
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2004

A Framework for Secure Group Key Management
Sahar Mohamed Ghanem
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Information Security Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Ghanem, Sahar M.. "A Framework for Secure Group Key Management" (2004). Doctor of Philosophy (PhD), dissertation, Computer
Science, Old Dominion University, DOI: 10.25777/17a0-cn79
https://digitalcommons.odu.edu/computerscience_etds/55

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/55?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FRAMEWORK FOR SECURE GROUP KEY MANAGEMENT

by

Sahar M ohamed Ghanem
M.Sc. Computer Science, Decem ber 1997, Alexandria University, Egypt

B.Sc. Computer Science, June 1994, Alexandria University, Egypt

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COM PUTER SCIENCE

OLD DOM INION UNIVERSITY
May 2004

Approved by:V / V

Hussein Abdel-W ahab (Director)

ames Leathrum (Member)

urt Maly (M ember)

Ravi M ukkamala (Member)

M ohammad Zubair (Member)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3128708

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3128708

Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

A FRAMEWORK FOR SECURE GROUP KEY MANAGEMENT

Sahar Mohamed Ghanem
Old Dominion University, 2004

Director; Dr. Hussein Abdel-Wahab

The need for secure group communication is increasingly evident in a wide variety of

governmental, commercial, and Internet communities. Secure group key management is

concerned with the methods o f issuing and distributing group keys, and the management

of those keys over a period o f time. To provide perfect secrecy, a central group key

manager (GKM) has to perform group rekeying for every join or leave request. Fast

rekeying is crucial to an application’s performance that has large group size, experiences

frequent joins and leaves, or where the GKM is hosted by a group member. Examples of

such applications are interactive military simulation, secure video and audio

broadcasting, and secure peer-to-peer networks. Traditionally, the rekeying is performed

periodically for the batch o f requests accumulated during an inter-rekey period. The use

o f a logical key hierarchy (LKH) by a GKM has been introduced to provide scalable

rekeying. If the GKM maintains a LKH of degree d and height h, such that the group size

n < d \ and the batch size is R requests, a rekeying requires the GKM to regenerate

O (R x h) keys and to perform 0 (d x R x h) keys encryptions for the new keys

distribution. The LKH approach provided a GKM rekeying cost that scales to the

logarithm of the group size, however, the number o f encryptions increases with increased

LKH degree, LKH height, or the batch size. In this dissertation, we introduce a

framework for scalable and efficient secure group key management that outperforms the

original LKH approach. The framework has six components as follows. First, we present

a software model for providing secure group key management that is independent o f the

application, the security mechanism, and the communication protocol. Second, we focus

on a LKH-based GKM and introduce a secure key distribution technique, in which a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rekeying requires the GKM to regenerate 0 { R x h) keys. Instead of encryption, we

propose a novel XOR-based key distribution technique, namely XORBP, which performs

an XOR operation between keys, and uses random byte patterns (BPs) to distribute the

key material in the rekey message to guard against insider attacks. Our experiments show

that the XORBP LKH approach substantially reduces a rekeying computation effort by

more than 90%. Third, we propose two novel LKH batch rekeying protocols. The first

protocol maintains a balanced LKH (B^-LKH) while the other maintains an unbalanced

LKH (S-LKH). If a group experiences frequent leaves, keys are deleted form the LKH

and maintaining a balanced LKH becomes crucial to the rekeying’s process performance.

In our experiments, the use o f a B'^-LKH by a GKM, compared to a S-LKH, is shown to

substantially reduce the number o f LKH nodes (i.e., storage), and the number of

regenerated keys per a rekeying by more than 50%. Moreover, the B^-LKH performance

is shown to be bounded with increased group dynamics. Fourth, we introduce a

generalized rekey policy that can be used to provide periodic rekeying as well as other

versatile rekeying conditions. Fifth, to support distributed group key management, we

identify four distributed group-rekeying protocols between a set o f peer rekey agents.

Finally, we discuss a group member and a GKM’s recovery after a short failure time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IV

Copyright © 2004 Sahar Mohamed Ghanem. All rights reserved.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGMENTS

At fisrt, I thank God for enlightening my way and directing me to every success I

have reached and may reach in future. I am truly blessed to have all the support to

complete this dissertation.

My deepest gratitude and appreciation are due to Dr. Hussein Abdel-Wahab for

his continued guidance and support throughout this work. I am indebted to him for long

hours o f motivating discussion, constructive feedback, and thorough review of this

dissertation. In addition, I would like to extend my thanks to all my committee members:

Dr. Kurt Maly, Dr. Mohammad Zubair, Dr. Ravi Mukkamala, and Dr. James Leathrum

for their fruitful feedback concerning this dissertation.

Special thanks are due to my husband Ayman for his encouragement, motivating

support, patience, and sincere opinions.The biggest thank you is due to my daughter Rana

and my son Mohamed for being super good during my extended hours of work.

My utmost thanks for my Mother and Father for their unconditional love and

support. Finally, I would like to express my deepest gratitude to my sisters, Maha, Nagia,

and Thanaa and my friend Samya for being there whenever I needed.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

VI

TABLE OF CONTENTS

Page

LIST OF TABLES.. viii

LIST OF FIGURES.. ix

Chapter

I. INTRODUCTION.. 1
1.1 Overview... 2
1.2 Motivation and Objective... 6
1.3 Contributions...10
1.4 Outline..17

II. RELATED W O R K ...18
2.1 Secure Broadcasting...18
2.2 Contributory Group Key Agreement..20
2.3 Standardized (IETF) Group Key Management... 20
2.4 Distributed Group Key M anagement... 21
2.5 Logical Key Hierarchy..22
2.6 Additional Secure Group Communication Issues.....................................24
2.7 Summary... 29

III. XORBP: A NOVEL GROUP KEY DISTRIBUTION TECHNIQUE...................... 30
3.1 Secure Group Key Management Components.. 31
3.2 Traditional Rekey Manager.. 33
3.3 XORBP: A Novel Group Key Distribution Technique.......................... 37
3.4 Logical Key Hierarchy and XORBP.. 42
3.5 Scenarios and Comparison... 50
3.6 Cost Analysis and Estimates..53
3.7 Experimental Results..59
3.8 Conclusion..69

IV. LOGICAL KEY HIERARCHY REKEY PROTOCOLS..71
4.1 Motivation and Overview.. 72
4.2 S-LKH: A LKH as a Search T ree ... 73
4.3 B^-LKH: A LKH as a B^ Search T ree... 83
4.4 B’̂ -LKH Rekey Client Processing...97
4.5 Experimental Results..99
4.6 Conclusion..111

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Vll

V. BATCH PROCESSING OF GROUP REKEYING.. 113
5.1 Motivation..114
5.2 Rekey Policy Definition...116
5.3 Group Key Management Software Design...119
5.4 Rekey Sub-Tree Construction...122
5.5 Experimental R esults... 127
5.6 Conclusion...136

VI. DISTRIBUTED GROUP REKEYING AND RECOVERY................................... 138
6.1 Distributed Group Rekeying...138
6.2 Group Key Manager Recovery.. 152
6.3 Conclusion...160

VII. CONCLUSION AND FUTURE EXTENSIONS..162
7.1 Conclusion...162
7.2 Future Extensions..167

REFERENCES... 170

APPENDICES

A. EXAMPLES OF S-LKH AND B^-LKH REKEY PROTOCOLS 176
B. B^-LKH REKEY CLIENT PROCESSING... 184
C. BNl KH r e k e y s u b -t r e e l a b e l e d in s e r t io n 188
D. ACRONYMS.. 196

VITA...197

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

vni

LIST OF TABLES

Table Page

I. A + B, WHERE A AND B ARE 2 BITS L O N G ...38

II. A & B, WHERE A AND B ARE 2 BITS LONG...38

III. A © B, WHERE A AND B ARE 2 BITS LONG...39

IV. RM FIELD SIZE FOR B+-LKH OF HEIGHT h, AND RM ’S LEVEL L96

V. REKEY PACKET SIZE FOR ENCRYPTION-BASED AND XORBP KDTS ...97

VI. S-LKH VERSUS B^-LKH REKEY COST FOR (J = 4; « =8192; gdr = 0.4)106

VII. S-LKH VERSUS B+-LKH REKEY COST FOR (rf = 4; n =512; gdr = 0 .4)...... 107

VIII. S-LKH VERSUS B^-LKH REKEY COST FOR (J = 8; « =8192; gdr = 0.4)107

IX. LABEL OF KEY NODE N FOR SIMPLE RM TYPES: ADD & REMOVE....188

X. LABELS OF KEY NODES N1 AND N2 FOR A SPLIT KEY NODE 189

XI. LABEL OF MERGED KEY NODE N TO N 1 ... 190

XII. LABEL OF SHIFTED KEY NODES FROM N1 TO N ..190

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IX

LIST OF FIGURES

Figure Page

1. A Logical Key Hierarchy o f degree J = 3 for a group of 9 members............................. 8

2. Secure group key management software components...32

3. The keys maintained by a star rekey manager for 9 members....................................... 34

4. A LICK of degree d=2> and height /z = 3 for a group of 9 members..............................36

5. A LKH of degree d and height h = \ ...45

6. A LKH of degree d and height h = 2 ...46

7. The path to a leaf node in a LKH of height h ...48

8. Comparison of estimated LKH storage (LKHS) when used with encryption-based
versus XORBP KDTs.. 58

9. Comparison of estimated LKH member storage (MS) when used with encryption-
based versus XORBP KDTs... 58

10. Comparison of estimated LKH rekey message size (RMS) when used with
encryption-based versus XORBP KDTs...59

11. Comparison of RM construction time in for star versus LKH key management
approaches... 61

12. Effect o f LKH degree increase { d - A versus = 16) on RM construction time when
encryption-based fCDT is used... 62

13. Effect of LKH degree increase {d = A versus <i = 16) on RM construction time when
XORBP KDT is used...62

14. Comparison o f RM construction time when used with DES encryption-based versus
XORBP KDTs.

versus XORBP KDTs.

.64

15. Comparison of RM construction time when used with triple DES encryption-based
.64

16. Comparison of RM construction time when used with DES encryption-based KDT
versus XORBP KDT that uses secure random number generation................................ 66

17. Comparison of measured and estimated LKH height for a group of size n = 4096. ..67

18. Comparison of measured and estimated member storage (MS) for a group of size n =
4096..68

19. Comparison of measured and estimated rekey message size (RMS) for a group of
size n = 4096... 68

20. Comparison of measured and estimated LKH storage (LKHS) for a group of size n =
4096..69

21. A S-LKH stmcture..75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22. A S-LKH o f degree d = 2 and height /z = 3 for a group of size n = 5........................... 76

23. The format of messages used by a S-LKH rekey manager...78

24. The S-LKH new group member addition and RM constmction algorithm..................81

25. The S-LBCH group member removal and RM construction algorithm.......................... 83

26. The format of messages used by a B"^-LKH rekey manager...84

27. An example of different leaf node insertions in a B^-LKH of degree d - A 86

28. An example of different internal node insertions in a B^-LKH of degree <7 = 4 87

29. The B^-LKIi new group member addition and RM construction algorithm............... 89

30. An example of B^-LKH internal/leaf node right shift operation....................................91

31. An example of B^-LKH internal/leaf node left shift operation......................................92

32. An example o f B^-LKH intemal/leaf node right merge operation................................ 93

33. An example o f B^-LKH intemal/leaf node left merge operation...................................93

34. The B^-LKH group member removal and RM constmction algorithm........................95

35. Frequency of add RM type for the S-LKH protocol..100

36. Frequency of remove RM type for the S-LKH protocol...101

37. Frequency of add RM type for the B^-LKH protocol..101

38. Frequency of remove RM for the B^-LKH protocol..102

39. Frequency of number of rekey packets in add rekey message..................................... 103

40. Frequency of number of rekey packets in remove rekey message.............................. 104

41. Frequency of number of encrypted keys in add rekey message...................................105

42. Frequency of number of encrypted keys in remove rekey message............................105

43. Average number of rekey packets in a RM, where g<7r = 0, and n = 512...................108

44. Average number of rekey packets in a RM, where gdr = 0.4, and n = 512............... 109

45. S-LKH average number of nodes increase over B"^-LKH, where n = 512............... 110

46. S-LKH average number o f nodes increase over B’̂ -LKH, where n = 8192..............110

47. Simplified view o f the main group key management software objects...................... 120

48. An Example of a B^-LKH, a batch o f requests, and a rekey sub-tree.........................123

49. The batch rekey message (RM) format..125

50. B^-LKH versus S-LKH rekey cost for <7 = 4, « = 8192, and gdr = 0.......................... 129

51. B^-LKH versus S-LKH rekey cost for <7 = 4, r = 8192, and gdr = 0.5.......................129

52. Degree 4 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5)...131

53. Degree 4 B^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).. 131

54. Degree 8 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5)...132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XI

55. Degree 8 B'^-LICH rekey cost {gdr = 0, 0.2, 0.4, 0.5).. 132

56. A S-LKH rekey cost for different group dynamics {gdr= 0, 0.2, 0.4, 0.5)............... 134

57. A B^-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5)............. 134

58. A S-LKH rekey cost percentile increase {rci) over B’̂ -LKH, where n = 1024 and
batch size = 1 0 2 ...135

59. A S-LKH rekey cost percentile increase {rci) over B L lK H , where n = 8192 and
batch size = 819...136

60. Rekey agents and group members.. 140

61. Communication channels between the rekey agents and the group members...........144

62. A subgroup LKH of degree 2 for 8 members... 145

63. A group LICH of degree 2 for 32 members... 147

64. An A-LKH and subgroup LKH maintained at rekey agent Ai for 32 members 147

65. Sequence o f a dynamic A-LKH, key creation for 4 rekey agents............................... 149

66. Sequenee of a static A-LKH key generation for 4 rekey agents.................................. 150

67. A group LKH at a checkpoint time.. 156

68. A S-LKH member addition and removal examples...177

69. A B^-LKH member addition and removal examples...180

70. The B"^-LKH rekey client Rekey(), Loopl(), Loop2(), and Loop3() methods.......... 184

71. The B^-LICH rekey elient SimpleQ, SplitQ, IncreaseQ, and DecreaseQ methods. ...185

72. The B'^-LKH rekey client Merge(), and Shift() methods.. 186

73. Labeled insertion of key array to a B^-LKH rekey sub-tree... 191

74. A B^-LKH key view and a batch o f requests..192

75. The B^-LKH rekey sub-tree constructed for batch of 8 requests..................................194

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER I

INTRODUCTION

Many emerging technologies, such as web technology and low cost high performance

desktops have provided both the inspiration and the motivation o f a wide range of

applications, for which securing data transmission is an important requirement. Although

secure point-to-point communications have been predominant so far, the need for secure

group communication is increasingly evident in a wide variety o f government,

commercial, and Internet communities. Secure group communication is becoming the

basis for a growing number of applications such as war gaming, law enforcement,

disaster relief, stock quotes distribution, news feeds, software updates, live multi-party

conferencing, shared work space, distributed interactive simulation, Internet video

transmission, and on-line video games. Some o f these applications engage in one-to-

many communication while others involve many-to-many communication. Different

group applications and different application contexts will need different security services.

In secure group communication, just as in point-to-point communication, the privacy,

integrity, availability, and authenticity of a group service must be protected. However, a

group security concerns are considerably more involved than those regarding point-to-

point communication. In secure group communication, dealing with common issues of

message authentication and confidentiality becomes much more complex. In addition,

other concerns arise, such as access control, and dynamic group membership [4], [31].

Secure group communication is usually categorized by the Internet Engineering Task

Force (IETF) as secure multicast communication. The IP multicast model [18] uses the

notion o f a group o f members associated with a given group address. A sender simply

sends a message to this group address and the network replicates the message and

forwards the copies to group members located throughout the network.

The journal model for this dissertation is the lEEE/ACM Transactions on Networking.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Secure group communication has three major core areas: secure group policy, secure

group data transfer, and secure group key management [29]. A secure group policy

provides the definition, implementation and maintenance o f policies governing the

various mechanisms o f group security, such as key dissemination, access control,

updating (rekeying) of the group shared keys, and the actions taken -when certain keys are

compromised. Secure group data transfer is concerned with providing secure group traffic

techniques such as the methods used to ascertain the authenticity of a piece of data and

the methods used to establish data confidentiality. Secure group key management is

concerned with the methods o f issuing and distributing group keys and the management

o f those keys over period o f time, e.g. updating (rekeying) the existing group key(s)

under certain conditions following the prescribed policies.

In this dissertation, we present our view and efforts in developing software

framework for providing secure group key management that is efficient, scalable,

reliable, and independent of the application, the security mechanism, and the

communication protocol.

1.1 Overview

Before the widespread use o f the computer, information security was provided by

physical and administrative means. With the introduction of the computer, the need for

automated tools for protecting files and information stored on the computer became

evident. The generic name for such tools is computer security. The introduction of

distributed systems and the use o f networks and communications facilitate carrying data

between computers. Network security measures are needed to protect data during their

transmission. There are no clear boundaries between these three forms o f security.

By viewing the function o f the computer system as providing information, there is a

flow o f information from a source to a destination, and the attacks could be classified as

passive attacks, or active attacks. Passive attacks are usually called eavesdropping,

monitoring, or interception, and its goal is to obtain information that is being transmitted.

The attacks could be the release of message content, or traffic analysis. They are very

difficult to detect. Thus, network security emphasis is on preventing them rather than

detecting their occurrence. Active attacks involve modification o f the data stream or the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

creation of a false one. There are four active attack categories. Masquerade

(impersonating) in which one entity pretends to be a different entity; Replay in which

passive capture o f a data units is followed by subsequent retransmission to produce an

unauthorized effect; Modification o f the message (alteration, delay, or reorder); Denial o f

service that prevents the normal use o f a service. It is difficult to absolutely prevent active

attacks. The goal of a network security system is to detect them and possibly recover

from any resulting disruption or delays.

The following are the defined network security services:

• Authentication that assures the recipient that the message is from the source that it

claims to be.

• Access control to limit and control the access o f information to authorized users.

• Confidentiality (privacy) is the protection o f transmitted data from passive attacks, so

it is accessible only for authorized users.

• Integrity that assures the recipient that any modification of a transmitted message is

done only by authorized users.

• Non-repudiation is to prevent neither the sender nor the receiver from denying a

transmitted message.

• Anonymity when the identity of the sender o f a message is secret.

• Service availability is the detection and recovery from attacks that result in the loss or

reduction in availability o f elements of a distributed system.

Many emerging technologies, such as low-cost high performance desktop, video and

audio processing equipment, and high-speed transmission and switching will enable real­

time information exchange among group of participants. A new generation of distributed

group applications will take advantage o f these technologies and provide many network-

based services. Many of these applications will require security provisions for session

management and information transmission. War gaming, stock quotes distribution, news

feeds, distributed interactive simulation, live multi-party conferencing, and on-line video

games are just some of these group applications that require multiparty exchange of data,

voice, and video among a large number of simulated and real participants. Group

communication has many varying characteristics such as group size, member

characteristics (i.e., computing power and available bandwidth), membership dynamics.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

expected group lifetime, number o f senders, and volume and type o f traffic. A group

security service should address the different requirements o f different group

characteristics in addition to being scalable, reliable, and independent of security

objective, technology, and communication protocol [10],

Cryptography techniques can be used to provide authentication, confidentiality,

sender non-repudiation, and message integrity. The use o f cryptography necessitates the

distribution of shared group key(s). The nature o f group communication presents a

challenge when trying to provide secure group key management. Secure group key

management addresses issues such as how to generate a group key, how to securely

distribute the group key, how to revoke membership of leaving members, i.e., preventing

leaving members from access to future group communication (perfect forward secrecy),

how to prevent joining members from access to past group communication (perfect

backward secrecy), and how to periodically refresh the group key [65].

Extending point-to-point protocols for distributing a group key is not scalable. For

example, setting up a group o f symmetric keys with the assistance of a centralized group

key manager (GKM), where the GKM is used for authenticating and distributing the

group key to group members. Such protocol will involve encrypting the relevant message

n times, for a group o f n members, which is not scalable. The primary design goal o f a

secure group key management is to be scalable and make efficient use of processing,

bandwidth, and storage requirements for a GKM and a group member.

Secure group key management is a relatively recent field of research that is related to

two classical problems namely secure broadcast and contributory group key agreement.

In secure broadcast a sender wishes to broadcast a secret (group key) by a single

transmission (that is received simultaneously by many receivers) to some subset of his

receivers. Proposed solutions that are based on the mathematical Chinese Remainder

Theorem [15] or polynomial interpolation [7] are either o f theoretical interest where their

security is not studied, or not efficient for large group sizes. Contributory group key

agreement is usually based on a generalization o f Diffie-Hellman (DH) key agreement

protocol to a group [37], [61]. DH allows two individuals to agree on a shared key, even

though they can only exchange messages in public. Group DH protocols are contributory

key agreement protocols that generally require sending several messages and the group

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

key is generated and distributed after several rounds. These protocols are suitable for

small size peer groups, but not suitable for one-to-many type o f applications, or

applications with heterogeneous environments where group members’ computation

power and bandwidth varies. Since the rekeying delay is very large, group DH protocols

are not suitable for highly dynamic or large groups.

Secure group communication is usually categorized by the Internet Engineering Task

Force (IETF) as secure IP multicast communication. Hardjono et al [29] propose a

reference framework and problem areas for secure IP multicast protocol suites and define

the functional building blocks for such protocol suites. Three problem areas are defined,

namely, multicast data handling, keying material management, and multicast security

policies. Multicast data handling covers problems concerning the security-related

treatments of multicast data by the sender and the receiver that includes multicast data

encryption, group authentication, source authentication, and data integrity. Management

o f the keying material (i.e., cryptographic key belonging to a group) is concerned with

the secure distribution and refreshment of keying material along with their associated

state and parameters. Multicast security policies cover aspects o f policy in context of

multicast security that include policy creation, high-level policy translation, and policy

representation. Secure IP multicast provides security throughout the network layer and

routing protocols, and might require trust in intermediate routers.

lolus [49] is the first system to address the group key management scalability

problem by noticing that the security association must be dynamic in case of group

communication, changing as group membership varies. lolus’s approach to provide

scalability introduces the notion of a secure distribution tree that is composed o f a

number of smaller secure multicast subgroups arranged in a hierarchy to create a single

virtual secure group. Scalability is achieved by having each subgroup relatively

independent. Each subgroup has its own subgroup keying and there is no global group

key. Several other proposals adopt a distributed group key management to solve the

group key management scalability problem, e.g. [21], [64].

Wong et al. [67] present a different approach to improve the scalability of group key

distribution. Instead of a hierarchy of group security agents, they employ a hierarchy of

keys namely Logical Key Hierarchy (LKH). It is assumed that there exists a trusted and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

secure GKM responsible for group access control and key management using a LKH.

The LKH keys are distributed to group members while attempting to localize (as much as

possible) the effects of a rekeying event. The LKH approach gained a lot of interest, and

several other techniques have been built on top of it to improve the rekeying

computation, communication, or storage requirements [20],

1.2 Motivation and Objective

Secure group communication is becoming the basis of a wide variety of applications

in many government, commercial, and Internet communities. Secure group key

management is concerned with securely issuing and distributing a shared group key to

group members. In order to ensure perfect secrecy, the shared group key needs to be

changed and redistributed (rekeyed) as group members join or leave the group. Rekeying

when a member joins (leaves) the group, used to provide perfect backward (forward)

secrecy, prevents the member from accessing previous (future) group communication.

Usually, there exists a dedicated group manager (GKM) responsible for such group key

{GK) management issues. In terms of scalability, group rekeying presents a challenging

problem when trying to revoke a membership such that a leaving group member would

not have future access to the group communication.

A very fast rekeying is crucial to the performance o f an application that has large

group size, experiences frequent joins and leaves, or the GKM is hosted by a group

member because of the required computational effort. For example, a distributed

interactive military simulation that requires the exchange of communication between

groups of tens of thousands of participants. A second example, is a content-based publish

subscribe system such as stock quotes distribution, and secure broadcasting of audio and

video, where a central server experiences frequent join and leave requests. A third

example is a secure group of few hundred participants, where the GKM is hosted by a

group member such as in peer-to-peer networks, mobile ad-hoc networks, or grid

computing environments.

The simplest protocol is for the GKM to maintain the GK and a shared key with every

group member. Rekeying for a new member joining the group requires the GKM to

change the GK, encrypt it with its previous version and send it to old group members, and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

encrypt it with the new member shared key and send it to him. Rekeying to revoke a

membership (i.e., leaving member) requires the GKM to change the GK, encrypt it

individually with each shared key and send it to the corresponding member. When

revoking a membership, the GKM can no longer use the previous GK that is known to the

leaving (evicted) member. This protocol requires two encryptions to provide perfect

backward secrecy, but requires n encryptions to provide perfect forward secrecy for a

group of n members. This protocol is not scalable since it scales linearly with the group

size.

The logical key hierarchy (LKH) [67] provides a scalable approach and requires the

GKM to maintain a hierarchy (tree) o f keys of degree d. The root of the hierarchy is GK,

the leaf nodes are the members shared keys, and the other keys (known as key-

encrypting-keys KEKs) are used to provide scalable rekeying. Every group member holds

the keys that fall on the path from his shared key leaf node to the root. If a new member

joins the group, his shared key is inserted in the hierarchy and all the keys he will be

holding are changed and redistributed. If a group member leaves the group, his shared

key is deleted from the hierarchy and all the keys he was holding are changed and

redistributed.

For example, the LKH of degree <7=3, shown in Fig. 1, is maintained by a GKM for

a group of 9 members (a keys is indexed by the members’ numbers whose holding it).

Rekeying after inserting K^ (member joins) requires the GKM to change to be

K̂ _g and the group key Kj_g to be K^_g, and to perform the following 4 encryptions' for

the new keys distribution: {Kg_g}Kg_^, {Kj_g}Kg, {K,_p}Ki_g, and {Ki_g}Kg. While

rekeying after removing Kg (member leaves) requires the GKM to change Kj_g to be

K,_g and the group key K̂ _g to be K _̂̂ , and to perform the following 5 encryptions for

the new keys distribution: {Kg_^}Kj, {K,_g}Kg, {Ki_g}Kj_3 , and

{Kj_g}K7 _g. In general, for a group of n members and a balanced LKH of degree d,

rekeying after a member joins would require GKM to perform on the average 2 x log^ n

encryptions and rekeying after a member leaves would require GKM to perform on the

The notation {M }K implies that the message M is encrypte<i with the key K.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

average d x log^ n encryptions. A group member stores log^ n keys and has to perform

at most log^ n decryptions for a rekeying.

