p i c P u b l i s h e r = t o p i c S e s s i o n . c r e a t e P u b l i s h e r ( t o p i c ) ;57

58

/ / p r o c e s s t h e s p e c i f i e d a c t i o n s59

i f ( o p e r a t i o n s . l e n g t h > 0)60

p r o c e s s ( o p e r a t i o n s ) ;61

62

/ / c l o s e t h e c o n n e c t i o n63

t o p i c C o n n e c t i o n . c l o s e ( ) ;64

System . o u t . p r i n t l n ( ” S u b s c r i p t i o n c l o s e d . ” ) ;65

} catch ( NamingExcept ion e ) {66

e . p r i n t S t a c k T r a c e ( ) ;67

} catch ( JMSExcept ion e ) {68

e . p r i n t S t a c k T r a c e ( ) ;69

}70

}71

72

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /73
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/∗ ∗ I n v o k e t h e s p e c i f i e d o p e r a t i o n s on t h e H a s h t a b l e . ∗ /74

p u b l i c vo id p r o c e s s ( S t r i n g [ ] o p e r a t i o n s ) {75

76

i f ( o p e r a t i o n s [ 0 ] == n u l l ) {77

System . e r r . p r i n t l n ( ”ERROR: No o p e r a t i o n s p e c i f i e d , e x i t i n g ! ! ! ” ) ;78

} / / i f a c t i o n [ 0 ] n u l l79

80

e l s e i f ( o p e r a t i o n s [ 0 ] . e q u a l s I g n o r e C a s e ( C l i e n t . PUT ) ) {81

l o g . f i n e ( ” P u t t i n g t o t h e t a b l e : key=” + o p e r a t i o n s [ 1 ] + ” v a l u e =”82

+ o p e r a t i o n s [ 2 ] ) ;83

p u t ( o p e r a t i o n s [ 1 ] , o p e r a t i o n s [ 2 ] ) ;84

} / / i f p u t85

86

e l s e i f ( o p e r a t i o n s [ 0 ] . e q u a l s I g n o r e C a s e ( C l i e n t . GET ) ) {87

l o g . f i n e ( ” G e t t i n g t h e v a l u e f o r : key=” + o p e r a t i o n s [ 1 ] ) ;88

g e t ( o p e r a t i o n s [ 1 ] ) ;89

} / / i f p u t90

91

e l s e i f ( o p e r a t i o n s [ 0 ] . e q u a l s I g n o r e C a s e ( C l i e n t .REMOVE) ) {92

l o g . f i n e ( ” Removing t h e key=” + o p e r a t i o n s [ 1 ] ) ;93

remove ( o p e r a t i o n s [ 1 ] ) ;94

} / / i f remove95

96

} / / p r o c e s s97

98

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /99

/∗ ∗ I n v o k e s a ” p u t ” o p e r a t i o n on t h e H a s h t a b l e . ∗ /100

p u b l i c vo id p u t ( S t r i n g key , S t r i n g v a l u e ) {101

l o g . i n f o ( ” P u t t i n g key=” + key + ” v a l u e =” + v a l u e ) ;102

t r y {103

j a v a x . jms . TextMessage msg = t o p i c S e s s i o n . c r e a t e T e x t M e s s a g e ( ) ;104

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e . PUT PROPERTY , ” ” ) ;105

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .KEY, key ) ;106

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .VALUE, v a l u e ) ;107

t o p i c P u b l i s h e r . p u b l i s h ( msg ) ;108

msg . c l e a r P r o p e r t i e s ( ) ;109

} catch ( JMSExcept ion e ) {110

e . p r i n t S t a c k T r a c e ( ) ;111

} / / c a t c h112

113

}114

115

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /116

/∗ ∗ I n v o k e s a ” g e t ” o p e r a t i o n on t h e H a s h t a b l e . ∗ /117

p u b l i c vo id g e t ( S t r i n g key ) {118

119

l o g . i n f o ( ” G e t t i n g t h e v a l u e f o r key=” + key ) ;120

t r y {121

j a v a x . jms . TextMessage msg = t o p i c S e s s i o n . c r e a t e T e x t M e s s a g e ( ) ;122

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e . GET PROPERTY , ” ” ) ;123

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .KEY, key ) ;124

125

S e s s i o n s e s = t o p i c C o n n e c t i o n . c r e a t e S e s s i o n ( f a l s e ,126

S e s s i o n .AUTO ACKNOWLEDGE) ;127

TemporaryQueue temp queue = s e s . c r ea t eTempora ryQueue ( ) ;128

MessageConsumer answer consumer = s e s . c r e a t e C o n s u m e r ( temp queue ) ;129

130

msg . setJMSReplyTo ( temp queue ) ;131

t o p i c P u b l i s h e r . p u b l i s h ( msg ) ;132

133

l o g . f i n e ( ” Wai t ing f o r t h e answer . . . ” ) ;134

Message answer = answer consumer . r e c e i v e ( ) ;135

i f ( answer . p r o p e r t y E x i s t s ( Rep lTab le . REPLY PROPERTY ) ) {136

S t r i n g v a l u e = answer . g e t S t r i n g P r o p e r t y ( Rep lTab l e .VALUE ) ;137

l o g . i n f o ( ” Answer r e c e i v e d − key=” + key + ” v a l u e =” + v a l u e ) ;138

} / / i f139

140

answer consumer . c l o s e ( ) ;141

t emp queue . d e l e t e ( ) ;142

143

} catch ( JMSExcept ion e ) {144

e . p r i n t S t a c k T r a c e ( ) ;145

} / / c a t c h146

147

}148

149
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /150

/∗ ∗ I n v o k e s a ”remove” o p e r a t i o n on t h e H a s h t a b l e . ∗ /151

p u b l i c vo id remove ( S t r i n g key ) {152

153

l o g . i n f o ( ” Removing key=” + key ) ;154

t r y {155

j a v a x . jms . TextMessage msg = t o p i c S e s s i o n . c r e a t e T e x t M e s s a g e ( ) ;156

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e . REMOVE PROPERTY, ” ” ) ;157

msg . s e t S t r i n g P r o p e r t y ( Rep lTab l e .KEY, key ) ;158

t o p i c P u b l i s h e r . p u b l i s h ( msg ) ;159

} catch ( JMSExcept ion e ) {160

e . p r i n t S t a c k T r a c e ( ) ;161

} / / c a t c h162

163

} / / remove164

165

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /166

/∗ ∗ The e x e c u t i o n e n t r y method . ∗ /167

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {168

C l i e n t p = new C l i e n t ( ) ;169

p . j o i n ( a r g s ) ;170

171

}172

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /173

} / / C l i e n t174
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[2] A. Kupšys, S. Pleisch, A. Schiper, M. Wiesmann. JMSGroups: Towards JMS-Compliant Group
Communication. In Proceedings of the 3rd IEEE International Symposium on Network Computing
and Applications, 2004. (NCA 2004), Cambridge, MA, USA, Aug. 2004
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