-7-9
-1-3

K ,

Fig. 1. A Logical Key Hierarchy o f degree J = 3 for a group of 9 members.

Traditionally, group rekeying is performed periodically for the accumulated join and

leave requests (i.e., batch of updates) during an inter-rekey period. If the GKM maintains

a LKH of degree d and height h, such that n < d ^ , and the batch size is R requests, a

rekeying requires the GKM to regenerate 0{Ry . h) keys and to perform 0 { d x R x h)

keys encryptions for the new keys distribution. The encryption-based LKH approach

provided a rekeying cost that scales to the logarithm of the group size, however, the

number of encryptions performed by a GKM increases with increased LKH degree, LKH

height, or the batch size, and can be more than the simple approach’s number of

encryptions (i.e, n encryptions).

Many researchers introduced new techniques for group rekeying on top of LKH

attempting to reduce compuation, communication, or storage cost for a GKM or a group

members. While Chang et al. [13] achieve reduction in a GKM storage, their approaches

allow members to collaborate or collude and break the system easily. The use of one-way

function to reduce communication cost is suggested by Balenson et al. [2], which might

increase the computation effort and the rekeying delay. The use o f pseudo-random

function to reduce communication-storage parameters is suggested by Canetti et al. [11],

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which constraints key generation to applying pseudo random function which makes it

hard to choose the session key form chosen weak keys.

The objective of our work is to provide a framework for secure group key

management that outperforms the original LKH approach in terms of a rekeying

computation effort for all application scenarios. The framework has to be secure,

scalable, efficient, reliable, and independent o f the application, the security mechanism,

and the communication protocol.

The main component of the framework is the key distribution technique. The main

drawback of the LKH approach is that rekeying requires the use of encryption/decryption

that will delay the process. Many real-time applications require very fast rekeying so that

it is not disraptive to their performance. In addition, the LKH approach has two different

procedures for rekeying in case of a member joining or leaving the group. Having two

un-symmetric rekeying protocols makes it more complex for batch processing, where a

rekeying is performed after a sequence o f requests of members joining and/or leaving the

group (i.e., batch of updates). As previously noted, the other approaches built on top of

LKH either increase the computation effort or are more vulnerable than the original LKH

approach. Our objective is to introduce a key distribution technique, on top o f LKH, that

requires much less computation effort and symmetric in both rekeying cases. In addition,

the new technique should be as secure as the original LKH and does not introduce any

significant increase in the communication or the storage requirements.

While the use of LKH is becoming standard practice as a group key management

technique, and many researchers assume a balanced LKH (i.e., all leaf nodes are at the

same level) for their cost estimates. To the best of our knowledge, no LKH maintenance

algorithms have been proposed for any LKH degree that keeps it balanced all the time.

Our objective is to provide LKH insertion and deletion algorithms and the associated

rekeying protocol(s) that maintain the LKH of any degree balanced at all times.

Since the group rekeying latency is large, it is not practical to apply such process after

each member joins or leaves the group. Instead, a batch rekeying process should be

applied for a sequence of members joining and/or leaving the group. The rekeying

process could be triggered periodically or when a certain condition is satisfied such as the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

batch size exceeding a certain limit. Our objective is to extend the developed balanced

LKH algorithms and protocols for individual updates to a batch of updates.

A central key manager becomes a central point o f both congestion and failure. For a

scalable reliable framework, our design has to provide both central and distributed secure

group key management mechanisms. In addition, it is essential to incorporate a recovery

mechanism for a key manager and a group member after short times of failure. The

mobile computing paradigm is an example where frequent short disconnection times may

occur, due to handoffs.

1.3 Contributions

First, we presented a new generic software model for providing secure group

communication. The model identifies five main components along with main

functionality and interactions. The identified components are authentication manager,

group key manager, rekey manager and the corresponding rekey client, group rekey

channel, and cryptographic utility manager [25]. Then, we extended Java'^'^ Security with

an application-programming interface (API) that can be used to provide group key

manager, rekey manager, and rekey client functionality as suggested by our model. Our

secure group key management framework is independent of the application, the security

mechanism, and the communication protocol. The group key management framework

requires addressing the following issue; group key distribution, rekey protocol, batch

rekeying, distributed group key management, and group key manager recovery. We

briefly present our approach to resolve the aforementioned issues highlighting our

contributions.

A Key Distribution Technique

We focused on the rekey manager/rekey client protocol that uses a Logical Key

Hierarchy (LKH) in order to provide scalable group key distribution. Similar to the

original LKH, we assume the rekey manager (re)-generates any key independent of all

other keys including its old version. Then, the rekey manager sends a rekey message to

all group members. The rekey message is received by the rekey client component, and

contains a rekey packet for every new key. The rekey client chooses which rekey packets

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

to process and update his set of keys according to other guiding message information

(e.g., the location of the new keys).

The original LKH approach encrypts a new key with either other key or its previous

version. Instead, we proposed a novel XOR-based key distribution technique namely

XORBP. The proposed approach uses an XOR operation between keys to reduce the

computation effort, and uses random byte patterns (BP) to distribute the key material in a

fixed size rekey packet to protect against insider attacks [24]. Compared to the encryption

approach, our technique provides symmetric rekey protocols in both cases of group

member joining and leaving. In addition, our experiments have shown that XORBP can

achieve more than 90% reduction in the rekey message construction time, compared to

the encryption-based key distribution technique, for the same LKH degree. For example,

consider a news broadcast GKM that supports a group of size n = 60,000, where up to

100 listeners could join in a sec, a listener stays tuned for few minutes, and a one block

encryption consumes 1 msec. Using the original encryption-based LKH, where d= 4 ,h =

8, and R = 1000, the rekey manager’s rekey message construction time requires 32 sec.

Using the suggested XORBP LKH approach, a rekey message construction time is

reduced to 3.2 sec.

On the other hand, XORBP increases LKH storage, member storage, and the rekey

communication cost (message size). Due to the un-symmetry of the encryption protocol,

increasing the LKH degree with such protocol reduces the join rekey computation cost

while increases the leave rekey computation cost. Using the symmetric XORBP key

distribution technique and increasing LKH degree would not have the same constraint.

The symmetry of XORBP protocol allows the use of a larger degree LKH, which reduces

LKH storage, member storage, and rekey communication cost compared to a smaller

degree LKH.

LKH Maintenance and Rekey Protocols

The research literature lacks practical LKH maintenance algorithms as well as

algorithms for keeping it balanced. Keeping a LKH balanced is crucial to the

performance of group rekeying especially for highly dynamic groups. We proposed two

novel protocols for establishing and maintaining a LKH (by a rekey manager) with any

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

degree as key nodes are inserted and deleted while group members join and leave the

group. In addition, we detailed the rekey message format and construction in different

LKH insertion and deletion scenarios as well as the different rekey client updates to

maintain a group member set of keys. One protocol adopts a balanced LKH while the

other adopts an unbalanced LKH that is developed for comparison.

Our protocols are based on the rekey manager assigning a unique member

identification (individual ID) that will be used as a group member sort and search value.

Individual identifications are sent in the rekey message to guide its processing, so they

better be randomly generated (not from any names, IP address, or any other true

individual identification) to prevent the possibility o f traffic analysis. In our protocols, the

LKH plays a dual role as a key tree and an easily searchable data structure (using an

individual ID) for the member individual material (name, IP address, k e y ,... etc).

Our first protocol maintains a LKH as a search tree (S-LKH) using the individual IDs.

We adapt the search tree algorithms to accommodate the constraint that group individual

materials are entries in the leaf nodes, while the internal nodes contain key-encrypting-

key s (KEKs). Our second protocol maintains a LKH as a balanced search tree (B^-

LKH) that has the same structure as S-LKH but guarantees that the LKH is balanced after

every node insertion or deletion. B"̂ search trees have an extra constraint that all allocated

nodes have to be at least half full to reduce the required tree allocated memory (storage).

On the other hand, B’̂ -LKH maintenance introduces complexity and extra overhead in the

rekey process.

We have performed empirical experiments to compare the rekey performance of S-

LKH versus B^-LKH for different group sizes and LKH degrees. For individual rekeying

(i.e., rekey after every join or leave request) the use of B^-LKH results in an increase in

the average number of rekey packets and the average number o f encrypted keys

compared to S-LKH. On the other hand, a B^-LKH has smaller height, and introduces a

decrease in the maximum number of encrypted keys. The maximum number o f encrypted

keys identifies the minimum period that has to be elapsed between two rekeyings.

Furthermore, a B"^-LKH requires much less allocated nodes (i.e., storage) compared to S-

LKH. The reduction of the number of allocated nodes using B'^-LKH reaches 50% of the

number o f nodes for the same degree S-LBCH for a highly dynamic group. A complete

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

h - \

LKH of degree d and height h contains {d'' - \) l { d - \) nodes (' ^ d '), and can fit a
1=0

group of size n < d ^ . A leaf node contains d individual keys, while an internal node

contains d key-encrypting-keys. For the aforementioned example, a GKM for 60,000

group members and a LKH of degree = 4, the B^-LKH number of allocated nodes is

estimated to be 42,000, (form our experiment, when d = A, the B'''-LKH number of

allocated nodes = 0.7 x n). On the other hand, if a S-LKH is used, the LKH number of

allocated nodes could increase to more than 84,000 for a highly dynamic group.

Batch Rekeying

As previously mentioned, individual rekeying is not practical. For example, if the

inter-arrival time o f group members at the start of a session is very small, a new group

key might be issued (by the rekey manager) before the previous key version has reached

(or has been used by) the group members. A simple solution is periodic rekeying that

suggests rekeying after a fixed period of time that is large enough to avoid the above

problem. Periodic rekeying will require a rekeying for a batch o f updates (i.e,

accumulated join and leave requests during this period). Periodic rekeying doesn’t take

into account the batch size or the request delay. We have extended our protocols to

support batch processing.

First, we introduced a generalized rekey policy based on three main parameters that

determine the triggering condition for the rekeying process. The three parameters are

batch size, maximum request delay (i.e., time between receiving the request and the start

of rekeying), and the minimum inter-rekey period (i.e., minimum period that has to be

elapsed between two consecutive rekeyings). The application has the flexibility o f using

all or some o f the rekey policy parameters as a deciding factor for triggering the rekey

process. The application type determines what blend of parameters is taken into

consideration. We detailed the designed rekey policy definition and presented a software

object design for secure group key management.

Next, we extended S-LKH and B"^-LKH rekey protocols for a batch o f updates. For

individual rekeying we concluded that the use o f B'^-LKH introduces major LKH storage

savings and slightly increases the rekey cost. Our experiments for batch of updates show

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

that using B^-LKH with large batch size and/or high dynamic groups substantially

reduces the rekey cost by more than 50% when compared to S-LKH. For example,

assuming a balanced LKH (B'*'-LKH) the number of regenerated keys in the above

example is estimated to be 8,000 keys, while if an unbalanced S-LKH is used, the number

of regenerated keys can increase to more than 16,000 keys (and therefore doubles the

LKH estimated rekeying times). In addition, our experiments demonstrate that B"^-LKH

performance is stable (bounded) for highly dynamic groups while S-LKH performance

deteriorates as the group dynamics increase. Such S-LKH instability is due to the fact that

the minimum number of children o f a node is one while B^-LKH nodes need to be at

least half full.

Distributed Group Key Management

To extend the scalability and the reliability of our model, we introduced four

cooperating protocols of distributed group key management between peer rekey agents.

In a group o f peer rekey agents, every agent manages a subset o f the group members and

participates equally in generating and distributing the group key (known to all group

members). We show that the protocol with the minimal overhead is that one rekey agent

at a time generates and distributes the group key to all members. We provide the design

details o f the LKH maintained at every agent for the different cooperation scenarios.

If any rekey agent is required to update all group members o f a new group key, a

naive approach is that every agent maintains (replicates) the group LKH. Instead, we

proposed the creation o f agents’ LKH (A-LKH) that reduces the replicated LKH size, and

the number of maintained keys at a group member. Moreover, we discussed two different

approaches for maintaining A-LKH namely dynamic A-LKH and static A-LKH. The first

approach, dynamic A-LKH, allows a flexible agent join and leave but has a drawback of

(sometimes) updating (some) group members when a rekey agent joins or leaves the

agents’ group. While, in the second approach, static A-LKH, the maximum number of

rekey agents has to be known before starting the session and updating A-LKH is

transparent to all group members.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

Group Key Manager Recovery

Finally, we suggested a recovery protocol o f a group key manager (agent) after a

short time o f failure. Although the group key manager state (e.g., LKH) could be

recovered by collecting the state stored at all group members (and rekey agents), we

introduced the use o f a log file to facilitate such recovery in ease of member failures or

inconsistency. The logging system avoids writing any key or revealing any random

number generator information. The log file is used to recover the last rekey policy, the

rekey scheduler state, and the shape of LKH (without keys). The group members

participate in the recovery phase by sending at least one encrypted recovery message to

their rekey manager. The recovery message sent by a group member contains his set of

maintained keys. Noticing that many LKH keys are stored by more than one group

member (e.g., the group key is maintained by all group members), we introduced a key

selection technique for group members to reduce the number o f sent keys in a reeovery

message while allowing the group key manager to retrieve all LKH keys. The proposed

logging and recovery mechanism is secure and easy to implement. The recovery of a

group member after short time o f failure can be treated as the member leaving the group

then joining later. If no rekeying is initiated between the leave and join requests, the

group member state is refreshed (i.e., sending him the same set of keys he was holding).

In this case, refreshing a group member optimizes the rekey process by reducing the

number of changed keys. Such refreshing requires the group member to provide his

individual ID and key.

In summary our contributions can be summarized as follows:

1) A generic software model for secure group key management that identifies the main

eomponents and their functionalities and interaetion. Extending Java'^“ security with

an API that can be used to provide the group key manager, the rekey manager, and

the rekey client functionality suggested in our model.

2) A simple key distribution technique XORBP that can be used with the Logical Key

Hierarchy (LKH) approach for group key management. Our experiments show that,

compared to the original encryption technique for key distribution, XORBP has

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

symmetric rekey procedures for join and leave, and can achieve more than 90%

reduetion in the rekey message construction time [24],

3) Two LKH protocols for group individual rekeying (i.e., after each join or leave

request) that details the LKH insertion and deletion algorithms, and the rekey

message format and construction performed by a group rekey manager. In addition,

the protocols detail the rekey elient updates performed by the eomponent that reeeives

the rekey message at a group member. Our first protocol adopts an unbalanced LKH

(S-LKH) while the other adopts a balanced LKH (B"^-LKH). Our experiments show

that B^-LKH reduces the required LKH storage while slightly increases the individual

rekeying cost compared to S-LKH. The reduction o f the number o f allocated nodes

using B^-LICH reaches 50% of the same degree S-LKH for a highly dynamic group

[25].

4) For batch processing (sequence of join and/or leave requests): first, we formalized a

definition of a flexible rekey policy that has three main parameters: batch size,

maximum request delay, and minimum inter-rekey period. Then, we provided a

simplified view of the software objects used to provide secure group key

management. Next, we extended the above two protocols (S-LKH and B^-LKH) to

support batch rekeying. Our experiments for batch of updates show that using a

balanced LKH (B'^-LKH) with large batch size and/or high dynamie group

substantially reduces the rekey computation and communication cost by more than

50% when compared to an unbalanced LKH (S-LKH). In addition, our experiments

show that B'^-LKH performance is stable (bounded) for highly dynamic groups while

S-LKH performance deteriorates as the group dynamics increases.

5) We introduced four cooperating protocols o f distributed group key management

between a group of peer rekey agents, and detailed the maintained LKH and the

group rekey overhead for each model. We introduced the use o f agents’ LKH (A-

LKH) to reduce the size of the replicated LKH maintained at each agent over a naive

approach (used in two o f the above protocols). In addition, we proposed two

techniques for A-LKH maintenance, one allows a transparent agent join or leave to

group members and the other is not transparent (group members might be

affeeted/notified).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

6) Finally, we proposed a logging and recovery mechanism for the group key manager

and the rekey manager. The proposed technique is secure and easy to implement.

Group members participate in the recovery of their group key manager by sending

one recovery message (in most cases). A key selection technique is proposed for a

group member to reduce the size and overhead of the recovery message. In addition,

we discussed the recovery o f a group member after a short time of failure.

1.4 Outline

The rest of this dissertation is organized as follows. Chapter II presents related work

to secure group communication and secure group key management. Chapter III

introduces the software model for secure group key management and presents the new

key distribution technique XORBP. In addition, the experimental results for comparing

XORBP key distribution technique with the encryption-based technique are presented. In

Chapter IV, we detail the designed rekey protocols. The first protocol adopts an

unbalanced LKH (S-LKH) while the second protocol adopts a balanced LKH (B^-LKH).

We present the rekey message format, the LKH data structure, the LKH maintenance

algorithms along with the rekey message construction for both protocols, and the rekey

client update procedures for B^-LKH protocol. Moreover, the experimental results for

comparing the two protocols for individual rekeying are presented. In chapter V, we

introduce a rekey policy definition and implementation, and highlight the extension of

B^-LKH rekey protocol for batch processing. Furthermore, the experimental results for

comparing S-LKH and B^-LKH protocols for batch rekeying are presented. Chapter VI

presents the extended model for distributed group key management. In addition, we

discuss the recovery of a group member after a short time of failure as well as the

proposed recovery protocol for the group key manager. Finally, chapter VII concludes

this dissertation summarizing our contributions and presenting ideas for future

extensions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

CHAPTER II

RELATED WORK

In chapter I, we identified the main requirements and issues for providing secure

group key management. In a general model, there is a group manager responsible for

generating and distributing a group key to all group members. The group manager is also

responsible for changing and redistributing (i.e., rekeying) the group key when it deems

necessary. The group key has to be changed to prevent new (old) group members from

accessing previous (future) group communication. Secure group key management has to

be scalable and reliable. A major scalability problem occurs when a rekeying is

performed to revoke a group membership. A naive solution allows the group manager to

perform n encryptions to distribute a new group key to a group o f n members.

In this chapter, we present relevant related work to the secure group key management

problem. First, we present two (classical) problems similar to group key distribution.

Section 2.1 presents the secure broadcasting problem, while section 2.2 presents the

contributory group key agreement problem. As previously noted, secure group

communication is categorized by IETF as secure multicast. Section 2.3 summarizes the

lEFT group key management standard. In addition, we summarize the recent research

work for secure group key management. The approaches for solving the scalability

problem, identified above, can be categorized as physical distributed management

(section 2.4) and the logical key hierarchy approach (section 2.5). Moreover, section 2.6

summarizes several related topics to secure group communication such as multicast

IPsec, group policy, group access control, group data-origin authentication, and rekey

transport protocols. Finally, section 2.7 summarizes this chapter.

2.1 Secure Broadcasting

Secure broadcast is motivated by the main property of a broadcast channel, that is a

single transmission from a source station can be received simultaneously by many

destination stations. Secure broadcast is defined as the sender wishing to broadcast a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

secret to some subset o f his receivers. Meanwhile, the sender does not perform a separate

encryption either o f the secret or o f a single key with which to protect the secret, for each

o f the intended recipients.

Secure lock [15] proposes the locking concept and a secure lock implementation

based on the Chinese remainder Theorem. The proposed scheme is efficient only when

the number o f users in a group is small, since the time to compute the lock and the length

o f the lock (hence the transmission) is proportional to the number o f users.

Berkowis [7] provided a generalized model for a predefined scheme for secure

broadcasting that uses polynomial interpolation for secret sharing. The general model

assumes each receiver has a unique pseudo-share (secret) with the sender. The sender

broadcast a set o f shares, while each subscribed receiver adds his pseudo-share, as a

possible share, to the received shares. If that pseudo-share is an actual share he recovers

the secret, and if it is not he doesn’t recover the secret. Some examination of the security

o f his scheme is still necessary. Gong [26] tries to add authentication, integrity check, and

freshness assurance to the message o f a modified version o f the polynomial method.

Fait and Naor [22] introduce theoretical measures for the qualitative and quantitative

assessment of the encryption schemes designed for broadcast transmissions. The work

considers a scenario where there is a center and a set of users. The center provides the

users with pre-arranged keys when they join the system. At some point the center wishes

to broadcast a message to a dynamically changing privileged subset o f the users. The

obvious solution is to give every user its own key and transmit an individually encrypted

message to every member o f the privileged class. This requires a very lengthy

transmission. The other simple solution is to provide every possible subset of users with a

key. This requires every user to store a huge number of keys. The authors provide

solutions, which are efficient in the two measures, transmission length, and storage at the

user’s end. In addition, the schemes should be computationally efficient. The security

parameter was defined to be the length of the key. Another defined parameter is the

number o f users that have to collude so as to break the scheme. For a given parameter k, a

k-resilient scheme should be resilient to any subset of k users that collude and any disjoint

subset o f any size of privileged users.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 0

2.2 Contributory Group Key Agreement

There are two types o f group key agreement, centralized or contributory. In

centralized techniques, the entire key generation is performed by a single entity (which

actually translates into key distribution, not key agreement). On the other hand, in a

contributory key agreement, each group member makes an independent contribution to

the group key. The contributory key agreement model is usually based on a

generalization of Diffie-Hellman (DH) key agreement protocol to a group [37], [61]. DH

is a public-key system that allows two individuals to agree on a shared key, even though

they can only exchange messages in public. Group DH generally require sending several

messages, exchanges, and the key is generated and distributed after several rounds. These

protocols are suitable for small size peer groups. While they are not suitable for one-to-

many (one sender and many receivers) type of applications, applications with a

heterogeneous environment where member computation power and bandwidth varies. In

addition, since the rekey latency (delay) is very large, they are not suitable for highly

dynamic and/or large groups where frequent re-keying is necessary.

2.3 Standardized (IETF) Group Key Management

The Group Key Management Protocol (GKMP) [35], [36] is an application level

protocol, independent of the underlying communication protocol. The creation and

distribution of the group key require assignment of roles. The two primary roles are those

of key distributor and member. The protocol identifies what functions the individual

hosts perform in the protocol. The controller initiates the creation of the key, forms the

key distribution messages, and collects acknowledgement o f key receipt from the

receiver. The member waits for a distribution message, decrypt, validate, and

acknowledges the receipt of the new key.

Baugher et al. [6] present a group key management architecture for multicast security

that is based upon the group controller model with a single group owner as the root-of-

trust. The group owner designates a group controller for member registration and rekey.

The framework and the architecture allow for a modular and flexible design of group key

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 1

management protocols for variety different settings that are specialized to application

needs.

Hardjono et al [29] propose a reference framevv^ork and problem areas for secure IP

multicast protocol suites and define a breakdown to functional building blocks for such

protocol suites. They define three problem areas; multicast data handling, management of

the keying material, and multicast security policies. Group key management building

blocks following the reference framework are described in [28], [33].

2.4 Distributed Group Key Management

Ensemble [57] is a group communication system built at Cornell University, and is a

descendant from an earlier system named Hours, that is descendant from the Isis system.

The system allows processes to create process groups in which scalable reliable FIFO-

ordered multicast and point-to-point communication are supported. A process group

coherently binds together many processes into one entity. Processes may dynamically

join and leave a group. Ensemble is a user-level library linked to an application, and is

divided into many layers each implementing a simple protocol. Stacking together these

layers, the user may customize the system to suite its needs. All members in a group must

have the same stack to communicate. Ensemble group communication has inherently

limited scalability, and scales to 100 members. Rodeh et al. [57] describe the security

protocols and infrastructure o f Ensemble. A completely distributed and fault-tolerant

algorithm for the management o f Ensemble group keys (arranged as LKH) is described in

[56].

lolus [49] is a scalable, general-purpose framework that can be used for either secure

multicasting or multicast key management. lolus discards the idea of large flat secure

multicast group and replaces it with the notion of a secure distribution tree that is

composed of multiple smaller secure multicast subgroups arranged in a hierarchy.

Together these subgroups form a single virtual secure multicast group. The glue that

holds the subgroups together consists o f the Group Security Agents (GSAs) that manage

each subgroup. The GSAs cooperate to invisibly deliver all multicast data securely to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 2

each o f the subgroups, thereby creating a single secure multicast image for the senders

and receivers.

Versakey [64] is a middleware framework for secure multicasting. The framework

presents three closely related schemes for key distribution and management, ranging from

tightly centralized to completely distributed. The framework also provides a set of

efficient transitions from one scheme to another. All approaches organize the space of

keys that will eventually be assigned to group members in a unique way, without actually

generating the keys before they are needed.

DISEC [21] proposes a distributed key management scheme for many-to-many secure

group communication. The framework uses one-way function trees for key distribution

and management. DISEC proposes a localized ID assignment scheme thereby eliminating

the need for a centralized group controller. Each member generates its own key thereby

contributing a secret towards the computation o f the root key. In addition, DISEC doesn’t

have a single point o f control, attack, or failure.

2.5 Logical Key Hierarchy

Wong et al. [67] present a novel solution to the scalability problem of group key

management. They introduce key graphs and its special type, a key tree, to specify secure

groups. It is assumed that a tmsted and secure key server is responsible for group access

control and key management, and the key server uses key graphs for group key

management. A key graph is a directed acyclic graph with two types o f nodes, w-nodes

representing members and A:-nodes representing keys. A member is given key k if and

only if there is a directed path from w-node u to k-node k in the graph. In addition, they

present three rekeying strategies, user oriented, key oriented, and group oriented

join/leave protocols based on these strategies. The strategies are scalable to large groups

with frequent joins and leaves. In particular, the average server processing time per

join/leave increases linearly with the logarithm o f group size. The key tree is widely used

and known as a logical key hierarchy (LKH).

Representing a binary LKH as a one-way function trees (OFTs) is introduced in [2].

In comparison with LKH, OFT algorithm reduces half the number o f bits broadcast by

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

23

the manager per add or evict operation. The OFT has the option o f member contributions

to the entropy of the common communication key. On the other hand, OFT raises some

interesting questions about the security o f function iterates, and that of bottom-up one­

way function trees.

Key management using a Boolean function minimization technique, introduced in

[13], is similar to the LKH scheme in the sense that it uses smart distribution o f keys to

achieve good scaling. However, instead o f using a fixed hierarchy o f keys, they

dynamically generate the most suitable key hierarchy by composing different keys. The

paper focuses explicitly on the problem o f cumulative member removal and proposes a

scheme that can be used to find the minimum number o f messages required to distribute

the new keys to the remaining group members. An advantage o f their scheme is that the

controller has to maintain only 0 (log 2 n) keys as opposed to 0 (w), where n is the number

o f members in the group. Due to the minimal number o f auxiliary keys that this key

management maintains, it may be susceptible to collusion attacks. In a collusion attack, a

set of members previously removed from the group collude and by combining their sets

o f keys may be able to obtain the current valid set of keys, thereby being able to continue

unauthorized receipt of group communication.

Loptsiech et al. [46] describes a key management mechanism for group

communication sessions that is based on the “Subset-Difference” algorithm. The Subset-

Difference algorithm is especially suitable for stateless receivers. Its main advantage over

LKH is that it requires to transmit only 2 x r keys instead of 2 x r x log 2 n keys in order

to revoke r users from a set of n users, regardless o f the coalition size, while maintaining

a single decryption at the user’s end. In return, it requires every receiver to store

log 2 (2 xn) keys instead of logj nkeys. The receiver needs to employ 1 decryption for

every rekeying event plus log 2 n applications o f a pseudo-random generator. Chen and

Dondeti [14] study the advantage and applicability of statefull and stateless rekeying

algorithms to different applications. An analytically comparison is presented o f the

storage eost and the rekeying cost o f LKH and the Subset-Difference revocation

algorithm in immediate and batch rekeying scenarios.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 4

Canetti et al. [11] present a rekeying protocol for wide range o f efficiency

requirement with respect to several parameters. An upper bound is deduced in the

tradeoff between storage and communication parameters In addition, lower bounds are

presented on the tradeoff between communication and user storage. Moreover, the

proposed scheme is shown to be almost optimal with respect to these lower bounds. The

security o f their scheme can be reduced to the strength or the security o f the pseudo­

random function used in the computation. Repeated applications o f a pseudo-random

function, to the input will make it difficult (for the group controller) to guarantee that the

root key is not from a weak key space.

Another improved LKH algorithm, LKH+2, is proposed in [55], where a group

manager can use keys already in the tree to drive new keys. LKH+2 achieves K x log^ n

message size for leave operations, where K is the size o f a key.

Selck et al. [58] present a modification to the LKH scheme where the new approach

proposes an organization o f the LKH trees with the respect to the members’ compromise

probabilities instead of keeping a balanced tree, in a spirit similar to data compression

techniques such as Huffman and Shannon-Fano coding.

2.6 Additional Secure Group Communication Issues

In this section we present the following additional secure group communication

issues: multicast IPsec, group policy, group data-origin authentication, rekey transport

protocols, and secure multicast services.

2.6.1 Group/Multicast IP Security (IPsec)

IPsec [41] is designed to provide interoperable, cryptographically based security

services for IPv4 and IPv 6 . These services are provided at the IP layer, offering

protection for IP and/or upper layer protocols (e.g. TCP, UDP, ICMP, etc). These

objectives are met through the use of two traffic security protocols, the Authentication

Header (AH) [42] and the Encapsulating Security Payload (ESP) [43], and through the

use of cryptographic key management procedures and protocols. These mechanisms are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

designed to be algorithm-independent with a specified standard set o f default algorithms

to facilitate interoperability in the global Internet.

IPsec security services can be provided between a pair of communicating hosts,

between a pair of communicating security gateways, or between a security gateway and a

host. The protection offered is based on requirements defined by a Security Policy

Database (SPD) established and maintained by a user or system administrator. Packets

are selected for one o f three processing modes based on IP and transport layer header

information matched against entries in the SPD. Each packet is either afforded IPsec

security services, discarded, or allowed to bypass IPsec.

Afforded IPsec packets (use o f AH and/or ESP) make use o f Security Associations

(SAs). SA is a simplex connection that affords security services to the traffic carried by

it. The Security Association Database (SAD) contains parameters that are associated with

each active SA to specify the security services to be provided, protocols to be employed,

and algorithms to be used. The Internet Security Association and Key Management

Protocol (ISAKMP) [47] defines the procedures and packet formats to establish,

negotiate, modify and delete security associations (SAs). Theses formats provide a

consistent framework for transferring key and authentication data which is independent

of the key generation technique, encrjqition algorithm and authentication mechanism. The

Internet Key Exchange (IKE) [32] is an ISAKMP to negotiate, and provide authenticated

key material for security associations in a protected manner.

Extending IPsec to support secure (multicast) groups is not standardized, however,

there are several drafts try to extend IPsec to such support. Canetti et al. [9] propose an

architecture for secure IP multicast that mimics the IPsec architecture, and re-uses exiting

IPsec mechanisms wherever possible.

The IPsec ESP provides a set o f security services that include data origin

authentication, which enables an IPsec receiver to validate that a received packet

originated from a peer-sender in a pair-wise SA. However, for secure IP multicast groups,

ESP supports only “group authentication” and does not support data-origin

authentication. Multicast ESP (MESP) [5] is an extension o f the ESP transform for

multicast data-origin authentication. Canetti et al. [12] propose another MESP transform

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

2 6

in addition to an Application MESP (AMES?) that is designed to work in the

application/transport layer.

Similar to ISAKMP, the Group Secure Associate Key Management Protocol

(GSAKMP) [34] defines the message passing requirements to provide mechanisms to

disseminate group policy, perform access control decisions during group establishment,

generate group keys, recover from the compromise o f group members, delegate group

security functions, and destroy the group. In GSAKMP group responsibilities are

decomposed into authorized roles. Roles are defined for Group Owner, Group Controller,

SubGroup Controller, and Member.

2.6.2 Group Policy

Security policy is a statement of the rules enforced by security mechanisms. Policies

can be described by whom they cover and by what they cover. Group security policy can

be static or it can be dynamic and tailored to the requirements o f the group.

Hardjono et al. [30] define group security policy expressed in the form o f policy

token or policy certificate. It describes the elements that make-up an instance o f group

policy and explains the intended functions o f each element.

The Antigone framework [48] provides an interface for the definition and

implementation of a wide range o f secure group policies. Policies are implemented by the

composition and configuration of a defined set o f mechanisms that provide the basic

services needed for secure groups. Antigone provides mechanisms for providing the

following functions; authentication, member join, session key and group member

distribution, application messaging, failure detection, and member leave.

The Dynamic Cryptographic Context Management (DCCM) [19] provides a policy-

based security for large (1 0 0 , 0 0 0 members), dynamically changing groups of

participants. In DCCM, groups at all levels have policies. These policies are represented,

negotiated, managed, and an unambiguous set o f mechanisms and configuration (called a

cryptographic context) is created to make particular interactions possible subject to these

policies.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 7

2.6.3 Multicast Group Access Control

Multicast communication provides one-to-many and many-to-many communication

[18]. There are a number o f available multicast routing protocols that provide the

efficient transport mechanisms o f multicast by routing packets with one group destination

address to multiple recipients. A host uses the Internet Group Membership Protocol

(IGMP) to notify the routing system that it should deliver packets for a particular

multicast group to this host. Gong and Shacham [27] discuss threats, requirements for

security, and some trade-offs between scalability and security. They outlined the

fundamental security issues in building a trusted multicast facility such as protecting

traffic, controlling participation, and restricting access o f unauthorized users.

IGMP operates in a different portion of the network from the multicast routing

protocol. IGMP operates between hosts and edge routers. Moffaert and Paridaens [50]

discuss security aspects in IGMPv3. Coan et al. [16] propose an application-level secure

multicast technique that addresses some o f the limitations of end-to-end secure multicast.

The technique has a defense against denial-of-service attacks by using a secure extension

to IGMP. Ballardie [3] describes how a Core Based Tree (CBT) multicast protocol can

provide for secure joining o f a CBT group tree.

Gothic [39] is an architecture for providing group (receiver) access control. Gothic is

composed o f two systems; the group policy management system and the group member

authorization system.

2.6.4 Group Data-Origin (Source) Authentication

The problem of stream authentication is solved for the case o f one sender and one

receiver. The sender and receiver agree on a secret key, which is used in conjunction with

a message authenticating code (MAC) to ensure the authenticity of each packet. In case

of multiple receivers, however, the problem becomes much harder to solve, because a

symmetric approach would allow anyone holding a key (that is, any receiver) to forge

packets. Alternatively, the sender can use digital signatures to sign every packet with its

private key. This solution provides adequate authentication, but digital signature are

prohibitively inefficient.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

Wong and Lam [6 8] present a chaining technique for signing/verifying multiple

packets using a single signing/verification operation. Gennaro and Rohatgi [23] present

two solutions to the problem of authenticating digital streams. The first one is for the case

of a finite stream, which is entirely know to the sender. The second case is for a

potentially infinite stream, which is not known in advance to the sender.

TESLA [53] is a secure sender authentication mechanism for multicast data streams.

It provides authentication of individual data packets, regardless of the packet loss rate. In

addition, TESLA features low overhead for both the sender and the receiver, and does not

require per-receiver state at the sender. For TESLA to be secure, the sender and the

receiver are required to be loosely time synchronized. Loosely time synchronized means

that the synchronization does not need to be precise, but the receiver musk now an upper

bound on the dispersion (the maximum clock offset). Perrig et al. [54] propose several

substantial modifications and improvements to TESLA.

2.6.5 Reliable Group Rekey Transport Protocols

Group re-keying involves two operations - key encoding and key distribution. The

key-encoding phase involves generating a set of encrypted keys that have to be

transmitted to the members of the group. The key distribution phase is concerned with

packing these encrypted keys into packets and delivering the packets to the members of

the group in a scalable, reliable, and timely manner. Although reliable multicast transport

protocols such as RMP [6 6] can be used for reliable delivery o f such packets, the reliable

key delivery problem has some characteristics that can be exploited to design custom

protocols that are more light-weight in nature. Possible tailored solutions to the reliable

group key distribution problem are presented in [60] and [70].

2.6.6 Other Secure Multicast Service

The SecureRing [44] group communication protocols provide reliable ordered

message delivery and group membership services despite faults caused by modifications

to the programs o f a group member following illicit access to, or capture of, a group

member (called Byzantine faults).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 9

Non-repudiation is a proof of delivery that the receiver did indeed receive data when

they might deny reception. Using the Nark scheme [8], each multicast receiver can

reliably prove whether any fragment o f the data hasn’t been delivered or wasn’t delivered

in time. Further, each receiver’s data can be subject to an individual watermarked audit

trail. This provides a deterrent against a receiver giving away or re-selling either the keys

or the decrypted data.

2.7 Summary

In this chapter, we presented relevant related work to the secure group key

management problem. We presented two classical problems related to the group key

distribution problem: secure broadcasting and contributory group key agreement. In

addition, we summarized the lETF’s group key management standard. Furthermore, we

presented the different approaches for distributed group management. Moreover, we

summarized the logical key hierarchy (LKU) approach for scalable group key

distribution, and several variations. Finally, we presented a summary of other related

topics such as multicast IPsec, group policy, group access control, group data-source

authentication, and rekey transport protocols.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

CHAPTER III

XORBP: A NOVEL GROUP KEY DISTRIBUTION TECHNIQUE

In this chapter, we present the contributed software model for providing (central)

secure group communication. The model identifies the main software components along

with their functionalities and interactions. We focus on the details o f the rekey manager

that generates the shared group key and distributes it to all group members. A rekey

(change of group key) is necessary when a member joins the group to prevent him from

accessing group communication sent before he joined (such operation is denoted join

rekey). A rekey is also necessary when a member leaves the group to prevent him from

accessing further group communication (such operation is denoted leave rekey). We

highlight the two traditional rekey management techniques namely star and logical key

hierarchy (LKH). The traditional group key management systems used to encrypt a newly

generated key with other key (such as the key’s previous version or a group member key)

before distributing it to group members. We demonstrate the drawbacks o f encryption-

based key distribution techniques (KDT) such as having a non-symmetric join and leave

rekey costs, and being not scalable when used with star or high degree LKH key

management. Moreover, we present our novel XOR-based KDT, namely XORBP. The

proposed approach uses bit XOR operation between keys to reduce the computation

effort, and random byte patterns (denoted BPs) to distribute the key material in a fixed

size rekey packet. We demonstrate that XORBP is symmetric in the join and leave rekey

operations. Furthermore, we empirically study and compare the cost o f the encryption-

based and XORBP KDTs. Our experiments have shown that XORBP can achieve up to

87% reduction in the rekey time compared to an encryption-based KDT.

The rest o f the chapter is organized as follows. Section 3.1 presents a generic

software model for secure group communication. Section 3.2 discusses star and LKH

rekey management techniques, and studies the properties of the traditional encryption-

based KDT. Section 3.3 introduces XORBP the proposed group key distribution

technique. Section 3.4 demonstrates how XORBP can be used with LKH. Section 3.5

presents scenarios and comparison of the new key distribution technique versus the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

traditional approaches. Section 3.6 analyses and eompares the cost estimates o f XORBP

versus the encryption-based KDT. Section 3.7 presents the experimental results

confirming the analyzed estimates. Finally, the chapter is concluded in section 3.8.

3.1 Secure Group Key Management Components

Fig. 2 illustrates the designed model of the software eomponents for secure group key

management. The authentication manager is responsible for ensuring the identity o f the

group members defined according to the group policy. The authentication manager could

receive a request from a group member to join the group, or could be in charge o f inviting

the members to join the group. Afterwards, it applies an authentication protocol (using

long-term keys) to decide whether to accept or reject a member. In addition, it negotiates

the session parameters, such as the protocols and implementation used, and establishes a

session individual key with every new member. Moreover, the authentication manager

could be in charge of ending a member’s participation in the session, according to a

defined policy, a request from the member himself, or due to detected member

communication failure.

The authentication manager notifies the group key manager (GKM) o f every member

removal, and every new member addition along with that member’s individual key. GKM

applies a group rekey policy, as to when to change the group key {GK). Different policies

determine whether rekeying is necessary when a member is added and/or removed, or

whether it is performed periodically. In addition, the rekey policy could determine the

batch size (number of added and/or removed members), or the rekey period. For example,

a rekey startup policy configures the group key manager to wait a certain amount of time

before starting the creation o f the group key to avoid a startup implosion scenario. When

a rekey is necessary, GKM asks the rekey manager to generate new GK along with the

rekey message RM to be sent (broadcast) to all group members for such GK update.

In our model, we assume when a new member joins the group he receives an initial

key message that is sent through his private channel. Afterwards, the rekey manager

sends (broadcasts) a RM to all group members (including the new member), through a

group rekey channel that updates GK. When a group member leaves (or is evicted from)

the group, only one RM is sent to the remaining group members. The group rekey

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

channel implementation should guarantee message reliability, integrity, freshness, and

source authentication. In addition, it should synchronize GK between all group members.

new GKadd/remove a member

add and/or remove
members (batch)

Group Manager

Group Member

new GK
Rekey Client

Rekey ManagerGroup K ey Manager

Authentication Manager

Cryptographic Utility Manager

Cryptographic Utility Manager

Fig. 2. Secure group key management software components.

Note that the authentication manager, the group key manager, and the rekey manager

could be (all or some) software components running on the same machine, or could be

software components running on different machines and communicating through network

channels and protocols.

The rekey client is the group member component that receives RMs and maintains

GK. Both the rekey manager and the rekey client immediately notify a cryptographic

utility manager with a change of GK. The cryptographic utility manager is responsible for

providing different group security services to the application. The cryptographic utility

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

manager has an Application Program Interface (API) that is used by the application to

provide different security services. The cryptographic utility manager could derive

several group keys (from the shared GK) for different uses, such as group encryption,

message integrity, and authentication. Note that, the cryptographic utility manager is

needed at the group manager if it will act as a group member.

3.2 Traditional Rekey Manager

The tradition approaches for providing central group rekey management either uses a

star key management or a logical key hierarchy (LKH). Both approaches use encryption-

based key distribution technique as explained next.

3.2.1 Star Rekey Manager

A star rekey manager for a group o f n members maintains one group key GK, and n

individual keys one for every group member. Every group member i maintains two keys,

GK and his own individual key K ..

If a new member (n + 1) joins the group, the rekey manager changes (regenerates)

GK to be G K ', and sends a RM that has two encrypted^ keys [{GK }GK,[GK }K „ ^).

The first encryption is the new GK (G K ') encrypted with the previous group key, and is

decrypted by old group members to retrieve G K '. The second encryption is GK'

encrypted with the new member individual key , and is decrypted by the new

member to retrieve G K '.

When member n leaves the group, the rekey manager sends a RM that has {n -1)

encryptions of the new group key [{Gi^ }K,.,1 < i< (n -1)] . Bach individual encryption is

decrypted by the associated group member’s key to retrieve the new group key.

Fig. 3 illustrates an example o f the keys maintained by a star rekey manager for 9

members. If a new member joins the group and his individual keyK^ is to be inserted,

GK is regenerated, and a RM that has two encrypted keys [{GK }GK,{GK }Kg{ is

{M}K denotes the message M is encrypted with the key K.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

constructed and distributed to group members. If that member leaves the group, his

individual key . ^ 9 is deleted, a new group key GK is regenerated, and a RM is

constructed and distributed to group members. In this case, the RM has 8 encrypted keys

{ { G K } K , A G K ^ K , , { G K } K , , { G K } K , , { G K } K , , { G K] K , , { G K } K , , { G K ' ') K ,] .

We can conclude this technique does not provide a scalable RM construction cost

since the cost (time and size) when a member leaves the group increases linearly with the

group size.

GK

Fig. 3. The keys maintained by a star rekey manager for 9 members.

3.2.2 Logical Key Hierarchy (LKH) Approach for a Rekey Manager

A LKH rekey manager maintains one group key GK, an individual key for every

group member, and a set of key-encrypting keys (KEKs) used for scalable rekeying. A

LKH of a specified degree d is constructed such that GK is the root o f the hierarchy, and

every individual key represents a leaf node. Fig. 4 illustrates a LKH of degree J = 3 and

height A = 2 for 9 members, where the root node represents GK and the leaf nodes

represent the members’ individual keys.

Every group member holds the set o f keys at the nodes that fall in the path that leads

to the root, starting from his individual leaf node key. To guarantee perfect backward

secrecy, if a new member joins the group his individual key is inserted in the hierarchy

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

and all the keys on the path from his individual key leaf node to the root are regenerated.

Similarly, to guarantee perfect forward secrecy, if a member leaves the group, his

individual key is deleted from the hierarchy and all the keys he was holding are

regenerated. In both cases, the rekey manager needs to construct a RM that contains such

keys update. The constructed RM will contain a rekey packet for every new (regenerated)

key.

For example, in Fig. 4 if a new member joins the group and his individual keyATjj is

to be inserted, two keys need to be regenerated K-̂ and GK. The RM in this case has two

rekey packets for the two new keys, [{K^}K^,{K'^)K^j] and [{GK }GK,{GK }K'^] . The

first rekey packet has two encryptions of K ^, the first encryption is decrypted by old

group members (who maintain K ^) to retreive Kj ,̂ and the second encryption is

decrypted by the new member’s individual key to retrieve K ^ . Similarly, the second

rekey packet has two encryptions o f GK, the first encryption is decrypted by all old group

members to retreive GK' , and the sencod encryption is for the new member (after he gets

K ^). On the other hand, if that member leaves the group and his individual key K̂ ̂3 is to

be deleted, the same two keys need to be regenerated. The RM in this case has the two

rekey packets [{Kl}Ki„{Kl}K^^] and [{GK"}K^,{GK"}K2 ,{GK"}K',]. The new keys

K'{ and GK can no longer be encrypted with their previous versions since the leaving

member already knows them, instead every new key is encrypted individually by each

sibiling node key (after deleting the individual key node o f the leaving member).

We can see that when using LKH and inserting K^ 3 the RM has 4 encrypted keys

compared to only 2 in the star rekey manager. On the other hand, when deleting K^ 3 the

RM has 5 encrypted keys compared to 8 in the star rekey manager.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

-3.3■2.2 -3.2-2..3

GK

GK KEK individual key

Fig. 4. A LKH of degree = 3 and height A = 3 for a group of 9 members.

3.2.3 Encryption for Key Distribution

The traditional technique for distributing the group key in the above two rekey

managers (star and LKH) is the use of encryption. The star rekey manager, for a group of

n members, performs 2 key encryptions when a new member joins the group and

performs {n - 1) key encryptions when a member leaves the group to construct a RM that

updates GK. The leave rekey cost, using star rekey manager, increases linearly with the

group size n increase.

A rekey manager that maintains a LKH of degree d and height A, for a group o f n

members, performs (at most) (2 x h) key encryptions when a new member joins the

group and performs (at most) (J x A - 1) key encryptions when a member leaves the

group. If the LKH is a complete tree for n members then the height h = log^ n . The

rekey cost is logarithmic in the group size n in both the join and leave cases, which is a

scalable solution. Although the use of LKH provides a scalable group rekey solution, the

cost o f join and leave rekeyings are not symmetric. In addition, increasing the degree of

the hierarchy d that decreases its height h and leads to a decrease o f the join rekey cost

while increases the leave rekey cost. For example, for a group o f size n = 512 members, a

LKH of degree = 2 is of height h =9 (assuming it is constructed as a complete tree),

while a LKH of degree J = 8 is of height A = 3. In the first case, d = 2 , the join rekey cost

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 7

is 18 encrypted keys and the leave rekey cost is 17 encrypted keys. On the other hand,

when <7=8 the join rekey cost is 6 encrypted keys (1/3 the first case) and the leave rekey

cost is 23 encrypted keys (4/3 the first case, and 4 times the join case). Wong et al.

proved that the optimal LKH degree is 4 when enciyption is used [67].

3.3 XORBP: A Novel Group Key Distribution Technique

Brute force techniques used to guess a key have to search on the average half the key

space. Unless plain text is provided, the analyst must be able to recognize plain text as

plain text. If the message is just plain text in English, then the result pops out

immediately (although the task o f recognizing English would have to be automated). If

the message is some more general type o f data, such as a “numerical” data, the problem

becomes even more difficult to automate.

From the above observation, we can notice that all techniques that encrypt the new

GK by any other key (previous GK, individual key, or KEK) do uimecessary work, and

the same security can be achieved with much less computation effort. The new proposed

computation method will use bit XOR operation between two keys instead o f encrypting

one with the other. The XOR operation is sufficient to protect the key material from

outsider attacks (members outside the group) but doesn’t protect individual key material

from insider attacks (members inside the group). Hence, to protect from insider attacks,

we suggest distributing the key material in random byte patterns (BPs) in a fixed size

rekey packet.

3.3.1 Why XOR

Assume C - A ® B , where A and B are keys of size k bits^. The XOR operation has

the following properties:

• Easy computation.

• The output C is always the same size as the two inputs (k bits). This property is not

valid in addition and subtraction operations (e.g. in TABLE I: 11 + 11 = 110).

' The symbol © denotes a logical XOR operation w hile <fe denotes logical A N D operation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

38

Reversible easy computation, i.e. knowing A and C, we can uniquely and easily

calculate B. Unique reversible computation is not valid in AND and OR operations

(e.g. in TABLE II; 10 & 11 = 10 & 10 = 10).

All output values are uniformly distributed in the output space. The output matrix size

is (2 * X 2 ̂ = 2 ^*), every output value in the range [0 :(2 * - 1)] appears 2 * times (see

TABLE III). This property is not valid in all other simple operations (AND, OR,

addition, or subtraction).

Every output value can be generated w ith2^ combinations. That is, knowing C only

2^ guesses are needed to know A and/or B. This property is not valid in all other

simple operations.

TABLE I.

A + B, WHERE A AND B ARE 2 BITS LONG

+ 00 01 10 11

00 00 01 10 • 11

01 01 10 11 100

10 10 11 100 101

11 11 100 101 110

TABLE II.

A & B, WHERE A AND B ARE 2 BITS LONG

& 00 01 10 11

00 00 00 00 00

01 00 01 00 01

10 00 00 10 10

11 00 01 10 11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

TABLE III.

A © B, WHERE A AND B ARE 2 BITS LONG

© 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

The last two properties o f XOR operation makes (A ® B) as secure as (A}B , to all

members who don’t know both A and B. Performing XOR operation between the keys

solves the problem of protecting the key material from outsider attacks. But this operation

doesn’t protect the key material from insider attacks. For example, if we have a group of

two members X and Y, each one has his own individual key that is known only by him

and by the rekey manager. Let the individual key of X is Kj^ , and the individual key o f Y

is K y . Assume the rekey manager needs to send them the group key GK. Previous

methods used to broadcast a rekey packet that contains [{GK}jKj^,{GK}Ky], the group

key encrypted with every member individual key. Every member reads his own part in

the packet, and decrypts it to retrieve the group key. Members outside the group can’t

leam any key material, and members inside the group can’t learn each other keys.

Alternatively, the new method suggests sending a rekey packet that contains

[GK ® Kj^,GK K y] . We can see that Y who knows KyC&n retrieve GK easily, but

also can retrieve , since he can read {GK © K ^) and thus {GK © K ^) © GK = K ^ .

Hence, adding a security barrier to insider attacks is essential. The suggested method to

protect from insider attacks is to distribute the key material in random byte pattern BP in

the broadcast rekey packet. Every BP is known only by the rekey manager and by the

individuals similar to K ^ and Ky . Every BP specifies a unique byte numbers in a fixed

size rekey packet.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 0

For example if all keys are o f size 3 bytes, and the rekey packet size is 260 bytes.

Assuming = {200,120,79} and = {110,205,55}, the suggested technique for

distributing GK to the two members, is to distribute the 3 bytes o f (GK © K^,) in BP^

packet bytes numbered 200, 120, and 79 respectively, and distribue the 3 bytes of

(GK © Py) in BPy packet bytes numbered 110, 205, and 55 respectively.

3.3.2 Protection from Insider Attacks

If the key length is k bits, the key space that is searched by attackers has 2* different

key values. Let K - \ k / S] be the size of the key in bytes. For a group o f n members, the

rekey manager that uses encryption (encrypt GK with every member individual key) to

broadcast GK will send a rekey packet o f size (n x K) bytes. The rekey manager that uses

XOR and BP for distributing GK for n members should broadcast a rekey packet o f size

(n x K + E) bytes, i.e. the rekey packet contains E extra bytes.

The worst-case insider attack is that (n - 1) colluding members trying to guess the BP

(and therefore the key) of the remaining member. A group o f (n~ \) members can

exclude ((n - l) x K) bytes from the packet that contain their own versions o f the key.

The remaining are (K + E) bytes, and they are trying to select K ordered bytes. In this

case E is estimated so that they have a search space larger than or equal to the search

space o f the protected key. We can see that there is an E extra bytes increase in the

message size, and this increase is the price paid for reducing the computation form n

encryptions to simple XOR operations. The inequality > 2^ is used to estimate the

extra bytes size"*.

Note that if we distribute the key material GK in the byte patterns BPs instead o f the

XORed keys (GK ® K^) and (GK ® K y) the rekey packet will contain a repeated byte

patterns of GK and that will make it easier (less permutation) for attackers to make a

guess. If GK is distributed in “bit patterns” instead o f bjde patterns that will solve the

repeated byte patterns problem but will increase the size of the data needed to keep the

P^ = — ^ — ; c ! = c x (c - l) x . . . x l
“ (b - a) \

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

41

patterns. For example: I f we have a key of size K bytes, and a rekey packet o f size S

bytes. To decode a “byte” location in the rekey packet s bits are needed such that

s = I"log2 s'] . To decode a “bit” location in that rekey packet (s + 3) bits are needed. The

data size for a key and byte pattern BP is = + bytes. Using a bit pattern

(there is no need for the key), the data size = K x (s + 3) bytes. The data size required

using byte pattern BP is less than the data size required using bit pattern for all positive

values of .S’ (Ai x (5 + 3) > (jST + x s- / s]) for all s' > (-16 / 7)). On the other hand, using

bit patterns might decrease the required extra bytes E and therefore the message size. If

bit patterns are to be used, the rekey message extra bytes E can be estimated by solving

the inequality > 2 ^.

3.3.3 Extra Bytes Adjustment

The insider attack by one member in which he can exclude his own BP {K bytes), and

make a guess for any other BP has a search space size equals to phe insider

attack by m members has a search space of size in the worst-case insider

attack by {n - 1) members, the search space size is , in which E is estimated to

make the search space size greater than or equal to the search space of the protected key

to have the same security achieved by encryption.

The extra bytes E depends only on the key size K, and does not depend on the group

size n. We can further reduce E if the insider attacks are rare, or the cost o f protecting the

key from insider attacks (represented in £) is greater than the benefits gained from that

protection. For example, if the keying material is changing frequently, we can assume

that the lifetime o f the key is shorter than the time required for making a correct guess

using a reasonable cost machine. We can estimate a reasonable search space size Q from

the lifetime of the key and calculate the extra bytes E such thatP^^'^^^ > Q, where Q is

the reduced search space size.

In addition, using XOR operation instead o f encryption helps in protecting the

individual key material from the “known plain text attack'. Known plain text attack, is an

attack in which plain text and its corresponding cipher text are known by the attacker. It

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

4 2

has been proven that in some cases this information can reduce the search space for the

key. Using encryption methods, an insider can build a database from the rekey messages

RMs that contains pairs of {GK, GK encrypted by other individual key(s)). This database

can help him in guessing the other individual key(s). The database can grow quickly if

the group has frequent joins and leaves and therefore frequent RMs are sent. This type of

attack does not exist when using XORBP. Using the above observation, if the known

plain text attack reduces the search space size from 2^ to Q. Then extra bytes E is chosen

such that > Q , where Q is the reduced search space size.

3.4 Logical Key Hierarchy and XORBP

The following is a summary o f the terminology used. The group key is GK. All key

sizes are K bytes. The LKH degree is d. The group size (number of members) is n. The

LKH height h for n members \s h - [log^ ri\, assuming it is constructed as a complete

tree.

The key data maintained by a rekey manager is a LKH o f degree d and height h.

Using XORBP, each non-root node key (KEK or individual key) is accompanied by a

byte pattern BP. Each member is assigned a leaf node in the LKH, which contains his

individual data (key, BP, ...etc). In addition, every member knows his leaf node position

in the LKH, and holds all the entries o f the LKH in the path from his leaf node up to the

root.

It is assumed there is only one join or one leave at a time in which GK and all LKH

entries (keys and BPs) that are held by that member need to be regenerated (batch

rekeying for a set join and/or leave requests is discussed in chapter V). The rekey

manager broadcasts a rekey message RM for every join or leave rekey. The RM contains

a message-identifier, a rekey packet for every new key, and an encoded BP for every new

BP. The message-identifier is the leaf node position o f the member who caused the rekey

either because he joined or left the group.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

3.4.1 XORBP Rekey Packet Construction

The rekey message RM contains a rekey packet for every newly generated key, GK or

KEK. A rekey packet contains the new key distribution information and is targeted to a

corresponding set of members that should hold that key. No other member in the group or

outside the group should be able to easily retrieve any key information from the rekey

packet.

A XORBP rekey packet size is S = d x K + E bytes; where d is LKH degree, K is the

key size in bytes, and E is the estimated extra bytes (section 3.3.3). A XORBP rekey

packet constructed for a new key at LKH node u contains multiple versions of

XORed with the keys at the LKH sibling nodes o f u. If u is the key node path starting

from the root, then uv is a path to a sibiling node o f u. If the number o f sibilings for node

u is e {e is less than or equal to LKH degree d) there exists e sibling nodes determined by

the path uv, 1 < v < e , where each node contains All sibling nodes o f a node

u will be denoted (K ^,,)

The rekey packet is constructed for the new such that for every v, the bytes

in the rekey packet contains (X„ ©). The remaing empty bytes in the rekey packets

contains dummy (randomly generated) bytes.

3.4.2 Encoded Byte Pattern

When generating a new key, its corresponding BP needs to be regenerated too.

Similar to the key, the newly generated BP needs to be sent in the rekey message RM to

the group members who should hold it. As previously described, a new key will be

distributed in a rekey packet o f size S bytes such that S = d x K + E , where d is LKH

degree, K is the key size in bytes, and E is extra bytes. Each sibling node o f the

distributed key node should have a unique byte pattern BP that specifies unique K bytes

in the rekey packet o f S bytes.

Guaranteeing unique BPs can be implemented by maintaining an array R of Booleans

of size S with every key, every entry in R corresponds to a byte in the rekey packet.

Initially all array entries are set to true, a true value means the byte is free (i.e. not

assigned to any sibling key node) while a false value means the byte is already assigned

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 4

and can’t be assigned to any other sibling. When regenerating a BP, the old K bytes (old

BP byte numbers) have to be freed (i.e. marked true in R) and then new free K bytes are

selected (and marked fa lse in R). The generation o f a random BP will require the

generation o f K random numbers in the range [0;5'-l]. Since the maximum number of

node siblings is d, this would guarantee at least (K + E) free bytes for a new BP o f K

bytes. If any of the randomly generated byte numbers is not free (locked up in R), the

nearest free byte is chosen instead.

Similar to a key, a new BP can’t be sent plain in a RM, instead it is encoded so that it

can be retrieved only by the targeted members (members who maintains its

corresponding key). The encoding o f a newly generated BP is performed using its

corresponding newly generated key. The new BP is first represented as a string of bits

then XORed with the corresponding generated key. The bit representation of BP might be

of shorter or longer length than the key. If it is shorter than the key, it is XORed with the

first same-length bits of the key. If it is longer than the key, the key bits are repeated fully

or partially (one or more times) until the exact length is reached.

For example, if the key size X is 3 bytes (24 bits), and the rekey packet size S is 260

bytes. Since S equals 260, 9 bits are enough to represent a byte number in the range

[0:259]. A BP can be represented by a string o f length 3x9 = 27 bits that is

approximated to 4 bytes when sent in a RM. For a key
3 rd -byte 2 n d —byte \s t-b y te

K = 110110111000010010100100, and BP = (200, 79, 120) that can be represented as

I20(9bits) 79(9bits) 200(9bits)

string o f bits = 001111000001001111011001000 , the encoded BP is calculated as
1 20 7 9 2 0 0

___________A___________ __________A__________ ___________A

001111000001001111011001000©

follows: ^ 3 l i o i j ^ l ^ o o c a ^ l ^ j f r ^ _ ggg
\s t-3 b its 3 rd -b y te 2 nd -by te 1st—byte

101 001110110001101001101100
Ath-byte 3 rd-byte 2nd -byte \s t-b y te

byte is repeated to reach the exact BP bit string size.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

3.4.3 Simple Case: LKH of Height A = 1

A LKH of height h = \ can fit a group o f maximum size n such that n < d . The RM

distributed by the rekey manager contains one rekey packet for a newly generated GK per

every join or leave. The key data maintained by the rekey manager is shown in Fig. 5.

GK

Fig. 5. A LKH of degree d and height h = \ .

The rekey procedure for a join or a leave o f a member X whose individual key is :

1. Determine, the leaf node position for member X individual data to be inserted/deleted.

The member position will be used as a message-identifier.

2. If (X is joining) then {Select freeRH^ and send it to member X through his private

channel along with his leaf node position; Insert the individual leaf node {K^ ,BP^)

into LKH.} else (Delete the individual leaf node) from LBCH.}.

3. Generate new GK.

4. Construct a rekey packet for the new GK u s i n g (a s described in section

3.4.1).

5. Send a rekey message RM that contains the constructed rekey packet to all group

members.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 6

3.4.4 Another Simple Case: LKH of Height A = 2

A LKH of height h = 2 can fit a group o f maximum size n, such that d < n < d ^ .

Using a LKH of height 2, group members can be virtually viewed as arranged in d

partitions (at most), and every partition contains d members (at most). A LKH of height 2

maintained by a rekey manager is shown in Fig. 6 . For any partition p , all members at

that partition hold the same partition key and the same partition BP that are used

in constructing a new GK rekey packet. Moreover, each member X holds his individual

key and his individual BP that are used in constructing a new partition key

Kp rekey packet. For every join or leave rekeying, the rekey message RM distributed by

the rekey manager contains two rekey packets one for a newX^ and the other is for a new

GK. In addition, RM contains one encoded new BP BP^.

GK

Fig. 6 . A LKH of degree d and height h = 2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 7

The rekey procedure for a join or a leave o f a member X whose individual key

1. Determine the position, and therefore the partition p, where member X individual leaf

node will be inserted/deleted. The member position will be used as a message-

identifier.

2. If (X is joining) then {Select free5P^^ and send it to member X through his private

channel along with his leaf node position; Insert the individual leaf node ^ , BP^ ̂)

into LKH.} else (Delete the individual leaf node (Kp^,BP^^) from LKH.}.

3. Generate new partition p node entries and BP^.

4. Constmct a rekey packet for the new using the individual leaf nodes

{Kp*,BP^^). (as descibed in section 3.4.1)

5. Encode the new BP^ with the new (as described in section 3.4.2).

6 . Generate new GK.

7. Construct a rekey packet for the new GK using partition nodes (X ,, BP,)

8 . Send a rekey message RM that contains the two rekey packets (from step 4 and 7) and

the encoded BP (from step 5) to all group members.

Is changing the partition BP^ necessary? Yes it is necessary, and we will show this

by example, assuming everybody knows the rekey procedure. If member X joins the

group in partition A then he will hold K^ and BP^. Assume X left the group for a while

and joined it again in different partition B. Assume K^ is changed to K'^ when X left but

BP^ is the same, and X (who knows the procedure) is able to memorize BP^. A member

X can retrieve the new K \ when he joins partition B because he knows GK (member of

the group), and he can read {GK ©) at the same BP^. I f X left the group again and

no other member joined or left partition A, X can retrieve the new GK and aecess further

information by knowing BP^ and K'^ (note that he was a member o f partition B, and K^

is changed once he left but K \ is the same).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 8

3.4.5 General Rekey Procedure by the Rekey Manager

Assume the inserted/deleted leaf node immediate parent position is

illustrated in Fig. 7, where decodes a child node position o f the root node (child at

level h), decodes a child node position o f the node determined by (child at level

(h-l)), /j decodes a child node position o f the node determined by/j (child at level 2)

and is the immediate parent of the leaf node that contains the member data (individual

key and individual BP) among at most (d-l) other individual members data nodes.

level h

level (h-1)

GK

A

level 2

level 1

Fig. 7. The path to a leaf node in a LKH o f height h.

The rekey procedure for a join or a leave of a member X:

1. Determine the leaf node position o f member X individual data to be inserted/deleted,

and therefore determine all the LKH nodes entries that need to be regenerated from

the root node to the leaf node immediate parent. Assuming the position is >

and the LKH entries are GK, (Ky^),, and

(K , , I ,BP, I I). The position is used as the RM message-identifier.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 9

2. If (X is joining) then {Select free individual BP , and send it to member X

along with his position through his private channel. Insert the member individual leaf

node (K , , ,, ,BR , , ,) at the first level of LKH.} else {Delete the member

individual leaf node (X , , ,, ,B P ,, , f rom the first level o f LKH.}

3. For every LKH entry at level i - 2 t o h {

a. Generate new key K, ,̂ ̂ ̂ , and select new BP BP,̂ ,̂ , .

b. Construct a rekey packet for the new ̂ , using B P , j t) nodes at

level (f-1) (as described in 3.4.1).

c. Encode the new BP,̂ ,̂ ̂ , with the new , (as described in 3.4.2).}

4. Generate new GK.

5. Construct a rekey packet for the new GK to all members using level h keys and BPs

{ K „ B R) .

6. Send a RM to all members that contains the message-identifier, all constructed rekey

packets, and all encoded BPs.

Note that, the rekey procedure is almost symmetric for both join and leave cases.

Note also that all if all LKH new entries are generated at once (step 3.a and step 4),

constructing the rekey packet and encoding BP for each new entry can be performed in

parallel (step 3.b-c and step 5).

3.4.6 How Group Members Retrieve the New Keys and the New Byte Patterns

Not all rekey packets and all encoded BPs should be read and processed by all group

members. Since every members knows his position and the RM includes the

identification position o f the member who joined/left). Every member can

select the rekey packets and the encoded BPs to process. The RM contains h rekey

packets and {h-l) encoded BPs.

For every i, where 1 < r < /z, the i* rekey packet and the i* encoded BP contain a new

key and a new BP for a node at the (z +1)'* level. This data should be retrieved by at

most members who have their position matches The /z'*rekey packet

contains the new GK, and should be retrieved by all n (at most d *) members

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50

3.5 Scenarios and Comparison

In this section, we compare the group rekeying performance when the traditional key

management approaches (star and encryption-based LKH) are used, and when the

proposed approach (XORBP LKH) is used. Two examples are used to demonstrate such

approaches, a group o f members joining a subscription News broadcast server, and a

group of peer-to-peer machines communicating securely.

We assume the group rekeying is performed periodically by a GKM that will leam

the join and leave requests right before a rekeying process is initialized. The GKM will

perform some time-consuming operations, e.g., random number generation and

encryptions, before a rekeying, if any, and delay the rest o f the operations, e.g.,

encryptions, until the exact requests are known. The following are the. three approaches

under consideration.

Approach 1; The traditional star key management approach. The GKM changes

the group key and encrypts it individually for every group member. This approach

requires the GKM to regenerate one key and to perform 0(n) keys encryptions to provide

perfect forward secrecy for a group o f n members, i.e., the rekeying cost scales linearly

with the group size. A group member performs 1 decryption to retrieve the group key. In

this approach, the GKM can regenerate a new group key and encrypt it with the every

group member individual keys right after a rekeying is committed and before leaming the

next requests.

Approach 2: Encryption-based LKH. The use o f a LKH by a GKM provides a

scalable group rekeying that scales to the logarithm o f the group size. If the LKH degree

is d, and its height is h (n < d ^) , the GKM is required to regenerate 0(h) keys and to

perform O (d x k) keys encryptions to provide perfect forward secrecy after single leave

request. However, for a batch of R requests, the GKM is required to regenerate O (R x h)

keys and to perform O (R x d x k) keys encryptions. A group member is required to

perform at most h decryptions to retrieve the new group key (more than the required cost

by the star approach).

Approach 3: XORBP LKH: The new key distribution technique, XORBP, is used

with the LKH approach to provide a more scalable and efficient group rekeying that

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

51

doesn’t require any encryption/decryption to be performed by the GKM or by any group

member. Similar to the encryption-based LKH approach, for a batch of R requests, the

GKM is required to regenerate 0 { R x h) keys, in addition, the GKM random number

generation overhead is increased. Since no encryption is used, this approach reduces a

rekeying time to 10% o f the encryption-based LKH rekeying value, for the same LKH.

Most o f this time is spent in random number generation. The three approaches offer the

same security capabilities.

3.5.1 A News Broadcast Server Example

Consider a News broadcast server that encrypts its broadcast using a group key that is

handed to every newly joined member. Assume that the total number of connected group

members at any point o f time is 30,000 and the used encryption algorithm requires 1

msec for a single encryption/decryption. In addition, assume the server changes the group

key periodically every 30 sec, and the average number o f leave requests is 100 and the

join requests are 50 in the 30 sec inter-rekey period. Consequently, a newly joined

member might have to wait at most 30 sec before being able to decrypt the broadcast, and

a leaving member might be able to decrypt the broadcast for maximum of 30 sec after he

leaves.

Star key management: The GKM is required to perform 30,000 key encryptions

which consume 30 sec. A group member only has to perform 1 decryption to extract the

group key that consumes 1 msec. The GKM can start encrypting a new group key with

every group member key before a rekeying. When he leams of the requests, he will throw

away the encryptions performed for the leaving members (100 encryptions) and has to

perform encryptions for the newly joined members (50 encryptions). The GKM needs the

whole inter-rekey period to perform the encryptions. The traditional star key management

has a problem in the following cases: the need to support a larger group size, the use o f a

more time consuming encryption standard, and the 30 sec maximum request delay is not

acceptable.

Encryption-based LKH: If the LKH degree d = 4, height h = 10 due to nodes

insertion and deletion, and the number o f LKH new keys (rekey sub-tree size) for the 150

requests is 100 keys. The total number of key encryptions at the server = 100x4x10 = 4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52

sec (compared to 30 sec in the star approach). A group member has to perform at most 10

decryptions that is 10 msec (every 30 sec). A group member decryption cost is increased

compared to the star approach.

The GKM can perform all random number generation before leaming the exact

requests. However, most o f the encryptions (if not all) has to be performed after leaming

the exact join and leave requests. This can be a drawback of LKH if we need to reduce

the time after leaming the requests and the start o f the rekeying. However, if the rekeying

is performed frequently, the total time spent by the GKM performing encryptions is a

better cost measure.

The rekey cost for LKH with encryption based KDT increases in the following cases:

1) The LKH degree is increased.

2) The number of requests is increased. For example, 1000 new keys need to be

distributed (instead of 100), in this case, the cost o f LKH is worse than the star

approach and requires 40 sec of GKM encryption time.

3) The LKH height is increased due to nodes insertion and deletion (i.e., maintaining a

balanced LKH greatly affect the number o f new keys/encryptions).

XORBP LKH: The rekeyig time is reduced to 10% of the above values that is 400

msec for the GKM and 1 msec for a group member (every 30 sec). The number of new

keys for a single request is 0{h). The total number of new keys for the 150 request is

100 X10 = 1000 keys. The rekeying time doesn’t increase with the LECH degree increase

and slightly increases with larger number o f requests or an unbalanced LECH since no

encryption is performed (i.e., more XOR operations are performed). A group member can

have the minimum cost achieved using the star key management.

Similarly, the GECM can perform random number generation before leaming the

requests. Compared to the star approach, the GECM can achieve better performance after

leaming the requests, since in the star approach the GECM has to perform encryptions for

the newly joined members.

3.5.2 A Secure Peer-to-Peer Network Example

Consider a secure peer-to-peer network for a group o f 1000 members (machines), and

1 ipsec encryption/decryption standard. If one machine (member) is hosting the GKM

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

53

and there are 50 member join/leave requests every 30 sec. A new group key will be

issued every 30 sec. The following are the rekeying time costs for the considered

approaches.

Star key management: the server encryption time = 1 sec; a group member

decryption time = 1 msec (every 30 sec).

Encryption-based LKH: the server encryption time =

50(requests) x A{d) x A{h) = 800 msec; a group member decryption time = 4 msec.

XORBP LKH: the server time cost = 80 msec; a group member time cost is less than

1 msec.

We can observe that the increase in the number o f requests in the encryption-based

LKH approach could lead to a worse performance than the star approach. The group

member hosting the GKM prefers the minimum overhead approach that doesn’t affect

(disrupt) the application.

Similarly, performing pre-operations could reduce the time between knowing the

requests and the actual rekeying in the star approach over the encryption-based LKH

approach. The encryption-based LKH approach is better than the star approach if the total

server (light-weight) time spent performing encryptions are compared. The XORBP LKH

approach outperforms the other two approaches in both cases.

3.6 Cost Analysis and Estimates

The parameters to the cost equations are the key size K and its corresponding search

space size Q (used in estimating the extra bytes E), and the LKH degree d.

3.6.1 How to Select the Key Size

It is usually assumed that group members are sharing a symmetric encryption key.

Using symmetric cryptography usually achieves faster encryption/decryption than

asymmetric cryptography. The key size is dependent on the used encryption algorithm.

The two widely used symmetric key encryption algorithms are “Data Enciyption

Standard” (DBS) that uses 56 bits key and “International Data Encryption Algorithm”

(IDEA) that uses 128 bits key [40]. While an IDEA key is encoded in 16 bytes

(128/8 = 16), a DBS key is encoded in 8 bytes (7 bits in every byte contain part o f the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

key (7x8 = 56) and the 8* bit in every byte is used for parity ebeck). Another widely

used version of DBS is ealled triple DBS (or DBS-BDB) that uses 3 DBS keys [40].

Assuming the maximum key search space size g = 2^, the estimated extra bytes E

for the above three algorithms are as follows:

• For DBS, the extra bytes E can be estimated from > 2^®(7.2e'^); where E = \ 2 1

bytes satisfies the ineqality (Pg^ ̂ « 8.9e'^) .

• For IDBA, the extra bytes E can be estimated from > 2*^*(3.4e^®); where E =

264 bytes satisfies the inequality (7]f° « 9.2e^^).

• For triple DBS, the extra bytes E can be estimated from P^^*^ ^ 2’'’*(3.7e^”) , where

P =116 bytes satisfies the inequality {P^l^ « 3.9e^'’) .

3.6.2 How to Select the Degree of the Hierarchy

If it is desired to keep the rekey packet size S less than 1500 bytes to fit in one UDP

packet (Bthemet network)^ in which case, a rekey packet can be sent without

fragmentation. The degree d can be calculated using the equation S =̂ d~>^K + E , where

K is determined form the used encryption algorithm and E is the estiamted extra bytes.

Increasing d will decrease h, and therefore will decrease the computation cost at the

rekey manager and at every group member if XORBP is used as a KDT. On the other

hand, increasing d increases the LKH node size as well as the rekey packet size S.

Moreover, selecting d such that the byte pattern BP is represented in an exact size of

bytes will omit adding extra bits (section 3.4.2). The LKH degree d can take into

consideration the disk block size if the LKH will be stored on disk. In such case, it is

better to keep each node in one disk block for easier access.

3.6.3 Cost Estimation

The following are the cost estimates o f LKH key management approach used with

XORBP KDT. Assuming the rekey packet size S = d x K + E , where d is the LKH

degree, K is the key size in bytes, and E is the estimated extra bytes. Let s = [logj iS] that

is 5 bits are needed to identify a byte location in a rekey packet. If the group size is n, and

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

55

LKH height is h {h = [log^ n \ for a balanced LKH); the maximimun group size for the

same height LKH M ax_n = d^ (assuming the LKH is complete). The analytical cost

estimates is as follows:

• Byte pattern size: BPS = j'i' x K / S] bytes.

• LKH root node {GK) size = K bytes.

• LKH non-root node size (NS) that contains a key and BP N S - K + BPS bytes.

• A LKH (of degree d and height h) storage size can be estimated by adding the nodes’

sizes at all levels. The required LKH storage (LKHS) for a group o f size n smaller

than Max_n can be estimated as

T T ^ r r c , ” ^ l i ^ d x (M a x n - l) x N S . , ^LKHS = ----------- x (K + > d x N S) - ------------{K + -------------=---------------) bytes
M ax_n M ax_n {d ~^)

• A group member holds the LKH root node entry {GK), and (at most) h non-root nodes

entries. The required group member storage (MS) can be estimated as

MS = K + h x N S hylQS.

• The rekey message RM contains (at most) h rekey packets and {h-l) encoded byte

patterns BPs. The maximum RM size (RMS) can be estimated as

RMS = h x S + {h -V)x BPS bytes.

• Maximum number o f newly generated keys = h per a rekey.

• Maximum number of newly generated BPs is (/z-1). Therfore, the maximim number

of randomly generated byte locations^ can be estimated as = { h - \) x K per a rekey.

• If e. is the number of sibilings at the i* level of a newly generated key node at level {i

+ 1). The rekey packet for that key contains { e ^ x K) bytes of key material (XORed

keys), while the remaing bytes are filled with randomly generated bytes. The total
h

number of the randomly generated bjdes can be estiamted as = (^ 5 - e, x X) per a
j= i

rekey.

• As previously explained in section 3.4.6, for every rekey message RM, there are (at

most) d members who will process all h rekey packets, d^ members who will process

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

(A-1) rekey packets, members who will process (A-2) rekey packets, d ’' (all

members) who will process one packet (for GK). The average number of rekey

packets processed by a group member can be estimated as =
h~\

, (Max n - d) ,
1 + — -------= 1 + ̂ ^ per a rekey.

M ax_ n M a x _ n x (d -V)

In a rekey message RM, there exists an encoded BP that corresponds to every rekey

paeket except for GK. Similar to the rekey packet, the encoded BP is processed by the

same group members that process the corresponding rekey packet. From the above

estimate, the average number o f encoded BPs processed by a group member =

(Max _ n - d)
M a x _ n x (d - I)

per a rekey.

For a LKH with encryption-based KDT, the byte pattern size (BPS) is equal to 0 in

LKH storage (LKHS) and member storage (MS) estimates as given above. Let Enc_K be

the size of an encrypted key in bytes. In such case, the rekey message RM has two

different sizes; join RMS (jR M S = 2 x h x E n c _ K) bytes, and leave RMS

(IRMS = (d x h - l) x E n c _ K) bytes. Moreover, when an encryption-based KDT is used

the only randomly generated numbers are the new keys.

Comparing the cost o f XORBP versus encryption-based KDTs when used with the

same degree (d) LKH and for the same group size n: from the above analytical cost

estimates, XORBP introduces an increase in LKH node size and therfore an increase in

the LKH storage (LKHS) and member storage (MS). In addition, the rekey message size

(RMS) is subject to increase depending on the encrypted key size. On the other hand, the

use o f XOR operations between keys, instead of encryption, promises a substantial

decrease in the rekey message construction time as well as the rekey processing time by a

group member.

For example, for a group of size n = 4096 that uses DBS encryption, key size K = S

bytes, encrypted key size EncJE - 16 bytes, and the (larger) estimated extra bytes E =

 ̂A byte location is a number in the range [0:5-1], where S is the rekey packet size.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

127 bytes. Fig. 8, Fig. 9, and Fig. 10 illustrate the analytical cost estimates for XORBP

(“x” prefix) versus encryption (“e” prefix). The LKH degree is increased by 4 starting

from 4 to 32. Note that; the same figures are obtained by trying different group sizes. Fig.

8. illustrates LKH storage (LKHS) and Fig. 9 illustrates member storage (MS) for both

KDTs. As expected, the use of XORBP increases the storage requirement for the rekey

manager and the rekey client. We can observe that LICHS and MS are slightly decreasing

with the degree increase, and xLKHS and xMS are almost double cLKHS and eMS,

respectively, for the same LKH degree.Fig. 10 illustrates the rekey message size (RMS)

for the two encryption cases of join (eJRMS) and leave (elRMS) and for XORBP

(xRMS). We can observe that when using encryption, the join RMS (ejRMS) is slighlty

decreasing with LKH degree increase, while the leave RMS (elRMS) is linearly

increasing with LKH degree increase. Similary, increasing LKH degree linearly increases

elRM construction time (number of encryptions). Such leave rekey cost linear increase

with LKH degree makes it unfeasible to use larger degree LKH with encryption-based

KDT. On the other hand, when XORBP is used, xRMS (and therfore the construction

time) is symmetric for the join and leave cases. As shown in Fig. 10, xRMS is larger than

elRMS for all LKH degrees, but smaller/comparable to elRMS for larger LKH degrees

(xRMS has a nonliner relation with LKH degree).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

100000
90000
80000
70000

60000
^ 50000

40000
30000
20000

10000
0

eLKHS xLKHS

— H—

— 0— -------0— — 0

10 15 20 25 30 35
LKH degree

Fig. 8. Comparison o f estimated LKH storage (LKHS) when used with encryption-hased

versus XORBP KDT s.

120 1

100 -

40 -

LKH degree

Fig. 9. Comparison of estimated LKH member storage (MS) when used with encryption-

based versus XORBP KDTs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

^ ejRMS -K -e lR M S -& — xRMS

1600

1400

1200

1000 ^

600 -

400 -

200 -

10 15 20
L K H degree

25 30 35

Fig. 10. Comparison of estimated LKH rekey message size (RMS) when used with

encryption-based versus XORBP KDTs.

3.7 Experimental Results

We have implemented an initial prototype for the secure group key management

components (section 3.1) extending Java'^“ security [62]. The implementation provides

both star and LKH rekey managers. In addition, both encryption-based and XORBP

KDTs are available with the use of LKH rekey manager. Moreover, two LKH

maintenance algorithms and rekey protocols are available. One protocol adopts an

unbalanced LKH while the other adopts a balanced LKH. Chapter IV provides the details

of such algorithms and protocols.

We performed experiments to illustrate and compare the rekey message RM

construction time in different cases. All experiments ran on the same machine: Sun Ultra-

250 with processor speed of 400 MHz, main memory o f 2 GB, and operating system

Solaris 2.8. In the following experiments: a LKH rekey manager uses the unbalanced

LKH algorithms. The group size is increased from 32 to 2048 in multiple of 2 (unless

otherwise stated). For each group size, 100 LKHs are constructed by a sequence of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

member additions. For every constructed LKH, 10 readings of RM construction time are

measured for 5 join rekeyings and 5 leave rekeyings (one join followed by one leave 5

times). Next, the LKH join/leave RM construction time, for that group size, is considered

as the average of the 500 readings.

The following experiments study and compare RM construction time as follows: 1)

star versus LKH approach for group key management; 2) effect o f increasing LKH

degree when used with encryption-based or XORBP KDT; 3) effect o f increasing the

encryption time (i.e. more complex encryption standard) on the saving o f RM

construction time when XORBP KDT is used over the encryption-based KDT; 4) effect

o f using secure random number generation on XORBP KDT; and 5) comparing the

estimated and measured rekey costs.

3.7.1 Star Versus LKH Key Management Approaches

The first experiment compares RM construction time for star rekey manager versus

LKH rekey manager. Both managers are using encryption-based KDT with DBS

encryption. LKH degree is 4, and the group size increases from 32 to 256 in multiple o f

2. Fig. 11 illustrates RM construction time for both managers in both the join and leave

rekey cases. For star rekey manager sJoin and sLeave are the RM construction time in the

join and leave rekeyings respectively. For LKH rekey manager eJoin(4) and eLeave(4)

are the RM construction time in the join and leave rekeyings respectively, where . 4

identifies LKH degree. We can observe that sLeave increases linearly with the group size

increase and therefore star rekey manager does not provide scalable rekeying. The

experiment confirms that using star rekey manager is not practical even for small group

sizes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

120

100 -

60 -

300100 200 250150
group size

Fig. 11. Comparison o f RM construction time in for star versus LKH key management

approaches.

3.7.2 Increasing LKH Degree

The second experiment shows the effect o f increasing LKH degree on a LKH rekey

manager that uses encryption-based versus XORBP KDTs. The encryption algorithm is

DBS with extra bytes E = 121 bytes. The experiments are performed for LKH of degree 4

and 16. Fig. 12 illustrates the results when encryption-based KDT is used. We can

observe that increasing LKH degree decreases the join rekey cost (eJoin(16) is 47% of

eJoin (4)) while increasing the leave rekey cost (eLeave(16) is 135% of eLevae(4)). Such

result confirms our analysis that the use of higher degree LKH (more than 4) with

encryption-based KDT is not practical. Fig. 13 illustrates the results when XORBP KDT

is used. We can observe that increasing LKH degree decreases both the join and leave

rekey costs (xJoin(16)/xLevae(16) is 66% of xJoin(4)/xLeave(4)). Such result confirms

our analysis that increasing LKH degree with XORBP KDT decreases both join and

leave rekey costs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

■ -O- ■■ eJoin(4) — X— eLeave(4)

■- A - ■ - eJoin(16) — a — eLeave(16)

500

20
18
16
14
12
10

8 - - o
6
4
2
0

1000 1500
group size

2000 2500

Fig. 12. Effect o f LKH degree increase {d = A versus J = 16) on RM construction time

when encryption-based KDT is used.

. . . 0 - - - xJoin(4)

- - -A- - - xJoin(16)

— xLeave(4)

■a— xLeave(16)

S
0.6
0.4
0.2

0 500 1000 1500 2000 2500
group size

Fig. 13. Effect of LKH degree increase (J = 4 versus = 16) on RM construction time

when XORBP KDT is used.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

3.7.3 Increasing Key Size

The third experiment shows the RM construction time saving for the same degree

LKH when XORBP KDT is used versus encrjqrtion-based KDT for different encryption

standards. LKH degree is 4, and the group size increases form 32 to 4096 in multiple of

2. Fig. 14 illustrates the results when DBS encryption algorithm is used (extra bytes E =

127). We can observe that the use o f XORBP KDT decreases both the join and leave

rekey costs when compared to encryption-based KDT (xJoin is 23% of eJoin, and xLeave

is 12% of eLeave). Fig. 15 illustrates the results when triple DBS enciyption algorithm is

used (extra bytes £ ’=116). Triple DBS key size is 3 times DBS key size and performing a

triple DBS encryption is more time consuming than DBS. Similarly, the use o f XORBP

reduces the rekey cost (xJoin is 40% of eJoin, and xLeave is 20 o f % eLeave). Note that

Fig. 14 and Fig. 15 demonstrate XORBP KDT symmetric rekey cost for both join and

leave rekey cases, and the un-symmetry o f the encryption-based KDT. Comparing RM

construction time saving when DBS is used versus tripe DBS, we can observe that the

time saving of XORBP is increased when used with smaller key size encryption protocol.

When DBS is used xJoin is 23% of eJoin while when triple DBS is used xJoin is 40% of

eJoin (i.e. when DBS is used join RM construction time saving achieves 77%, while if

triple DBS is used the saving is reduced to 60%). Similarly, when DBS is used leave RM

construction time saving achieves 87%, while if triple DBS is used the saving is reduced

to 80%. Such saving is because larger key size introduces more random number

generation for larger byte patterns and rekey packets’ filling bytes. Random number

generation is an expensive operation in terms o f computation time but not as much as

encryption.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

6 4

^ — eLeave(4)

■e— xLeave(4)

eJoin(4)

- ■ - A- - - xJoin(4)

14

12

10

8

6

4

2

0

500 1000 1500 2000 25000
group size

Fig. 14. Comparison o f RM constmction time when used with DES encryption-based

versus XORBP KDTs.

- eJoin(4) — X— eLeave(4)

-A- - - xJoin(4) — B— xLeave(4)

18
16

14
12

10
8

6

4

2

0

500 1000 1500 2000 25000
group size

Fig. 15. Comparison of RM construction time when used with triple DES encryption-

based versus XORBP KDTs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

3.7.4 Secure Random Number Generation

The use of XORBP introduces extra random number generation (section 3.6.3). The

key generation in the above experiments is performed using javax.crypto.KeyGenerator

class, while other random numbers and bytes are generated using java.util.Random class

[62]. In addition, the above experiments perform un-optimized random byte generation,

i.e. when a rekey packet is instantiated it is filled with newly generated random bytes

then some of those bytes are overwritten with XORed keys (those bytes shouldn’t be

generated in the first place). Moreover, when encoding a BP, an unnecessary extra

random byte is usually generated to augment the rest of the unused byte of the encoded

BP.

Secure random number generation is more expensive than the usual (un-secure)

random number generation. This experiment is performed using

java.security.SecureRandom class that uses “SAHIPRNG” algorithm instead of

java.util.Random class [62]. The same experiment as in section 3.7.3 for DES is repeated

with the new random generation class while key generation uses the same

javax.crypto.KeyGenerator class. The same code that performs un-optimized random

byte generation is used. From our experiments, it is estimated that SecureRandom

generation consumes 2.5 times the time of the same Random generation.

The experiment shows RM construction time saving for the same degree LKH when

XORBP KDT is used versus an encryption-based KDT. LKH degree is 4, and the group

size increases form 32 to 4096 in multiple of 2. Fig. 16 illustrates the results when DES

encryption algorithm is used (extra bytes E = 116). Similarly, the use SecureRandom with

XORBP KDT decreases both the join and leave rekey costs versus encryption-based

KDT (xJoin is 56% of eJoin, and xLeave is 31% of eLeave). Comparing the saving with

the results shown in Fig. 14, the join RM construction time saving is reduced from 77%

using Random to 44% using SecureRandom. The leave RM construction time saving is

reduced from 87% using Random to 69% using SecureRandom.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 6

eJoin(4)

- - - A- - - xJoin(4,SR)

-H— eLeave(4)

■s— xLeave(4,SR)

14

12

10

8

6

4

2

0
2500500 1000 1500 20000

group size

Fig. 16. Comparison o f RM construction time when used with DES encryption-based

KDT versus XORBP KDT that uses secure random number generation.

3.7.5 Estimated and Measured Costs

This experiment compares the estimated and measured LKH height for different LKH

degrees and group size n = 4096. The LKH degree is increased from 4 to 32 by step 4

(i.e., 4, 6, 12, ..., 32), and the rekey manager uses XORBP KDT. For every LKH degree,

n members are added and the LKH height and the number o f allocated nodes are

recorded. As previously mentioned, the experiments in this chapter adopt unbalanced

LKH maintenance algorithms. The average of 500 readings is plotted.

Fig. 17 shows that the measured LKH height is usually larger than the estimated

height for smaller LBLH degrees, and almost the same for larger LKH degrees. Fig. 18 and

Fig. 19 illustrate the difference between the required member storage (MS) and rekey

message size (RMS) respectively using the measured and estimated LKH heights. Similar

to the height, usually the measured MS and RMS have slight increase from the estimated

values. Fig. 20 illustrates the difference between the required LKH storage (LKHS) o f the

measured and estimated values. Unlike MS and RMS, there is in the average 60%

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 7

increase in the measured LKHS over the estimated LKHS. Such increase is due to the use

of unbalanced LKH maintenance algorithms. Such increase is expected to get higher with

either a group size or group dynamics increases. Group dynamics determines the join and

leave patterns.

-©— measured —X— estimated

10

9
8
7

6
5
4

3
2
1
0

3015 20 25 355 100
degree

Fig. 17. Comparison of measured and estimated LKH height for a group of size n - 4096.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

6 8

-0 — measured — estimated

180
160
140
120
100

^ 80

10 15 20 25 30 350 5
degree

Fig. 18. Comparison o f measured and estimated member storage (MS) for a group of size

n = 4096.

-0— measured —x — estimated

1800
1600
1400

^ 1200
1000

800
S 600
q;

400
200

30 400 10 20

degree

Fig. 19. Comparison of measured and estimated rekey message size (RMS) for a group of

size.n = 4096.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

69

-0— measured —x — estimated

140000

120000 -

100000 -

^ 80000 -

60000 -

40000 -

20000

40
degree

Fig. 20. Comparison o f measured and estimated LKH storage (LKHS) for a group of size

n = 4096.

3.8 Conclusion

In this chapter, we introduced a software model for secure group key management,

where the main components along with their functionalities and interactions were

identified. Concentrating on secure group key management, we highlighted two

traditional rekey manager approaches for group rekeying, namely star and logical key

hierarchy (LKH). The star key management approach is a simple approach that doesn’t

provide scalable leave rekeying since the leave rekey cost increases linearly with the

group size. The LKH approach provided a scalable join and leave rekeying. Using the

LKH approach, both join and leave rekeyings scales linearly with the logarithm o f the

group size. On the other hand, the LKH approach has un-symmetric rekeying procedures

for join and leave cases and doesn’t scale well with LKH degree increase. The original

LKH key distribution technique (KDT) for a newly generated key in a rekey message is

to encrypt a new key either with another key or with its previous version (encryption-

based KDT).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

We introduced XORBP, a new KDT that can be used with the LKH approach.

XORBP performs a simple XOR operation between keys instead of encryption and

distributes the key material in random byte patterns (BPs) in a fixed size rekey packet for

every new key. The rekey message contains a rekey packet for every new key that is

targeted to a set o f group members that should hold that key. The use of XORBP

provided symmetric rekey procedures for join and leave rekeyings. In addition, it

substantially reduces the rekey time. On the other hand, the use of XORBP increases the

required LKH storage, member storage, and the rekey message size. In addition, XORBP

introduces extra random number generation when compared with encryption-based KDT.

We derived analytical cost estimates of XORBP KDT, and performed empirical

experiments to compare its performance versus encryption-based KDT. Our experiments

show that, increasing LKH degree when used with encryption-based KDT increases the

un-symmetry of join and leave rekey costs, which makes the use o f an LKH degree

greater than 4 not practical. Using XORBP as KDT and increasing LKH degree allows

the decrease of join and leave rekey costs. Using XORBP KDT versus encryption-based

KDT, with the same degree LKH, can achieve 90% savings in the rekey message

construction time. Using XORBP KDT with higher degree LKH (compared to lower

degree LKH) provides extra savings in all cost metrics: storage, time, and

communication. Finally, our experiments, using unbalanced LKH maintenance

algorithms, show that there exists a slight increase in the measured LKH height, member

storage, and rekey message size over the estimated values. On the other hand, the

experiments show that the measured LKH storage for small group size has a 60%

increase over the estimated value. Such undesirable increase motivates us to develop

balanced LKH maintenance algorithms and protocols as explained in chapter IV.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

CHAPTER IV

LOGICAL KEY HIERARCHY REKEY PROTOCOLS

As previously mentioned in chapter III, for secure group key management, there

exists a (central) rekey manager that maintains a logical key hierarchy (LKH) for scalable

rekeying (change of group key, GK, due to either new group member addition or group

member removal). The rekey manager sends a rekey message (RM) to all group members

for every group rekeying. The rekey message contains a rekey packet for every new LKH

key. The rekey client is the group member component that maintains a set of LKH keys

(including GK), and receives and process RMs for such keys update.

In this chapter, we propose two techniques for a rekey manager to maintain a LKH,

and the associated rekey protocols. One technique adopts an unbalanced LKH (denoted

S-LKH) while the other adopts a balanced LKH (denoted B'^-LKH). We detail the LKH

node structure, and the RM format and construction for all scenarios of LKH node

insertion and deletion. In addition, we present the rekey client processing for different

RM types. We performed empirical experiments to compare the rekey performance of S-

LBH protocol versus B'^-LKH protocol for different group sizes and LKH degrees. The

B'^-LKH protocol causes a small increase in the average number o f rekey packets, and the

average number o f encrypted keys in a RM when compared to the S-LKH protocol.

However, in chapter V we show that introducing hatch rekeying (rekeying for several

members addition and/or removal) results in a reduction in the B^-LKH case. On the

other hand, the use of B'^-LKH decreases LKH height and the maximum number of

encrypted keys in a RM when compared to S-LKH. The expected maximum rekey time is

used in adjusting the minimum inter-rekey period that has to be elapsed between two

consecutive rekeyings. Moreover, the use of B'^-LKH reduces the number of allocated

nodes for a LKH (up to 50% reduction) when compared to S-LKH.

This chapter is organized as follows. Section 4.1 presents motivation and overview of

the new techniques and protocols. Section 4.2 presents S-LKH node structure, RM

format, and S-LKH maintenance algorithms along with RM construction. Section 4.3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

presents B^-LKH maintenance algorithms along with RM construction, and algorithms

analysis. Section 4.4 details B'^-LKH rekey client processing when receiving a RM to

update the maintained set o f keys. Section 4.5 presents performance evaluation

experiments and results. Finally, section 4.6 concludes the chapter.

4.1 Motivation and Overview

A LKH is maintained by a rekey manager to provide scalable rekeying. A balanced

LKH is a key tree where all leaf nodes are at the same distance (level) from the root.

Keeping a LKH balanced is very important to the performance o f group rekeying

especially for highly dynamic groups (many joins and leaves). Several researchers

assume a balanced LKH when estimating and analyzing the cost of group rekeying [11],

[67]. Keeping a LKH balanced is a crucial issue. However, the literature lacks practical

LKH maintenance algorithms as well as algorithms for keeping a LKH of any degree

balanced all the time [51] [52]. As concluded in chapter III, when an unbalanced LKH is

used, there is always an increase in the measured LKH height over the estimated value.

The increase in LKH height leads to a small increase in member storage, and rekey

message size over the estimated values. Nevertheless, there is a substantial increase in the

allocated LKH storage over the estimated value (the increase achieves 60% as shown in

section 3.7.5).

The proposed LKH maintenance algorithms require the rekey manager to assign a

unique identification for every group member, namely individual ID. For example, an

individual ID could be a randomly generated number. Individual IDs are used in

constructing the LKH and are sent in a RM to guide its processing (by a rekey client).

Using LKH keys or true member identification (such as name or IP address) as IDs

makes the rekey protocol vulnerable to traffic analysis. Since individual IDs are part o f a

RM, true IDs can be used to reveal the LKH structure and group members information.

Our proposed LKH maintenance techniques provide a dual LKH purpose, as a key

tree and as an easily searchable data structure for individual material (ID, key, ...etc).

The first proposed technique maintains a LKH as a search tree [63], denoted S-LKH,

using individual IDs as searched values. A search tree is not balanced and is used to

provide sort and search algorithms for a set of searched values. In a search tree, any value

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

73

is located only once at any tree node (internal or leaf). We adapt the traditional search

tree algorithms to accommodate the constraint that a group member individual material

(ID, key, ...etc) is always an entry in a leaf node. The S-LKH internal nodes contain key-

encrypting-keys (KEKs). We detail S-LKiH node structure and maintenance algorithms

that show how a S-LKH grows (shrinks) when an individual entry is inserted (deleted)

into a leaf node. In addition, the algorithms show how a RM is constructed for different

insertion and deletion scenarios. The S-LKH maintenance algorithms are applicable for

any LKH of degree d>2 .

The second proposed technique maintains LKH as a balanced search tree [63],

denoted B^-LKH, that has the same structure as S-LKH but guarantees that a LKH is

balanced after every node insertion or deletion. B"̂ search trees have an extra constraint

that all allocated nodes have to be at least half full to reduce the required LKH storage

(allocated memory space). B^-LKH maintenance introduces complexity and extra

overhead in RM construction and in the rekey client processing. We detail B"^-LKH

maintenance algorithms along with RM construction for different insertion and deletion

cases. In addition, we detail the rekey client RM processing (for key updates) for

different RM types.

4.2 S-LKH: A LKH as a Search Tree

In a binary search tree, each node N contains a single search value v and points to two

sub-trees (children). The left sub-tree (child) contains all the search values in the tree

rooted at N that are less than or equal to v, and the right sub-tree (child) contains all the

search values in the tree rooted at N that are greater than v. A multi-way search tree of

degree J is a general tree in which each node has d or fewer children (sub-trees) and

contains one fewer search values than it has children. That is, if a node has four children,

it contains three search values. The search tree is constructed such that the search values

are sorted in an ascending order in each node. In addition, the searched values are sorted

across all nodes.

A rekey manager that maintains LKH as a S-LKH is required to provide a unique

individual identification, ID, for every new member. S-LKH is constructed as a search

tree for those individual IDs. An individual ID can be a newly generated random number.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

Using LKH keys as sort/search values will reduce an insider attack search space. For

example, colluding group members can specify a smaller search space for LKH keys by

revealing their keys and positions to each other. Individual IDs are sent in a RM to guide

the rekey client processing. Using true member identification such as name or IP address

as an individual ID makes the protocol vulnerable to traffic analysis. Generating IDs as

random numbers prevents both the insider attack and the traffic analysis problems.

Similar to a search tree, a S-LKH internal node has at least one child, while a S-LKH

leaf node has no children. The proposed S-LKH maintenance algorithms adapt the

traditional search tree algorithms to the constraint that an individual material (ID, key,

...etc) is always an entry in a leaf node. Consequently all searched IDs are entries in leaf

nodes while the internal nodes contain replicas of certain IDs that are used as an index to

guide the search for leaf entries’ IDs.

4.2.1 S-LKH Node Structure

In a S-LKH of degree d, the node size e is the number of entries in a node such that

l < e < (7 . The leaf node structures is where the pair

(K. , IDj) is an individual entry that contains an indiviudal key K. and an indiviudal ID

/D,.among other individual information such as name, IP address,..etc (not shown). The

individual IDs are the sorted/searched values used in constructing S-LKH and are unique

through all leaf nodes. The internal node structure is

[(K ,,Pj) ,/D j, { K j , P2),...,/D^_i, (K^ ,P J] , where the pair (K.,P.) is a child node entry in

which K- is a KEK and Pi is a pointer to the (internal or leaf) child node. The internal

nodes’ IDs are replicas of certain leaf IDs and are choosen to guide the search.

A leaf node entry insertion requires a pair (K,.,/D,.) of the individul key and ID in

addition to other individual material (not illustrated). While, an internal node entry

insertion requires an ID, except for the first insertion, and a child node. An internal node

entry is created to contain the pair (K,.,P^.), where K,. is a newly generated KEK and

is a pointer to the child node. Internal node IDs are inserted between childem entries as

shown in the internal node structure above. A S-LKH is constructed such that for every

internal node, the first entry P, points to a child node whose every IDi entry IDi < ID^,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

the last entry points to a child node whose every ID. entry ID^_ ̂ < ID ., and every

other Pj points to a child node whose every ID. entry IDj_^ < ID. < I D . . In addition, all

entries o f a leaf node are sorted in ascending order by their IDs. Fig. 21 illustrates a S-

LKH structure maintained by a rekey manager. The rekey manager maintains two

entities: the group key GK and root the pointer to the S-LKH root node.

G K

(K ,, PO, ID , (K j, L) , ID j,..., IDe.,, (K=,Pe)root

Fig. 21. A S-LKH structure.

A S-LKH provides dual purpose as a key tree and as an easily searched data structure

for individual material. A S-LKH has two views, the key view that shows the

corresponding key tree (LKH), and the search view that shows the search tree for

individual IDs. For example. Fig. 22(a) is a S-LKH of degree d = 2 and height /z = 3 for a

group o f size n = 5; Fig. 22(b) is the S-LKH key view, and Fig. 22(c) is the S-LKH

search view.

When S-LKH is used with XORBP key distribution technique (KDT) (chapter III),

every key entry in an internal node or in a leaf node is associated with a byte pattern

(BP). The BP will be allocated (generated) when the entry is first inserted. In the

remainder of this chapter, we assume the use of encryption-based KDT, and explain the

changes, if any, when XORBP is used.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 6

(K,, Pi), 900, (Kz, P2)

(K,.,,P,.,), 400, (K,.2, P1.2)

GK

(K,.,.,. 120), (K,.,1,2, 205) (K2,,.,,1120),(K2„,.2, 1205))

(a) The S-LKH nodes.

GK

-2.1.2

(b) The S-LKH key view.

900

400

900 1120 1205120 205

(c) The S-LKH search view.

Fig. 22. A S-LKH o f degree d = 2 and height A = 3 for a group o f size n - 5 .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

4.2.2 S-LKH Rekey Message Format

Fig. 23 depicts the rekey message RM format used by a S-LKH rekey manager. Fig.

23(a) illustrates the initial key message sent to a group member before receiving any RMs

and is used to initialize his state (ID, position, LKH height, and LKH degree). Where ID

is the member unique identifleation assigned by the rekey manager, and position is an

encoded LKH position of the individual leaf entry. The individual BP is sent only if

XORBP is used as a KDT. Fig. 23(b) illustrates the RM format, which is sent to all group

members for every rekeying, where SEQ is a sequential number that indicates RM

number starting from I for the first message, type is the message type that could be ADD

if the rekey is due to new member addition or REMOVE if the rekey is due to group

member removal (other types will be introduced later when the algorithms are presented),

position is the encoded LKH position o f inserted/deleted leaf node entry, level specifies

the distance between the root node and the effected leaf node, ID is the inserted/deleted

leaf entry ID, and a RekeyPacket is constructed for every new key.

If an encryption-base KDT is used, the RekeyPacket, shown in Fig. 23(c), contains

several encryptions of a new key (encKey). Each encKey is targeted to a different set of

group members. On the other hand, if a XORBP KDT is used, the RekeyPacket, shown in

Fig. 23(d), contains a fixed length o f bytes (size is S'bytes as estimated in section 3.3.3)

and an encoded BP encodedBP for the assoeiated BP as explained in section 3.4.2. Note

that, GK is not associated with a BP and a rekey packet for GK doesn’t contain an

encoded BP.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

78

ID Position LKH height LKH degree Individual BP

(a) Individual (initial) key message.

SEQ Type Position Level ID

RekeyPacket),RekeyPacket2, ...

(b) Rekey Message (RM).

encKeyi, encKey2, ...

(c) Encryption rekey packet.

S bytes encodedBP

(d) XORBP rekey packet.

Fig. 23. The format of messages used by a S-LKH rekey manager.

4.2.3 Rekey Packet Construction

For an internal node entry {K^ , P^) m an internal node N, there are two types of

constructed rekey packets for a newly generated K \ . The first type is addRekey packet

that is constructed after an insertion of an entry to the intemaFleaf node A, where node A

is the child of N pointed to by (node A for GK is root node). The second type is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

rmvRekey packet that is constructed after the deletion of an entry from node A. The rekey

packets are constructed by calling the methods addRekey(A) and rmvRekey{A) provided

by every internal node N (and by GK). Note that the inserted/deleted entry could be

directly in node A or indirectly in the path o f one o f its children.

If an encryption-based KDT is used, the addRekey packet contains two encryptions of

K \ {{K\)K^ , [K \ }Kg] where Kg is the new entry key in node A. The rmvRekey packet

contains e enctryptions of K^ where e is the number of entries in node A

Note that for the first time a newly created key is distributed, a rmvRekey has to be

constructed since no previous version of the key exists. In addition, if an operation

performs both insertion and deletion to node A, a rmvRekey packet has to be constructed

for K \ (the key previous version can not be used since some entries are deleted).

If XORBP KDT is used, an internal node entry (X ^,5P^,P^) contains a BP that has

to be regenerated along with the key K ^ . Both addRekey and rmbRekey packets

construction is symmetric and uses node A entries as described in section 3.4.1. Every

XORBP rekey packets, except for GK, contains an encodedBP for BP^ using K^ as

descibed in section 3.4.2.

4.2.4 S-LKH Algorithm for New Group Member Addition

Fig. 24 is the S-LKH new member addition algorithm, AddMember, where the new

group member has a unique identification memberlD and an individual key memberKey.

The algorithm details how the S-LKH of degree d rooted at node root is growing while

adding the new member entry as well as how the individual key message initMsg and the

RM rekeyMsg are constructed for the different addition cases (RM type). There are three

possible RM {rekeyMsg) types ADD, SPLIT, and INCREASE as will be explained next.

Initially, the S-LKH rooted at root node is searched by memberlD for the appropriate

position in a leaf node N for the new member entry. The lookup method searches the S-

LKH rooted at root node guided by memberlD and returns the appropriate position for

the individual entry to be inserted, in addition, it returns all visited nodes in nodeStack,

(where the first pushed node is root and the last pushed node is the leaf node that should

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

contain the new individual entry). Then, the new entry is inserted where there are three

cases. The first case occurs if the leaf node N has space for the new entry (number of

entries less than d), a simple insert is performed and rekeyMsg type is set to ADD^. Note

that, if XORBP KDT is used the individualBP filed in initMsg message is assigned after

the leaf node insertion is performed (Fig. 23 (a)).

The other two cases occur if the leaf node N is full (has d entries). I f N is full, a new

leaf node newNode is allocated and N entries (including the new one) are split equally

between the two nodes (N and newNode). If the number of entries (c/ + 1) doesn’t split

equally between the two nodes (odd number), we keep one more entry in N than

newNode. The newNode is to be the right neighbor o f N. The splitlnsert method returns

an ID that is the maximum ID value in node N after the split. An internal node entry

(KEK and pointer) that points to newNode should be inserted in the parent o f N (to the

right of N entry). There are two cases for that insertion according to whether the parent

node is flill or not.

The second addition case occurs when the parent o f N has space for a new entry, the

newNode entry is inserted and rekeyMsg type is set to SPLIT. The third addition case

occurs if the parent o f N is full, a new internal node newParent is allocated to be the

parent for the two children N and newNode. The pointer at the parent node that was

pointing to N should be replaced to point to newParent instead and rekeyMsg type is set

to INCREASE. The last case leads to an inerease of S-LKH height only if the distance

between root and N (denoted level in the algorithm) equals to Qi-l). Note that, the

underlined code highlights the assignment of the constructed rekey packets to rekeyMsg

fields. Also note that, rmvRekey packets are constructed for the newly created KEKs and

for KEKs that experience deletion in the associated node.

The number o f rekey packets in rekeyMsg is {level+l), (level+2), and (level+3) in the

cases of ADD, SPLIT, and INCREASE, respectively. The first two packets in the cases

of SPLIT & INCREASE are rmvRekey packets while all other packets are addRekey

packets. Please see appendix A for examples of the different new group member addition

cases.

^ denotes an assignment to multiple fields in a message.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

81

Method AddMember(memberID, memberKey)
Globals: root, h, d, GK;
Returns: initMsg, rekeyMsg;

if (h equals 0) then { root = AllocateNew LeafNodeQ; h = 1; }
(position, nodeStack) = root.lookup (memberlD);
level = nodeStack.sizeO -1 ; N = nodeStack.pop();
initMsg <- (memberlD, position, h, d);
rekeyMsg G- (position, memberlD, level);
if (N.size() < d) then { N.insert (memberKey, memberlD); rekeyMsg.type = A D D ;}

else { newNode = AllocateNew LeafNode();
ID = N.splitInsert(memberKey, memberlD, newNode);
parent = nodeStack.pop();
if ((level > 0) and (parent. size() < d))

then { parent.insert(ID, newNode); decrement level;
rekeyMsg.type = SPLIT;
rekeyMsg<- (parent.rmvRekev(NL parent.rmvRekev(newNode)) ;}

else
{ newParent = AllocateNew InternalNode();

newParent.insert(null, N); newParent.insert(ID, newNode);
rekeyMsg.type = INCREASE;
rekevM sg^(newParent.rmvRekey(N), newParent.rmvRekey(newNode));
if (level equals (h-1)) then increment h;
if (level equals 0) then root = newParent;

else parent.replace(N, newParent); }
}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO;

rekeyMsg <-N.addRekey(prevN); }
rekeyMsg ^ GK.addRekev(root);
return initMsg, rekeyMsg;

Fig. 24. The S-LKH new group member addition and RM construction algorithm.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8 2

4.2.5 S-LKH Algorithm for Group Member Removal

Fig. 25 is the S-LKH group member removal algorithm, RemoveMember, that details

how the S-LKH rooted at node root is shrinking after the removal of a group member

entry as well as how the RM {rekeyMsg) is constructed for the different removal cases

(RM type). There are two possible RM rekeyMsg types REMOVE, and DECREASE. The

removed member is identified by his unique memberlD.

Initially, the S-LKH rooted at node root is searched by memberlD to determine the

position of the leaf entry at node N to be deleted. The first removal case occurs when the

leaf node N, after the deletion, contains one or more entries, the rekeyMsg type is set to

REMOVE. The second case occurs when node N, after the deletion, has no more entries.

In this case, node N entry (KEK and pointer) has to be deleted from its parent node. If the

parent after the deletion has no more entries, its entry has to be deleted from its parent,

and so on. The deletion could propagate to upper nodes and stops when it reaches the first

non-empty node. The rekeyMsg type is this case is set to DECREASE and could lead to

the decrease of LKH height h if it the deleted leaf node is the only node that has distance

equals to {h-\) from the root. The height h might be decreased by more than one if more

nodes are deleted. The number o f rekey packets in rekeyMsg is {level + 1) . Please see

appendix A for examples o f the different group member removal cases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83

Method RemoveMember(memberlD)
Globals: root, h, d, GK;
Returns: rekeyMsg;

(position, nodeStack) = root.lookup (memberlD);
rekeyMsg (position, memberlD);
level = nodeStack.sizeO -1 ;
N = nodeStack.popO; N.delete(memberlD);
if (N.sizeO > 0) then rekeyMsg.type = REMOVE;

else { while (N.size() equlas 0)
if (level equals 0) then { decrement level; free root; h = 0; breakWhile; }

else { decrement level; prevN = N; N = nodeStack.popO;
N.delete(prevN); }

h = root.getHeight();
rekeyMsg.type = DECREASE;

}
rekeyMsg.level = level;
for (i = 0 to (level-1))

{ prevN = N; N = nodeStack.popO;
rekeyMsg <~N . rmvRekevtprevNl: }

if (root does-not-equal null) then rekeyMsg GK.rmvRekev(root);
return rekeyMsg;

Fig. 25. The S-LKEl group member removal and RM construction algorithm.

4.3 B^-LKH: A LKH as a Search Tree

A B^-LKH rekey manager maintains a balanced LKH adapting search tree

insertion and deletion algorithms [63], [38]. A B^-LKH is a S-LKH that has the same

node structure shown in Fig. 21. A B^ search tree of degree d is subject to two

constraints, the first is all its leaf nodes are on the same level (i.e. balanced), and the

second is all allocated nodes except the root are at least half full. The root node size is at

least 2, while all other nodes’ sizes are at least \ d l 2 \ that will be denoted Min_d.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

84

Maintaing a B -LKH introduces complexity and extra overhead in RM construction as

well as in the rekey client processing. B^-LKH algorithms are suitable for any LKH of

degree d greater than or equal to 4. When d equals 2 or 3 M injd is 1 (and so is S-LKH)

and using B"^-LKH algorithms introduces exta overhead versus S-LKH.

4.3.1 B^-LKH Rekey Message Format

The initial key message and many fields in RM are similar to the messages explained

in section 4.2.2 for S-LKH protococl. Fig. 26 illustrates the changes to the messages

format used by a B’̂ -LKH rekey manager. Fig. 26(a) is RM format that contains several

IDs, and several boolean (bit) values isRght, where isRght is a Boolean value that

indicates either “is right” or “is left” that is used with some message types as will be

explained later when introducing the B^-LKH RemoveMember algorithm. Fig. 26(b) is a

XORBP rekey packet that contains several xoredBPs. A xoredBP is eonstructed with two

same (bit) length BPs XORed, and is used with some message types as will be expaliend

later when introucing the B"^-LKH RemoveMember algorithm.

SEQ Type Position Level

ID i,ID 2, . . . isRght], isRghtz, ...

RekeyPacket], RekeyPacket2, ...

(a) Rekey Message (RM).

S Bytes encodedBP

xoredBP], xoredBP2 , . ..

(b) XORBP rekey packet.

Fig. 26. The format o f messages used by a B^-LKH rekey manager.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

85

4.3.2 B -LKH Rekey Packet Construction

B"^-LKH algorithms use the same rekey packet constmction introduced in section

4.2.3 for S-LKH protocol. In addition, there are two remove related operations to uphold

the second search tree constraint that all nodes are at least half full. The first operation

is shift, in which one entry is shifted from a node to one of its neighboring nodes. The

second operation is merge, in which all entries in an underflow node (its size becomes

less than Min_d) are merged (moved) to one of its neighboring nodes and the empty node

is deleted.

A new rekey packet constmction is needed for the merge operation and is called

mrgRekey{A, isRight), where isRight is a boolean value if “trwe” that means A is the right

neighbor of the deleted node and if “false" that means A is the left neighbor of the

deleted node. Similar to addRekey and rmvRekey packet constmction methods, mrgRekey

is provided by the internal node N that contains the entry for its child node A.

The encrj^tion-based rekey packet for the new K ^ contains Min_d encrypted key

{{K\] K^ , {K\]K^ , l <i < Min _d'\ where K. is a merged entry key, and isRight

determines which keys are merged. If isRight equals to true, the first Min_d entries are

merged from the left neigbor node, and if equals to false the last Min_d entries are

merged from the right neighbor node.

The XORBP rekey packets are constmcted the same way for all packet types

{addRekey, rmvRekey and mrgRekey). I f XORBP is used as a KDT technique the

shifted/merged entries’ BP is subject to change due to the possible occupation o f the

assigned bytes. When an entry is shifted/merged a new BP is allocated. The new bit

represented BP has to be sent in the rekey packet XORed with its bit represented previous

value as a xoredBP illustrated in section 4.3.1. The rekey packet contains one xoredBP if

there is a shifted entry to node A, and contains {M injd - 1) xoredBPs if there are {Min_d -

1) merged entries to node A.

4.3.3 B^-LKH Algorithm for New Group Member Addition

Adding a new group member leads to the insertion of a new entry in a leaf node, and

might lead to insertions in one or more internal nodes. First we will present the different

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8 6

insert operations in a leaf node and in an internal node, followed by the member’s

addition and RM construction algorithm (AddMember).

For a leaf node there exists two possible insert operations namely insert and

splitlnsert. Fig. 27 is an example that illustrates a leaf node N in a LKH of degree <7 = 4

(Min_d = 2) after the two insert operations. Every leaf entry represents a member

individual key and his unique ID. Fig. 27(a) shows the original leaf node N that has 3

entries. Fig. 27(b) shows the leaf node N after insert (Kd, 390) is performed (N contains

maximum number of entries 4). Fig. 27(c) shows the leaf node N after splitlnsert (Kg,

280) is performed. A new empty leaf node newNode is allocated and passed to this

method call, and an ID is returned that will be inserted in an internal node in the upper

level. Note that the entries are sorted by their IDs, and the last ID in N is returned after

moving half of its entries to newNode. The two leaf nodes contain at least entries.

(K a , 340), (K b , 410), (K c , 470)

(a) Original leaf node N.

(K a, 340), (K d, 3 9 0) , (K b, 410), (Kc, 470)

(b) Leaf node N after insert (K d, 390)

N I 390 i newNode

(K e, 280), (K a, 340), (K^, 390) (K b, 410), (Kc, 470)

(c) Leaf nodes N and newNode, and the returned ID after splitlnsert (Ke, 280).

Fig. 27. An example of different leaf node insertions in a B^-LKH of degree <7 = 4.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87

For an internal node, there are three possible insert operations namely firstln sert,

insert, and splitlinsert. Fig. 28 is an example that illustrates the three insert operations in

an internal node N in a LKH of degree d = A. The internal node insert operations are

passed a child node (A, B, C, D, or E) and a pointer to these nodes is created in the entry.

In addition, a newly created KEK is generated for every child node. The firstlnsert

operation, when the node is empty, is passed two child nodes. Fig. 28(a) shows the

internal node N after firstInsert{A, 390, B) is performed. Fig. 28 (b) shows the intemal

node N after the insert{500, C) is performed, then insert(200, D) is performed, that makes

the node full (has 4 entries). Fig. 28(c) shows the intemal node N after splitInsert(AlO, E)

is performed, where a new intemal node newNode is passed to this method call and an ID

is retumed.

I (K a , P a) , 3 9 0 , (K b , P b) j

(a) Intemal node N after firstlnsert (A, 390, B).

(K a , Pa), 200, (K d , Pd), 390, (K b , ? b) , 500, (K c , Pc)

(b) Intemal node N after insert (500, C), then insert (200, D).

N i 410 I newNode

(K a, Pa), 200, (K d, P d), 390, (K b, ? b) (K e , P e), 500, (K c , ? c)

(c) Intemal nodes N and newNode, and the retumed ID after splitlnsert (410, E).

Fig. 28. An example of different internal node insertions in a B^-LKH of degree d = A.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Fig. 29 is the B^-LKH member addition and RM construction algorithm, AddMember,

that details how the B^-LKH rooted at node root is growing while adding new members

entries as well as how the individual key message initMsg and RM rekeyMsg are

eonstructed for different addition cases (RM type). There are three possible RM

{rekeyMsg) types ADD, SPLIT, and INCREASE as will be explained next. The added

member has a unique ID memberlD and an individual key memberKey.

Initially, the B^-LKH rooted at node root is searched by memberlD for the

appropriate position in a leaf node N for the new member entry. The first addition case

occurs when the leaf node N has space for the new entry, a simple insertion is performed,

and rekeyMsg type is set to ADD. The other two addition cases occur if the leaf node is

full. If the leaf node is full a new leaf node newNode is allocated and the entries o f N are

split between the two nodes (N and newNode). An intemal entry (KEK and pointer) has

to be inserted for newNode at the parent of N and to its right. If the parent of N is not full

a simple intemal node insertion is performed. While if the parent node is full a new

intemal node is allocated and the entries of that parent are split between it and the new

allocated node, and so on the split could propagate to upper levels. Note that, after

splitlnsert method is called the parent of nodes prevN and prevNew (denoted prvNprnt

and prvNwPrnt, respectively) could be either N or newNode, and are assigned by that

method call.

The second addition case occur when the split propagates until it reaches an internal

node that has space for the new entry and the rekeyMsg type is set to SPLIT. The third

addition case occurs when the split propagates to the root node leading to an increase of

LKH height, and the rekeyMsg type is set to INCREASE. Please see appendix A for

examples o f the different new group member addition cases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89

Method AddMember(memberID, memberKey)
Globals: root, h, d, GK;
Returns: intMsg, rekeyMsg;

if (h equals 0) then { root = AllocateNew LeafNode(); h = 1;}
(position, nodeStack) = root.lookup (memberlD); level = h -1 ; N = nodeStack.popO;
initMsg ^ (memberlD, position, h, d); rekeyMsg <r (position, memberlD);
if (N.sizeO < d) then { N.insert (memberKey, memberlD); rekeyMsg.type = A D D ;}

else { done = false; newNode = AllocateNew LeafNode();
ID = N.splitInsert(memberKey, memberlD, newNode);
while (level > 0)
{ decrement level; prevN = N; N = nodeStack.popO;

if (N.sizeO ^ d)
then { N.insert(ID, newNode); rekeyMsg.type = SPLIT;

rekeyMsg ^ (level, ID, N.rmvRekev(prevN), N.rmvRekev(newNode));
done = true; breakW hile;}

else { prevNew = newNode; newNode = new IntemalNode();
rekeyMsg ^ (ID);
(ID, prevNpmt, prevNewPmt) = N.splitInsert(ID, prevNew, newNode);

rekeyMsg ^ prevNpmt.rmvRekev(prevN);
rekeyMsg prevNewPmt.rmvRekev(nrevNew); }

}
if (not done)

then { root = AllocateNew IntemalNode(); root.firstInsert(N, ID, newNode);
rekeyMsg.type = INCREASE; increment h;
rekeyMsg ^ (ID, root.rmvRekev(NL root.imvRekevrnewNodeE: }

}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO;

rekeyMsg N.addRekev(prevN); }
rekeyMsg ^ GK.addRekey(root);
return initMsg, rekeyMsg;

Fig. 29. The B'^-LKH new group member addition and RM constmction algorithm.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90

4.3.4 B^-LKH Algorithm for Group Member Removal

Removing a group member leads to the deletion o f his entry from a leaf node and

possibly the deletion of one or more intemal node entries. The deletion o f an entry could

be simple that does not lead to the violation of not being half full or it could need extra

overhead to uphold the constraint that all nodes are at least half full. Keeping the B^-

LKH balanced and keeping the nodes half full need two possible remove-related

operations shift and merge, both operations apply to two neighboring siblings (of the

same parent) nodes, N and its right or left neighbor Nghbr. The best neighbor for a node

N (if the two exists) is the one with greater size (i.e. has more entries). I f the two sibling

neighbors have the same size, the right one is chosen. Note that, the first child of a node

has only a right sibling, while the last child of a node has only a left sibling and the only

neighbor is the best neighbor. The best neighbor is chosen from the two possible

neighbors (if exists) o f a node N, that have the same anchor, such that it has enough

entries to avoid the more expensive merge operation. The original B^ search tree

algorithms impose no restriction on choosing a neighbor that has the same anchor and we

avoided such choice because of its potential and complex change to the tree, and hence

increased cost of the rekey operations [38]. For example if the best neighbor to a node

doesn’t have the same parent, two parent entries for the two nodes need to be rekeyed

(regeneration of the key).

If the deletion of an entry at node N causes an underflow, i.e. its size becomes {Min_d

-1), a shift or merge operation is essential to keep it at least half full. The shift operation

moves an entry from Nghbr to N, where Nghbfs size is more than Min_d. The merge

operation moves all entries of N to Nghbr and deletes node N, where Nghbr’s size is

exactly Min_d.

Fig. 30 and Fig. 31 are examples that depict the possible shift operations from right

and left neighbors, respectively, in a B^-LKH of degree d = A. The minimum number of

entries in a node is 2. The examples illustrate the nodes before and after the operation in

the two cases o f the nodes (N and Nghbr) being leaf or intemal nodes. In addition, the

examples illustrate how the ID is adjusted in the anchor node. The shift method call is

provided by the anchor node and retums an ID that will be sent in the RM.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

Anchor

•(Kn: Pn)> IDX) (KNghbr, PNghbr)

N

(Ka,Pa) i

Nghbr

i (Kb, Pb), IDb, (Kc, Pc), IDc, (Kd, Pd)

(Ka, IDa) (Kb, IDb), (Kc, IDc), (Kd, IDd)

(a) Node N before shift from right neighbor Nghbr.

Anchor

i • • ■ (Kn, Pn), IDb, (KNghbr, PNghbr) • • •

N

(Ka,P a) ,I D x, (K b,P b)

Nghbr

I (Kc, Pc), IDc, (Kd, Pd)

(Ka, IDa), (Kb, IDb) (Kc,IDc),(Kd,IDd)

(b) Node N after shift from right neighbor Nghbr (IDb is returned).

Fig. 30. An example of B^-LKH internal/leaf node x i ^ i shift operation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92

Anchor

i ... (KNghbtj PNghbr); IDx> (Kn, Pn) • ■ ■

Nghbr

I (K b, Pb), ID b, (K c, P c), ID c, (K d, P d)

N

I (K a, P a)

(K b, ID b), (K q, ID c), (K d, ID d) (K a, ID a)

(a) Node N before shift from left neighbor Nghbr.

Anchor

i ... (KNghbr, PNghbr), ID c, (K n, Pn) ■ ■ •

Nglibr \ N

(K b, P b), ID b, (K c, P c) (K d , P d), ID x , (K a, Pa)

(K b, ID b), (K c, ID c) (K d , ID d), (K a, ID a)

(b) Node N after shift from left neighbor Nghbr (IDc is returned).

Fig. 31. An example ofB^-LKH internal/leaf node left .s’/zi/i operation.

Fig. 32, and Fig. 33 are examples that depict the possible merge operations from right

and left neighbors respectively in a B”̂ -LKH of degree = 4. The minimum number o f

entries in a node is 2. The examples illustrate the nodes before and after the operation in

the two cases of the nodes (N and Nghbr) being leaf or intemal nodes. In addition, the

examples illustrate how the anchor node is adjusted. The merge method call is provided

by the anchor node and retums the deleted ID that will be sent in the RM.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

93

Anchor

i • • -(K-N, Pn)> IDx > (KNghbr> PNghbr)- • •

(K a, P a) I

Nghbr

(K b, P b), ID b, (K c, P c)

(K a, ID a) (K b, ID b), (Kc , ID c)

(b) Node N before merge with right

neighbor Nghbr.

Anchor

I (KNghbn PNghbr)-•• I

Nghbr \

(K a , P a) , ID x , (K b, P b), ID b, (Kc, Pc)

(K a , ID a) , (Kb, ID b), (K c, ID c)

(a) Node N after merge with right

neighbor Nghbr (IDx is returned).

Fig. 32. An example of B^-LKH intemal/leaf node right merge operation.

Anchor

i ... (KNghbr, PNghbr), ID x ,(K n, Pn) - - -

Nghbr

(Kb, Pb), IDb, (Kc, Pc) I

N

(K a, P a)

(K b, ID b), (K c, ID c) (K a, ID a)

(b) Node N before merge with left

neighbor Nghbr.

Anchor

I ---(Kfvjghbr,PNghbr)---

Nghbr

(K b, Pb), ID b, (K c, P c), ID x , (K a , ? a)

(K b, ID b), (Kc, ID c), (K a , ID a)

(a) Node N after merge with right left

Nghbr (IDx is returned).

Fig. 33. An example o f B'^-LKH intemal/leaf node left merge operation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

Fig. 34. illustrates the B’̂ -LKH group member removal and RM construction

algorithm, RemoveMember, that details how a B^-LKH is shrinking wile removing a

group member entry. The removed member is identified by his unique ID memberlD.

Initially, the B^-LKH rooted at node root is searched by memberlD for the position o f the

deleted entry in the leaf node N. While searching for the entry the lookup method looks

for the best neighbor o f each node and pushes it in nodeStack as well as a flag is pushed

in isRghtStack that determines if it is the right or the left neighbor. The deletion of an

entry form a leaf node could introduce further deletions in upper level nodes that could

propagate up to root or stops at lower level. The deletion o f a member entry has four

different cases, i.e. four different RM types, and those are REMOVE, MERGE, SHIFT,

and DECREASE.

After the entry is deleted from leaf node N, node N is checked to see if it is at least

half full or not. If node N contains at least Min_d entries rekeyMsg type is set to

REMOVE. If node N underflows the best neighbor Ngbgr (that is popped from the stack)

is checked to see if we could shift an entry from it (has more than Min_d entries) or a

merge is essential (has exactly Min_d entries). If shift is possible, an entry is shifted form

Nghbr to N, the deletion propagation stops, and rekeyMsg type is set to SHIFT. I f Nghbr

has exactly Min_d entries then the entries of node N are merged (moved) to Nghbr node.

In this case, the intemal node entry at the parent node {anchor) that was pointing to node

N has to be deleted. If the anchor (parent) didn’t underflow after that deletion the merge

stops and rekeyMsg type is set to MERGE. If the anchor underflows its neighbor is

checked for shift or merge operation, and so the deletion could propagate to upper level

nodes. If the deletion propagates to root node and merged its only two children nodes,

B'^-LKH height is reduced by 1 and rekeyMsg type is set to DECREASE. Please see

appendix A for examples of the different group member removal cases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95

Method RemoveMember(memberlD)
Globals: root, h, d, Min_d, GK;
Returns: rekeyMsg;

(position, nodeStack, isRghtStack) = lookup (memberlD);
rekeyMsg G (position, memberlD); level = h -1 ; N = nodeStack.popO;
N. delete(memberlD);
if ((N.sizeO > Min_d) or ((N equals root) and (N.size() > 0)))

then rekeyMsg.type = REMOVE;
else
{ done = false;

while (level > 0)
{ decrement level; anchor = nodeStack.popO; isRght = isRghtStack.popO;

Nghbr = anchor.getNghbr(N, isRght);
if (Nghbr.sizeO > Min__d)

then
{ ID = anchor.shift(N, Nghbr); rekeyMsg.type = SHIFT;
rekeyM sg^ (level, ID, isRght, anchor.rmvRekev(N), anchor.rmvRekev(Nghbr));

done = true; breakWhile; }
else

{ ID = anchor.merge(N, Nghbr); N = anchor;
rekeyMsg<-(ID, isRght, anchor.mrgRekev(Nghbr. isRght));
if ((N.sizeO > Min_d) or ((N equals root) and (N.size() > 1)))

then { rekeyMsg.type = MERGE; rekeyMsgG (level); done = true;
breakW hile;}

}
}

if (not done)
then { if (N equals root) then free root; else root = N.childAt(O);

rekeyMsg.type = DECREASE; decrement h; }
}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO;

rekeyMsg G N.rmvRekev(prevN): }
if (rekeyMsg.typeO does-not-equal DECREASE)
then rekeyMsg <r GK.rmvRekevfroot);

return rekeyMsg;

Fig. 34. The B^-LKH group member removal and RM construction algorithm.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96

4.3.5 Algorithms Analysis

Analyzing AddMember and RemoveMember algorithms for a B^-LKH of height h,

TABLE IV illustrates RM ’s (shown in Fig. 26) different field sizes for all group member

addition and removal cases (RM type), where RM level equals L. TABLE V illustrates

the different rekey packet sizes when encryption-based or XORBP KDT is used, where

Enc_K is the encrypted key size in bytes, and S is the XORBP rekey packet size. As

previously mentioned, for a B^-LKH of degree d, Min_d is the minimum number o f non­

root node entries that is equal to Li/ / 2 j .

TABLE IV

RM FIELD SIZE FOR B^-LKH OF HEIGHT h, AND RM ’S LEVEL L

RM type “ID”

length

“isRght”

length

Number o f

addRekey

packets (nA)

Number o f

rmvRekey

packets (nR)

Number o f

mrgRekey

packets (nM)

ADD 1 0 h 0 0

SPLIT k - L 0 L + \ 2 x (h - L - \) 0

INCREASE h + \ 0 1 2 x h 0

REMOVE 1 0 0 h 0

MERGE h - L h - L - \ 0 L + \ h - L - \

SHIFT h - L h - L - \ 0 L + 3 h - L - 2

DECREASE h h - \ 0 0 h - 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

97

TABLE V

REKEY PACKET SIZE FOR ENCRYPTION-BASED AND XORBP KDTS

Encryption-based XORBP

addRekey packet size 2 X Ena _ K S

rmvRekey packet size e x E n c _ K

w h ereM in _ d < e < d (e i s the

number o f children for that key

entry node)

S

mrgRekey packet size Min _ d X E n c_ K S

Number o f keys generated nA + nR + nM nA + nR + nM

Number o f encoded BPs (A BP is

K numbers in the range [0:5 -1])

0 nA + nR + nM - 1

Number o f xored BPs 0 nM X { M in _ d - V) for MERGE

and DECREASE

nM X { M in _ d - \) + I for SHIFT

0 otherwise

4.4 B'^-LKH Rekey Client Processing

The rekey client is the software component at every group member that receives RMs

and updates the client maintained set of keys. The rekey client initially receives initMsg

that initializes the variables ID, position, h, d, and Min_d (calculated from d). The

position is represented as an array of size h, where position{Qi\ identifies the child node

number of LKH root node. In addition, the rekey client maintains a list o f keys key List of

size {h + 1), where its first element (entry number 0) is his individual key and its last

element (entry number h) is GK. When the client receives initMsg he inserts his

individual key in a newly created keyList. Then the client keeps receiving rekeyMsg to

update his keys.

Updating keyList[\\ from a rekey packet depends on whether the KDT is encryption-

based or XORBP. If an encryption-based KDT is used, selecting the key encKey to be

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98

decrypted depends on the rekey packet type {addRekey, rmvRekey, or mrgRekey) and

positional). The selected encKey is decrypted either with its previous version, or with

keyList\i-\). On the other hand if XORJBP is used, updating keyList\i\ is symmetric for all

packet types and uses keyListli-l) and its associated BP to get the new version o f the key.

For every updated key, except GK, the associated BP is updated from the encodedBP in

the same rekey packet. The individual BP that is associated to the individual key

{keyList[G\) is sent in the initialization message initMsg.

When the rekey client receives rekeyMsg he compares his position with

rekeyMsg.position to decide on the starting matching level {match) where he should start

updating his keyList. For example, if the member individual is in the leaf node that has

the inserted/deleted entry match will be 2. If the member individual entry is in a leaf node

that has the same parent o f the directly affected leaf node match will be 3, and so on. If

position has no intersection with rekeyMsg position then match is set to {h + \). The

following code fragment illustrates how to adjust match. Note that, match equals 1 only

at the new individual (i.e., his rekey client software component).

match = -1;

for (i = 0 to (h-1))

if {position)}) equals rekeyMsg.position\\^

then match = i;

else breakFor;

match = h - match',

if {match equals 1) then match = 2;

After deciding on match, the update procedure is triggered by rekeyMsg.type and

executed to update keyList. There are six different update procedures according to

rekeyMsg type. The following is the Simple update procedure called when rekeyMsg.Type

equals ADD or REMOVE. A group member whose match equals 2 and his ID is greater

than the inserted/deleted ID experiences a change in his individual leaf node position.

This individual leaf position is incremented by 1 if a new individual entry is inserted and

is decremented by 1 if an individual entry is deleted. In addition, a group member updates

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

his keyList from the corresponding rekey packets according to his match. A group

member whose match equals 2 updates all h keys, while a group member whose match

equals (A + 1) updates only one key {GK). Please see Appendix B for detailed rekey

client update procedures and an example.

if {{match equals 2) and {ID > rekeyMsg.ID\Oyj)

then if {rekeyMsg.type equals ADD)

then increm entposition{h-\\,

else decrem entposition[h-l\,

for (i = {match - 2) to (A - 1))

keyList.update(i + 1, rekeyMsg.packet[i])',

4.5 Experim ental Results

We have implemented the rekey manager and the rekey client in Java'^“[[62]. Both S-

LKH and B^-LKH protocols are available for use with an encryption-based or XORBP

KDT. In the following experiments, we compare the performance of an unbalanced LKH

(S-LKH) versus a balanced LKH (B'^-LKH). First, an experiment is performed to study

the frequency o f the different rekey message (RM) types in both add and remove

rekeyings. Second, the simulated group dynamics in the experiments is explained. Third,

an experiment is performed to compare S-LKH and B'^-LKH rekey costs. Fourth, an

experiment is performed to study the effect o f LKH degree and group dynamics on S-

LKH and B’* -̂LKH rekey costs and storage.

4.5.1 Frequency of Different Addition and Removal Cases

This experiment illustrates the frequency o f different RM types in the addition and

the removal rekey cases for both S-LKH and B’̂ -LKH protocols. The LKH degree d is

increased from 2 to 10. For every LKH degree, the group size n increases from 32 to

2048 in multiples of 2. For every d and «, 10 LKHs are constructed by a sequence o f n

member additions then n member removals. A new unique random ID is generated for

every new member. The removed member is randomly chosen from the existing

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 0

members. For every constructed LKH, the frequency o f different RM types is recorded.

We have noticed that the frequency o f each RM type depends on LKH degree and

doesn’t depend on the group size.

Fig. 35 and Fig. 36 illustrate the frequency of different RM types for S-LKH protocol

in the addition and removal rekey cases, respectively. We can observe that the frequency

of the simplest rekey cases (ADD & REMOVE) increases with LKH degree increase, and

are occurring more than 80% of the time for a LKH degree greater than 8.

Fig. 37 and Fig. 38 illustrate the frequency of different RM types for B^-LKH

protocol in the addition and removal rekey cases, respectively. Similarly, we can observe

that the simplest rekey cases are occurring more than 80% of the time for a LKH degree

greater than 8. In addition, the most expensive rekey cases (INCREASE & DECREASE)

are occurring less than 1% of the time for any LKH degree.

■©— a d d SPLIT -£r-IN C R E A SE

100

0 2 4 6

LKH degree

8 10 12

Fig. 35. Frequency o f add RM type for the S-LKH protocol.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 1

-©— REMOVE DECREASE

100

0 2 4 6 8 10 12

LKH degree

Fig. 36. Frequency of remove RM type for the S-LKH protocol.

-©— ADD SPLIT - A - INCREASE

100

80 -
70 -

50 ̂
I ' 40 -
3 30 -O'

20 ^

0 2 4 6 8 10 12

LKH degree

Fig. 37. Frequency of add RM type for the B'^-LKH protocol.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 2

-©— REMOVE -X -M E R G E - A — SHIFT - b— DECREASE

70 ^

-cy
g' 30 -K
S. 20 -
CO

10 -

4 6

LKH degree

10 12

Fig. 38. Frequency o f remove RM for the B'^-LKH protocol.

4.5.2 G roup Dynamics

To simulate group dynamics, a LKH is constructed by a sequence of aN member

additions followed by a sequence of rN member removal. The group size n = aN - r N ,

and the group dynamic ratio gdr is defined to be gdr = rN / a N . If the group is static

(i.e., no member is removed) gdr = 0. For gdr = 0.4, the group size is 60% of the added

members (i.e., n = 60% aN). To have a group of size n > 0, gdr value has to be in the

range [0,1 [.

When an encryption-based KDT is used, the rekey message cost is measured as the

total number o f encrypted keys in a RM (in all rekey packets). On the other hand, when

XORBP KDT is used, the rekey message cost is measured as the number o f rekey packets

in a RM.

In the following experiments, we compare the rekey performance of S-LKH versus

B^-LKH for the same LKH degree, group size, and group dynamic ratio. For every

protocol, and the parameters {d, n, gdr), we construct 100 LKHs. For every constructed

LKH, its height and the number o f allocated nodes (LKH storage) are recorded. Then, 10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

readings for rekey message cost in both add and remove rekey cases (i.e., a remove

member followed by add member 10 times) are recorded. The plotted number of

allocated nodes is the average of 100 readings, and the plotted rekey message cost is the

average of 1000 reading.

4.5.3 S-LKH and B^-LKH Rekey Cost

This experiment compares the behavior o f add and remove rekey costs for S-LKH

versus B^-LKH protocols in terms o f number of rekey packets and number o f encrypted

keys. The experiment is performed for LKH degree d = A, group size n = 8192, and gdr =

0.4.

Fig. 39 and Fig. 40 illustrate, for both protocols, the frequency o f the different values

obtained for the number o f rekey packets in a RM in add and remove rekeyings,

respectively. We can observe the symmetry between the two figures (i.e., add and rekey

symmetric cost in terms of the number o f rekey packets in a RM). In addition, we can

observe that using the S-LKH protocol, the number o f rekey packets in a RM spans a

wider range of values when compared to the B’̂ -LKH protocol.

-©— add S-LKH - - -X- - - add B+-LKH

120

100 -

s 60 - S'
^ 40 -

20 -

0 2 4 6 8 10 12 14

number o f rekey p a ck e ts

Fig. 39. Frequency o f number o f rekey packets in add rekey message.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

rmv S-LKH - - - X " - rmv B-I--LKH
80

70

60

50

3 40

^ 30

20

10

0
0 2 4 6 8 10 12

number o f rekey p a ck e ts

Fig. 40. Frequency of number of rekey packets in remove rekey message.

Fig. 41 and Fig. 42 illustrate, for both protocols, the frequency o f the different values

obtained for the number o f encrypted keys in a RM in add and remove rekeyings,

respectively. We can observe the un-symmetry between the two figures. Similarly, the

rekey cost in terms o f the number of encrypted keys spans a wider range o f values when

used with the S-LKH protocol compared to B^-LKH. The S-LKjH wider range o f cost

values is due to the un-balanced LKH that implies the existence of leaf nodes at different

levels from the root node.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

- e — add S-LKH - - -X- - - add B+-LKH

120

100 -

40 -

20 -

250 5 10 15 20 30

number o f encrypted keys

Fig. 41. Frequency of number of encrypted keys in add rekey message.

- 6 — rm v S-LKH - - -X- - - rm v B+-LKH

25

20

15

10

5

0
0 10 20 4030 50

number o f encrypted keys

Fig. 42. Frequency of number of encrypted keys in remove rekey message.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106

TABLE VI summarizes the different rekey cost metrics for S-LKH versus B'^-LKH

protocols when d — 4,n= 8192, and gdr =0.4. TABLE VII summarizes the results when d

= 4, smaller group size n = 512, and gdr = 0.4. TABLE VIII summarizes the results when

LKH is having larger degree d = 8, large group size n = 8192, and gdr = 0.4.

From the previous results, we can conclude that the rekey cost maintains the same

behavior for all group sizes and LKH degrees. The use o f B^-LKH protocol increases the

average number o f rekey packets and the average number o f encrypted keys in a RM

when compared to S-LKH protocol. On the other hand, the use o f B”̂ -LKH decreases the

average LKH height, the number o f allocated nodes, and the maximum number of

encrypted keys. The maximum number of encrypted keys (or the rekey packets) is used

in estimating the minimum time that has to be elapsed between two consecutive

rekeyings.

TABLE VI

S-LKH VERSUS B'^-LKH REKEY COST FOR (J = 4; n =8192; gdr = 0.4)

S-LKH B^-LKH

Average LKH height. 11.09 9

Average LKH number o f allocated nodes. 6485.72 5703.754

A ddM em ber average number o f rekey packets. 8 9.028

AddM em ber maximum number o f rekey packets. 12 12

Rem oveM em ber average number o f rekey packets. 7.542 9.282

Rem oveM em ber maximum number o f rekey packets. 11 10

AddM em ber average number o f encrypted keys. 16,041 18.084

AddM em ber maximum number o f encrypted keys. 25 27

Rem oveM em ber average number o f encrypted keys. 26.81 25.835

Rem oveM em ber maximum number o f encrypted keys. 40 32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107

TABLE VII.

S-LKH VERSUS B+-LKH REKEY COST FOR (rf= 4; « =512; g d r ^ Q A)

S-LKH B'^-LKH

Average LKH height. l A 6.11

Average LKH number o f allocated nodes. 404.007 353.559

A ddM em ber average number o f rekey packets. 5.782 6.151

A ddM em ber maximum number o f rekey packets. 9 8

Rem oveM em ber average number o f rekey packets. 5.306 6.412

Rem oveM em ber maximum number o f rekey packets. 8 8

A ddM em ber average number o f encrypted keys. 11.637 12.343

A ddM em ber maximum number o f encrypted keys. 19 18

R em oveM em ber average number o f encrypted keys. 17.912 17.873

Rem oveM em ber maximum number o f encrypted keys. 29 23

TABLE VIII.

S-LKH VERSUS B^-LKH REKEY COST FOR (J = 8; « =8192; gdr = 0.4)

S-LKH b l l k h

Average LKH height. 6.16 6

Average LKH number o f allocated nodes. 3108.134 2168.812

A ddM em ber average number o f rekey packets. 5.171 6.001

A ddM em ber maximum number o f rekey packets. 7 7

Rem oveM em ber average number o f rekey packets. 5.141 6.338

Rem oveM em ber maximum number o f rekey packets. 7 7

A ddM em ber average number o f encrypted keys. 10.352 12.007

A ddM em ber maximum number o f encrypted keys. 19 19

Rem oveM em ber average number o f encrypted keys. 32.986 30.488

Rem oveM em ber maximum number o f encrypted keys. 45 39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

4.5.4 Effect of G roup Dynamics and LK H Degree

If encryption-based KDT is used the optimal LKH degree is 4, and the total number

of encrypted keys in a RM is the rekey cost metric. When XORBP KDT is used, the

number o f rekey packets in a RM is used as a rekey cost metric. In this experiment, we

study how the group dynamics and LKH degree affect the number of rekey packets (for

XORBP KDT) in a RM and the number of allocated nodes in LKH (LKH storage). As we

concluded from the previous experiment (section 4.5.3), add and remove rekey costs are

symmetric in terms o f the number of rekey packets in a RM.

The group size n = 512, and LKH degree is increased from 4 to 32 in increments of 4

(i.e. 4, 8, 12, ..., and 32). Fig. 43 illustrates, for S-LKH and B'^-LKH protocols, the

average number o f rekey packets in a RM for static group {gdr = 0). Fig. 44 illustrates the

results when gdr = 0.4. We can observe that the B^-LKH protocol introduces a slight

increase in the average number of rekey packets in a RM over S-LKH protocol.

Comparing Fig. 43 and Fig. 44, we can conclude that this increase is slightly affected by

the group dynamics. Note that this increase is for individual rekeying (i.e. single add or

remove rekey). In chapter V, we present batch rekeying for a sequence o f add and/or

remove requests. For batch processing, the B"^-LKH protocol rekey cost outperforms the

S-LKH protocol.

S-LXH B+-LKH

7

6

5

1

0

0 10 20

LKH degree

30 40

Fig. 43. Average number of rekey packets in a RM, where gdr = 0, and n = 512.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

109

^ S-LKH -X -B-K -LK H

7

6

5

0

20

LKH degree

30 400 10

Fig. 44. Average number of rekey packets in a RM, where gdr = 0.4, and n = 512.

S-LKH increases the number of LKH allocated nodes when compared to B^-LKH

(section 4.5.3). If the number o f allocated nodes for S-LKH and B^-LKH are sLKHS and

bLKHS, respectively. The S-LKH pereentile increase in the number of allocated nodes

can be calculated as inc - (sLKHS - bLKHs)x 1001 bLK H S. Fig. 45 illustrates inc for

group size n = 512, and gdr = 0, gdr = 0.2, and gdr - 0.4. We can observe that, the

increase inc has a non-linear relation with the LKH degree. Howerver, inc increases with

the increase of group dynamics. Fig. 46 illustrates inc when the group size « = 8192, and

group dynamies ratio is 0, and 0.4. Similarly, the S-LKH percentile increase (inc) in

allocated storage over B^-LKH increases with the increase of group dynamics and attains

80% for gdr = 0.4. We have noticed that inc peaks when the group size (n) is near an

exact power of d. For example when « = 512 me peaks at d = 8 (8'^B = 512), and d = 2A

(24^2 = 576), and when « = 8192 inc peaks at d =20 (20'^3 = 8000). In this case, the B"*̂-

LKH maintenance algorithms keeps much less number o f nodes than the S-LKH ones.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

110

O gdr = 0 ■ gdr = 0.2 □ gdr = 0.4

100

80 -

60

I 40 -I

20

0

-20

J l r l Hi f l 1 I 1
4 8 12 16 20 24 28 32

LKH degree

Fig. 45. S-LKH average number o f nodes increase over B'^-LKH, where n = 512.

□ gdr = 0 ■ gdr = 0.4

90

80 -

70 -

60 -

50

40

30

20

10
0

-10

- d

________ 8________17 16 2 0 24 37

LKH degree

Fig. 46. S-LKH average number of nodes increase over B’̂ -LKH, where n = 8192.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l l

4.6 Conclusion

In this chapter, two novel techniques for LKH maintenance and their associated rekey

protocols are presented. The new techniques are based on the rekey manager assigning a

unique individual identification (ID) for each group member. In both techniques, the

LKH plays a dual role as a key tree and as an easily searchable data structure for

individual material (ID, key, IP address, name, ...etc) using individual IDs. The proposed

techniques detail the LKH node structure, the rekey message format, the LKH insertion

and deletion algorithms along with the rekey message constmction for different insertion

and deletion scenarios. Moreover, the rekey client processing to different rekey message

types is presented. The first technique, denoted S-LKH, maintains LKH as unbalanced

search tree using individual IDs as search values. The traditional search tree insertion and

deletion algorithms are adapted to the constraint that individual materials are always

entries in leaf nodes. The second technique, denoted B’̂ -LKH, maintains LKH as a

balanced search tree that has the same stmcture as S-LKH. In addition, a search tree

has two additional constraints. The first constraint is, all leaf nodes are always at the

same distance from the root (i.e. balanced). The second constraint is, all non-root node

are always at least half full. These constraints introduce complexity and extra overhead in

the rekey message and the rekey client processing.

We performed empirical experiments to study and compare the behavior of S-LKH

and B’̂ -LKH protocols. The first experiment concludes that the frequency of the simplest

RM tjqies (simple insertion and deletion scenarios) increases with LKH degree increase

for both protocols. The frequency of the simplest RM types is more than 80% for LKH

degree greater than 8. For B'^-LKH protocol, the frequency o f the most expensive RM

type is less than 1% for any LKH degree. Other experiments illustrate that the use of B^-

LKH protocol increases the average number of rekey packets and the average number of

encrypted keys (if encryption-based KDT is used) in a RM over S-LKH. On the other

hand, the use of B^-LKH decreases LKH height, the maximum number of encrypted keys

in a RM, and the number of LKH allocated nodes (LKH storage). The S-LKH increase

over B^-LKH in the number o f allocated nodes increases with increased group dynamics

and attains more than 80% for highly dynamic groups (current group size = 60% number

of added members).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 2

In chapter IV, the rekey is performed for one group member addition or removal. In

chapter V, batch rekeying for more than one group member addition and/or removal is

introduced. For batch rekeying, B^-LKH protocol rekey cost outperforms S-LKH

protocol.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113

CHAPTER V

BATCH PROCESSING OF GROUP REKEYING

In chapter IV, we focused on individual rekeying, i.e. rekeying after each join and

leave request. Individual rekeying is not a practical solution. For example, if the inter­

arrival time (time between two join requests) o f group members at the start o f a session is

very small; the inter-rekey time (time between two consecutive rekeyings) will be

consequently very small and a new group key might be issued by the rekey manager

before the previous key version has reached (or has been used by) the group members.

Periodic rekeying has been suggested to alleviate this problem [45], [59], [69]. Periodic

rekeying suggests rekeying after a fixed period o f time that is large enough to avoid the

above problem. Periodic rekeying requires a rekeying for a batch o f requests, i.e., for

accumulated join and leave requests during this period. Researchers suggested that the

expiration o f a rekey period triggers the rekeying process. Such approach does not take

into account the batch size or the join/leave request delay during the rekey period.

This chapter introduces a generalized rekey policy definition based on three main

parameters that determine the triggering condition for the rekeying process. The three

main parameters are batch size, maximum join or leave request delay (time between

receiving the request and the start of the rekeying process), and the minimum inter-rekey

period (a minimum period of time that has to be elapsed between two consecutive

rekeyings). The defined rekey policy provides versatile configuration options to the rekey

triggering condition. The rekey policy can be simply used to provide periodic rekeying as

well as other complex rekeying conditions as configured by the application. In addition, a

simplified view of the software objects that are used to provide secure group key

management is presented. Moreover, the batch rekey message format and construction

are presented. When LKH key management is used, individual rekeying requires

generating and distributing a set of keys that fall in a LKH path from an inserted/deleted

leaf node to the root. On the other hand, batch rekeying requires generating and

distributing a set of keys that compose a sub-tree o f the original LKH. The rekey sub-tree

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

114

is composed o f the individual LKH paths o f the inserted and/or deleted leaf nodes to the

root. The batch rekey sub-tree construction for the B^-LKH protocol is detailed.

For individual rekeying, the use o f B^-LKH protocol introduces major LKH storage

(number o f allocated nodes) savings and slightly more rekey processing than the use o f S-

LKH protocol (see section 4.5.3). In this chapter, it will be demonstrated, through

empirical experiments that using the B'^-LKH protocol for batch rekeying substantially

reduces rekey processing overhead when compared to the S-LKH protocol with large

batch sizes and/or high group dynamics. In addition, our experiments show that B”̂ -LKH

rekey performance is stable (bounded) for highly dynamic groups while S-LKH rekey

performance deteriorates as the group dynamics increases. Such S-LKH instability is due

to the fact that the minimum number o f node entries is one, while for B^-LKH nodes

have to be at least half full.

This chapter is organized as follows: Section 5.1 presents the motivation for

introducing the rekey policy parameters. Section 5.2 details the proposed rekey policy

definition. Section 5.3 presents a simplified view o f the secure group key management

software objects. Section 5.4 illustrates the batch rekey message, and the general batch

rekeying process performed by a rekey manager that maintains S-LKH or B^-LKH.

Section 5.5 presents experimental results that compare S-LKH versus B’̂ -LKH protocols

for batch rekeying. Finally, the chapter is concluded in section 5.6.

5.1 Motivation

Changing the group key is very expensive in terms o f processing time, and bandwidth

consumption. According to the software model introduced in section 3.1, the rekeying

process time has three major time components: 1) RM construction by the rekey

manager; 2) RM transmission from the rekey manager to all group members through a

reliable group rekey channel; 3) RM processing by a rekey client. The rekey cost (time

and bandwidth) at the rekey manager depends mainly on the group size, the key

management protocol, the rekey manager processing power, the network bandwidth and

delay, and the rekey transport protocol. The existence of a central group key manager

(and a rekey manager) allows heterogeneous members’ environments and the client

processing is minimized. On the other hand, the group key manager is receiving the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115

group members’ requests to join and leave the group, and is responsible for rekeying the

group when it deems necessary. Periodic batch processing is introduced as a practical

solution for frequent group rekeying [45], [59], [69]. For batch of requests, the rekey

manager generates one RM that includes group keys’ updates due to a set o f group

members joining and/or leaving the group. Almeroth and Ammar [1] demonstrate that for

different group applications, the inter-arrival time and member joining duration are

exponential in nature. Simple periodic rekeying does not take into account the possibility

o f no join or leave requests accumulating during a rekey period. Consequently, the

proposed batch rekey policy has three main parameters, minimum inter-rekey period,

batch size, and maximum request delay.

The minimum time between two consecutive rekeyings, denoted inter-rekey period,

has to be greater than the expected (maximum) time needed to rekey the group.

Otherwise, a new group key will be issued before its previous version is ever used. The

need for the group key manager to guarantee minimum time interval between two

consecutive rekeyings makes it essential to process a batch of requests. Moreover, to

avoid a group startup implosion it is required to delay the initial creation of the group key

for a suitable time period. The initial creation o f the group (key) is processed as a batch

processing for multiple new members addition.

LKH batch rekeying requires updating a set o f keys that compose a sub-tree of the

original LKH. The rekey sub-tree is constmcted from all the added/removed leaf node

paths to the root. Li et al. [45] show that, for a group o f size n and LKH of degree 4

(optimal LKH degree for encryption-based KDT), if an all add requests batch size is

greater than n il or an all remove requests batch size is greater than n!A the use o f LKH

key management is worse than the use o f star key management (chapter III). In both

cases, the number of encr)q)ted keys in a RM is equal to or greater than the group size n.

That necessitates taking the batch size into consideration when designing a rekey policy.

The maximum request delay is defined to be the maximum time to be elapsed from

the group key manager receiving the request and the start of the rekeying process. The

maximum request delay is a major security concern. This delay determines the maximum

period a group member will wait after he joins the group before being able to receive any

group communication. Moreover, this delay determines the maximum period a group

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

116

member will be able to keep receiving the group communication after he leaves the

group.

We can observe that simple periodic rekeying only guarantees a fixed time interval

between two rekeyings but doesn’t take into consideration the batch size and/or the

maximum request delay. For some applications one o f the above parameters might be of

more interest and easier to estimate while the others are irrelevant or hard to estimate. For

example, a cable network application might require a maximum request delay o f 2 days

that triggers the rekeying process, i.e. members wait at most 2 days to be added/removed

to the network. Another example is a video conferencing application that requires a

minimum inter-rekey period of 1 minute and a maximum request delay o f 3 minutes.

The rekey policy parameters can be estimated from the group characteristics (the

above time components), and other resource constraints such as the allowed usage of

processing power and/or bandwidth. For example, the rekeying process might be allowed

only 10% of the machine processing power, and no more than 5 kbps of bandwidth

usage.

The necessity of changing the group key because o f a new member joined the group

(perfect backward secrecy/PBS), or a member left the group (perfect forward

secrecy/FFS) depends on the application. For example, for a group o f students meeting in

a virtual classroom there is no need to change the group key when a member joins the

group late (he is allowed to join from the start). On the other hand, for members joining a

video-on-demand provider it is essential to change the group key when a new member

joins or leaves the group. Note that, if the application only requires perfect backward

secrecy, a simple non-LKH protocol can be used. The use o f an LKH protocol is essential

when perfect forward secrecy is required, and that is our concern.

5.2 Rekey Policy Definition

The group key manager is configured by the group rekey policy as to when the group

rekeying should be performed. The rekey policy determines the timing o f both the initial

group key creation and the further rekeying condition. It is assumed that the rekey policy

is static for simpler design and analysis. A dynamic adjustment to the policy parameters

is left for future research.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

117

The group key manager accumulates the requests in a batch. As previously mentioned

in chapter III, the requests are inserted in the batch as messages are received from the

authentication manager to add, remove, or refresh group members, namely Add(M),

Remove(M), and Refresh(M), respectively, where M is a member identification, e.g., his

name. The member refresh request is introduced to allow an easy recovery o f a group

member after short time o f failure (please see chapter VI for more details). Refreshing a

group member, assumes the group member temporarily lost his set o f keys and requires

sending him the same set of keys he was holding (as if he newly joined) without

regenerating those keys. The accumulated requests are removed from the batch when a

rekeying is initiated. The S-LKH and B'''-LKH protocols assume the rekey manager

generates a unique ID for every group member that is used as a search value in

constructing LKH. The request identification M is assumed to be different than ID (M

might be used to generate the ID). The member identification M is required to be unique

in the batch, while it can be replicated throughout LKH individual entries (each entry will

have different ID).

The first policy parameter is the rekey condition (RC) that has one of four possible

values: PBS for perfect backward secrecy, PFS for perfect forward secrecy, PBaFS for

perfect backward and forward services, and NONE when no secrecy is required. Note

that, if RC equals PBS or NONE there is no need to use an LKH protocol, but we allow

their use with an LKH protocol for dynamic policy changes (e.g., used only during part of

a session). In addition, if there is no change of keys due to a batch o f requests (e.g., RC is

PFS and the batch contains only add requests), the rekey manager still needs to construct

a rekey message RM that updates the group members o f changes about positions (due to

the new individual entries insertions), newly created keys, and/or removed keys.

The second set of parameters determines the timing of the first group key creation,

and has two components initASize and initMaxDelay. The third set o f parameters

determines the timing o f the following rekeyings, and has three components

rekeyBatchSize, rekeyMinWait, and rekeyMaxDelay.

The batchSize {initASize or rekeyBatchSize) determines the rekeying condition

according to rekeyMinWait and maxDelay {initMaxDelay or rekeyMaxDelay) values as

will be described in section 5.3, and its minimum value is one. We assume that a value of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

118

zero for minWait or maxDelay means this parameter is undetermined (not important to

the application). The maxDelay (if greater than zero) is the maximum delay a request can

be held in the batch before start o f rekeying. The minWait (if greater than is zero) is the

minimum time that has to be elapsed between two consecutive rekeyings. Note that,

maxDelay > minWait.

The batchSize parameter is compared to the current batch size, denoted BS. The batch

size, BS, could simply be the total number o f requests inserted in the batch, or a weighted

sum of every request type as in equation (1). Where AS, RS, and FS are the number of

entries in the batch (size) of Add, Remove, and Refresh requests respectively. And a, r,

and / are the different weights o f the different request types. The weights are policy

parameters, e.g., if RC equals PBS it might be o f interest to give more weight to member

removal requests than any other requests.

BS = a x A S + r x R S + f x F S (1)

In summary, the following are the rekey policy parameters;

• RC: the rekey condition that has four possible values: PBS, PFS, PBaFS, and NONE.

• a, r, &f . weights used for batch size BS computation.

• initASize, & initMaxDelay. initial batch size (all add requests) and initial maximum

request delay that are used to specify the time o f the initial group key creation.

• rekeyBatchSize, rekeyMinWait, & rekeyMaxDelay: batch size, minimum inter-rekey

period, and maximum request delay that are used to specify the time o f further

rekeyings.

Where the minimum allowed value for initASize and rekeyBatchSize is one, and

rekeyMaxDelay has to greater than or equal to rekeyMin Wait.

The application has the flexibility o f using all or some of the policy parameters as a

deciding factor for triggering the rekey process. The type of the application determines

what blend of parameters is taken into consideration. For example, an application that

requires periodic rekeying every 3 minutes will have the following rekey policy:

• RC = PBaFS: backwards and forward secrecy are both required.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

119

• a = r = / = l : all request types (add, remove and refresh) have the same weight.

• initASize — rekeyBatchSize - 1: there is at least one request in the batch for the group

key creation or a rekeying to be initiated.

• initMaxDelay = 5 minutes: wait 5 minutes after the first group member joins before

creating the group key.

• rekeyMinWait = rekeyMaxDelay = 3 minutes: guarantee minimum inter-rekey period

of 3 minutes, and maximum request delay o f 3 minutes. In this case, if the requests’

inter-arrival time is less than or equal to 3 minutes, a rekey will be periodically

initiated every 3 minutes.

5.3 G roup Key M anagem ent Software Design

Fig. 47 illustrates a simplified view o f the software objects designed to provide secure

group key management and their main interactions. A GroupKeyManager object is

instantiated using instances of the RekeyPolicy (rekeyPolicy) and the RekeyManager

(rekeyManager) as parameters. A RekeyManager object is instantiated with the rekey

manager configuration such as use o f B'^-LKH or S-LKH rekey protocol, LKH degree,

and use of XORRBP or encryption-based ICDT. A GroupKeyManager instantiates a

Batch {batch). Timer {timer), and Scheduler {scheduler) objects. The different objects’

functionalities are as follows:

• The RekeyPolicy object provides methods for accessing (and setting) the policy

parameters.

• The RekeyManager object maintains the group LKH and applies the rekey protocol.

The RekeyManager provides the rekey{batch) method that takes the batch o f requests

as a parameter and constructs the rekey message RM and sends it to all group

members. Moreover, the rekey method sets the rekeyTime to the time when the

rekeying is started, empties the batch, and sets minWaitFlag to false, where

rekeyTime and min WaitFlag are variables maintained by the scheduler.

• The Batch object provides methods for adding, removing, and accessing request

messages, in addition to methods for configuring the batch size computation and a

method to get the current batch size size{).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 2 0

The Timer object provides a timed call to the RekeyManager'5 method rekey{batch),

where a thread is initialized when timer's method start{TS, PRD) is called to wait for

certain {sleepTime - T S - PRD - currentTimeQ) before calling the rekey method,

where TS is a time stamp o f an action, and PRD is a period that has to be elapsed

before initiating the rekey starting from TS. In addition, timer provides a method for

interrupting and canceling the current waiting thread (stopQ), if such thread is

running. Moreover, timer provides a method that gets the current time-stamp

timeStampQ.

The Scheduler object provides checkRekeyQ method that uses the rekeyPolicy to

decide on the rekey triggering condition

Application

RekeyPolicy RekeyManager

ekey(l^t^h)

-> instantiats
. ̂ method call

Instantiated using
a rekeyPolicy and
a rekeyM anager

GroupKeyManager

rekeyPolicy,
rekeyManager,
batch, timer,
scheduler

Batch

firstEntryO

. Timer Scheduler

\TS, PRD, rekeyTime,
slpepTime minWaitFlag

start(TS, PRD) checkRekeyO
stopO
timeStampO

Fig. 47. Simplified view o f the main group key management software objects.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 2 1

When a groupKeyManager receives a request message (through a method call), it

inserts the request in the batch after it is stamped with the current time-stamp, followed

by a call to the scheduler’s checkRekeyO method. If the received request is Remove(M)

and the batch contains Add(M) or Refresh(M) request, the old request is deleted and the

new request is not inserted (e.g., when a member is removed a short time after he joined

the group and before a rekey is initiated). If the received request is Add(M) and the batch

contains Remove(M) request, the Remove(M) request is deleted and a Refresh(M) is

inserted (e.g., when a group member recovers after short time o f failure). The member

identification M identifies a unique request in the batch. It is assumed that the group key

manager will not receive a re-add request o f an existing group member, or a remove

request o f a nonexistent member.

The scheduler that uses the rekeyPolicy to trigger a batch rekeying process has three

different states as follows:

• min Wait = maxDelay = 0. In this case, the batch rekeying is initialized as soon as the

batch size reaches the batchSize determined by the rekey policy.

• maxDelay > 0 and m inW ait = 0. In this case, if the arrival rate o f requests

accumulates batchSize requests in the batch before maxDelay expires for the first

batch request (the oldest), then the batch rekeying is initiated immediately.

Otherwise, batch rekeying is initiated as soon as maxDelay expires for the oldest

batch entry.

• maxDelay > minW ait > 0. In this case, if there is a slow arrival rate (accumulation) of

requests in the batch, then maxDelay controls when the rekeying is initiated (batch

size never reaches batchSize). On the other hand, if there is a fast arrival rate of

requests in the batch, then minWait controls the minimum inter-rekey period by

holding the rekeying process for a while when the batch size quickly reaches

batchSize.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 2 2

5.4 Rekey Sub-Tree Construction

In LKH group key management protocols, batch rekeying requires updating

(generating and distributing) a set of LKH keys that compose a LKH sub-tree (denoted

rekey sub-tree). The rekey sub-tree is composed of all LKH keys that fall on the paths of

the inserted/deleted leaf nodes to the root. The rekey sub-tree size is the number o f LKH

keys that needs to be updated and therefore it represents the rekey cost.

Assuming the batch rekeying is initiated for a batch o f requests, where the number of

Add requests is AS, the number of Remove requests is RS, and the number of Refresh

requests is FS. To reduce the rekey cost, the rekey sub-tree constmction should minimize

the rekey sub-tree size. There are three batch LKH update cases for such minimization as

follows:

• A S = RS. Every new individual leaf entry replaces a removed individual leaf entry in

the LKH. In this case, every new group member will be assigned the same individual

ID o f a removed group member.

• A S > RS. The RS removed individual entries are replaced by RS new individual

entries, then the rest o f the new individual entries are inserted into LKH. In this case,

the number o f newly added individual entries to LKH is nA, where nA = AS - R S .

• A S < RS. The AS new individual entries replace A S removed individual entries, then

the rest o f the removed individual entries are deleted from LKH. In this case, the

number of deleted individual entries from LKH is nR, where nR = RS - A S .

The LKH rekey sub-tree, denoted rekeyTree, is constructed to contain the keys that

are affected by the replacement, the insertion, or the deletion o f the updated leaf entries.

In addition, rekeyTree contains the keys to be sent to the refreshed members {PR requests

in the batch). An inserted, deleted or refreshed leaf entry LKH position determines the set

of keys that are inserted in the rekey sub-tree. For example. Fig. 48 illustrates a B'^-LKH

and batch of 4 add requests, 2 remove requests, and 2 refresh requests. The two remove

requests positions are marked “Rplc” for replacing by 2 add requests, the other 2 add

requests positions are marked “Add”, and the 2 refresh requests positions are marked

“Rfrsh”. The key nodes that are inserted in the rekey sub-tree for such batch of updates

are grayed. Note that, a new key node “ K 3 . 3 ” is inserted to the original LKH to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

123

accommodate the new entries. Please consult appendix C for the detailed B'^-LKH

rekeyTree construction example.

® S ...

t
Add

Rfrsh Rfrsh Rplc t
Add

Rplc

The gray connected key nodes compose the rekey sub-tree.

Fig. 48. An Example of a B^-LKFI, a batch of requests, and a rekey sub-tree.

There are four possible values of the rekey condition RC in a rekey policy that require

LKH key changes as follows:

• PBS: a new member shouldn’t be able to recover previous group keys (before he

joins).

• PFS: a removed member shouldn’t be able to recover new group keys (after he

leaves).

• PBaFS: both above conditions should be satisfied

• NONE: no secrecy is required but LKH maintenance is necessary.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

124

The rekeyTree is a LKH sub-tree that contains all LKH keys that need to he updated

(i.e., regenerated and distributed to group member) for a batch of requests and the rekey

condition RC determined from the rekey policy should always be satisfied. According to

RC value, a rekeyTree key node is either unlabeled or labeled by one of three labels “A”,

“GA”, and “GR”. If XORBP KDT is used, the rekey packet is constructed the same way

for all labeled keys as described in section 3.4.1. If encryption-based KDT is used, the

key label determines how a rekey packet for distributing that key is constructed. If

encryption-based KDT is used, the rekey packet is constructed for a rekeyTree key node,

according to its label, as follows;

• No label: no rekey packet is constructed for that key.

• “A”: construct a rekey packet that contains the key encrypted with every child key

inserted in the rekeyTree.

• “GA”: regenerate the key then construct a rekey packet that contains the newly

generated key encrypted with its previous version, and with every child key inserted

in the rekeyTree.

• “GR”: generate the key then construct a rekey packet that contains the newly

generated key encrypted with every child key in the original LKH.

Leaf key nodes inserted in the rekeyTree are always not labeled, (no packets are

constructed for them) but they are used if their immediate parent is labeled “A” or “GA”

as described above. When inserting a key in rekeyTree that already exists its label could

be upgraded. The possible labels have the following precedence from lower to higher

(“no label” < “A” < “GA” < “GR”). If the inserted key node (that already exists) is

marked with a lower precedence label then it is upgraded, otherwise it is kept unchanged.

5.4.1 Rekey Message for a Batch of Requests

The format of the batch rekey message (RM) is illustrated in Fig. 49, where Addsize,

RemoveSize, and RefreshSize is the number o f Add, Remove, and Refresh requests in the

batch, respectively. Other message fields are explained next.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

125

SEO Add size Rem ove size Refresh size

ReplacedPositioni, ReplacedPosition2, . ..

RefreshedPositioni, RefreshedPosition2

Add/RemoveHeaderi, Add/RemoveHeader2, . ..

RekeyPacketi, RekeyPacket2,.

Fig. 49. The batch rekey message (RM) format.

The following is the general procedure for constructing the rekey sub-tree {rekeyTree)

and batch RM for batch o f requests (for both S-LKH and B"^-LKH rekey protocols).

1. The rekeyTree root is initialized to contain the group key GK with no label.

2. Find the position o f every replaced entry (added leaf entry in place of a removed leaf

entry), replace the leaf entry in the original LKH and insert all the LKH keys in the

path o f that position in the rekeyTree. The leaf key node has no label, while the label

of all internal key nodes (including the root that contains GK) depends on the policy

rekey condition, RC as follows.

if (RC equals PBS) then label = “GA”;

else if (RC equals NONE) then label =“A”;

else label = “GR”;

In addition, an initial key message initMsg is constructed for every new member that

contains his ID, position, LKH height, and LKH degree. Every replaced entry

position is appended to the batch RM in the ReplacedPosition filed shown in Fig. 49.

3. Find the position o f every refreshed entry, refresh the entry in the original LKH

(update the individual entry changed data) and insert all the keys in the path o f that

position in the rekeyTree with the internal key node labeled “A”. In addition, an

initial key message initMsg is constructed for every refreshed member that contains

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

126

his ID, position, LKH height, and LKH degree. Every refreshed entry position is

appended to batch RM in RefreshedPosition field shown in Fig. 49.

4. If the number o f added entries nA is greater than zero (i.e., nR =0). For every added

individual entry, add the individual leaf entry to the original LKH without any key

generation and rekey packets construction. The S-LKH or B^-LKH AddMember

method is called without new keys generation or rekey packets construction

(underlined code in Fig. 24 and Fig. 29). In batch rekeying, the AddMember method

retums the initMsg and the header of the rekeyMsg (all fields except the rekey

packets) that is appended to RM shown in Fig. 49. Insert all keys corresponding to

such leaf entry insertion to the rekeyTree according to the rekey condition RC, and

position, type, and level from the header o f the rekeyMsg. Please consult appendix C

for B^-LKH rekeyTree labeled insertion o f key nodes.

5. If the number of removed entries nR is greater than zero {nA =0). For every removed

individual entry, remove the individual leaf entry from the original LBCH without any

keys generation or rekey packets construction. The S-LKH or B^-LKH

RemoveMember method is called without keys generation or rekey packets

construction (underlined code in Fig. 25 and Fig. 34). In batch rekeying, the

RemoveMember method retums the header of the rekeyMsg that is appended to RM

shown in Fig. 49. Insert all keys corresponding to such leaf entry deletion to the

rekeyTree according to the rekey condition RC, and position, type, level, and isRight

array (only in B^-LKH) from the header o f the rekeyMsg Please consult appendix C

for B^-LKH rekeyTree labeled insertion of key nodes.

6. Send the above constmcted initMsgs to all newly added members, and refreshed

members. Constmct the batch RM (shown in Fig. 49) that will be sent to all group

members. The batch RM contains the positions o f the replaced and refreshed entries,

and the headers o f the added/removed leaf entries. In addition, a rekey packet is

constmcted for every key node in the rekeyTree according to its label. The rekeyTree

is parsed in post-order when constmcting the rekey packets where the children of a

node are visited before their parent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

127

5.5 Experim ental Results

The following experiments are performed to compare the performance o f S-LKH and

B^-LKH batch rekey costs with change o f group djmamics (section 5.5.1), and change of

LKH degree (section 5.5.2) for the same group size and hatch size. A batch rekey cost is

represented as the number o f rekey packets in that batch rekey message (RM). If XORBP

KDT is used, the number o f rekey packets in a RM is a good rekey cost metric (all

packets constructed the same way). If encryption-based KDT is used, each rekey packet

contains a varying number o f encrypted keys. The minimum number of encrypted keys in

such rekey packet is 2, and the maximum is the LKH degree d.

The group dynamics is as defined in chapter IV. For a specified LKH degree d, group

size n, and group dynamic ratio gdr, the LKH is constructed by adding aN members then

removing rN members such that n = aN - rN and rN / aN - g d r . In the following

experiments, the hatch size represents the number o f replaced and/or refreshed leaf

entries, while we assume the number of added and removed entries are zeros. For a

constructed LKH, a hatch rekeying is initialized with the specified batch size where the

replaced and/or refreshed entries positions are randomly chosen. The following figures

plot the average of 10 readings o f the number of rekey packets in a RM (very small

variance is noticed).

5.5.1 Effect of G roup Dynamics

This experiment illustrates the effect of increasing the group dynamics on batch

rekeying performance for both S-LKH and B'^-LKH protocols. The following figures

show three horizontal lines n il, nid and average {nil, nid). Such lines help in analyzing

the rekey cost for encryption-based KDT. The line n il marks the number o f rekey

packets in the best scenario for which the performance of LKH is the same as the

performance of a star key management {n encrypted keys) described in chapter III, where

each rekey packet contains exactly 2 encrypted keys. The performance o f an LKH key

management protocol with encryption-based KDT is worse than the star key management

for all points above this line. The line nid marks the number o f rekey packets in the

worst-case scenario (i.e., each rekey packet contains exactly d encrypted keys). The

average line marks the average case scenario. The performance o f an LKH key

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

128

management with encryption-based KDT is better than a star key management for all

points under the nid line.

This experiment illustrates the rekey cost o f B'^-LKH versus S-LKH, where LKH

degree is 4 and group size n = 8192, for different batch sizes and group dynamics. The

batch sizes are 10%n, 20%n, ..., and 100%n. Fig. 50 illustrates the rekey cost for B"̂ -

LKH (denoted B+) versus S-LKH (denoted S) when the group is static {gdr = 0). We can

observe that for a degree 4 LKH and static group, the use of B^-LKH introduces an

increase in the rekey cost when compared to S-LKH rekey cost. In addition, we can

observe that the average rekey performance of a LKH with encryption-based KDT and

large batch size (more than 30% n) is worse than the use o f star key management. Fig. 51

illustrates the rekey cost for the same LKH degree and same group size when the group

dynamics is increased to gdr = 0.5. We can observe that B’̂ -LKH exhibits almost the

same rekey performance of S-LKH for small batch sizes, and outperforms S-LKH when

the batch size increases. Moreover, we can observe that for higher group dynamics, the

average rekey performance o f a degree 4 LKH and encryption-based KDT is better than

star key management for smaller batch sizes (less than 20% «).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

129

B+ 4096 - - 3072 2048

4500

4000

3500

3000

2500

2000

1500

1000

500

2000 4000
batch size

6000 8000 10000

Fig. 50. B"^-LKH versus S-LKH rekey cost for J = 4, « = 8192, and gdr = 0.

B+ — X— s 4096 - - 3072 2048-©■

8000

7000

6000

^ 5000

■§ .S 4000

3000o
R, 2000

1000

2000 4000 6000 8000
hatch size

10000

Fig. 51. B'^-LKH versus S-LKH rekey cost fox d = A, n = 8192, andgrfr = 0.5.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

130

Fig. 52 illustrates the performance of a degree 4 S-LKH rekey cost with the group

dynamics increase, where gdr = 0, 0.2, 0.4, and 0.5, for different batch sizes and group

size n = 8192. We can observe that S-LKH rekey cost increases with the group dynamics

increase. Fig. 53 illustrates the performance of a degree 4 B^-LKH rekey cost with the

group dynamics increase for different batch sizes. We can observe that with the group

dynamics increases, there is a smaller increase in B'^-LKH rekey cost compared to S-

LKH rekey cost increase.

Performing the same experiment for degree 8 S-LKH and B^-LKH. Fig. 54 illustrates

the S-LKH rekey performance for the different group dynamics, and Fig. 55 illustrates

the B^-LKH rekey performance for the different group dynamics. We can observe that,

for larger LKH degrees (more than 4), B^-LKH rekey cost outperforms S-LKH rekey cost

in all cases of batch sizes and group dynamics. In addition, from Fig. 54, we can observe

that the average rekey cost o f a degree 8 S-LKH with encryption-based KDT outperforms

star key management for only small group dynamics {gdr = 0, 0.2) or small batch sizes

(less than 30% n). On the other hand, from Fig. 55, we can observe that the average rekey

cost o f a degree 8 B"^-LKH with encryption-based KDT outperforms star key

management for all batch sizes (up to 100% n) and all group dynamics. Moreover, we

can observe that increasing the group dynamics for B'^-LKH protocol leads to a bounded

increase in the rekey cost, while for S-LKH protocol the increase in the rekey cost

steadily increases with the group dynamics.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

131

20484096 -3 0 7 2

8000

7000

1000

2000 4000 6000
batch size

8000 10000

Fig. 52. Degree 4 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).

-B+0 — B+0.2

-4096 ----------- 3072

-B-rO.4

2048

-a— B-rO.5

2000 4000 6000
batch size

8000

7000

1000

10000

Fig. 53. Degree 4 B'^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

132

a

-S(0)

■4096

— K— S(02)

 2560

■ S(0.4)

1024

o
-Qssc
boa

■S(0.5)

4500

4000

3500

3000

2500

2000

1500

1000

500

0

2000 4000 6000
batch size

8000 10000

Fig. 54. Degree 8 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).

B+0 B+0.2 B+0.4 B+0.5

4096 - - 2560 1024

2000 4000 6000 8000 10000
batch size

Fig. 55.Degree 8 B'^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

133

5.5.2 Increasing LKH degree

In the previous experiment, we eoneluded that B''^-LKH rekey cost outperforms S-

LKH rekey cost (for all batch sizes and group dynamics) for LKH degrees greater than 4.

In this experiment, we study the effect o f increasing LKH degree on the rekey cost

represented as the average number of rekey packets in a RM. The LKH degree is

increased from 4 to 32 in increments o f 4.

First, the experiment is performed for group size n = 1024 and batch size 102 (10%n).

Fig. 56 illustrates the change o f S-LKH rekey cost with change of LKH degree for

different group dynamics, where gdr = 0, 0.2, 0.4, and 0.5. We can observe that, the

rekey cost is decreasing with LKH degree increase, while increasing with the group

dynamics increase. Similarly, Fig. 57 illustrates the change o f B^-LKH rekey cost with

change o f LKH degree for different group dynamics. We can observe that, the rekey cost

increase due to increased group dynamics is more bounded compared to S-LKH rekey

cost increase (Fig. 56).

Assuming for the same parameters {d, n, gdr, and batch size} the S-LKH rekey cost

is cS and the B’̂ -LKH rekey cost is cB. The S-LKH rekey cost percentile increase over

B^-LKH rekey cost (denoted rci) is calculated as rci = {cS-cB)x \QQI c B . Fig. 58

illustrates the rekey cost percentile increase {rci) with change o f LKH degree and

different group dynamics. We can observe that the S-LKH rekey cost is greater than the

B'^-LKH rekey cost for all LKH degrees greater than 4 {rci is greater than zero). The S-

LKH rekey cost percentile increase {rci) peaks at certain LKH degrees, and usually

increases with LKH degree increase and group dynamics increase {rci attains more than

50% when d = \ 2 and gdr = 0.5).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

134

- 0 — S(0) - ^ S (0 . 2) - * - S (0 .4) - a — S(0.5)

300

250 -

200 -

150 -

10 25 30 350 5 15 20
LKH degree

Fig. 56. A S-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5).

- ^ B + 0 - X — B+0.2 —A— B+0.4 - a — B+0.5

300

250 -

0 5 10 15 20 25 30 35
LKH degree

Fig. 57. A B^-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

135

100

80

60

'G 40 -

20

□ gdr = 0 ■ gdr = 0 .2 □ gdr = 0.4 □ gdr = 0.5

OF
I I

-20

12 16 20 24 28

LKITclegree

32

Fig. 58. A S-LKH rekey cost percentile increase {rci) over B’̂ -LKH, where n = 1024 and

batch size = 102.

Next, the same experiment is performed with larger group size n = 8192 and the batch

size is 819 (10% n). Fig. 59 illustrates the S-LKH rekey cost percentile increase over B"̂ -

LKH rekey cost {rci) with change of LKH degree for four different group dynamics.

Similarly, we can observe that the use o f S-LKH introduces extra rekey cost over B”̂-

LKH for all LKH degrees greater than 4. This rekey-cost increase {inc) increases with the

group dynamics increase. In addition, we can observe that this increase peaks at certain

LKH degrees depending on the group size and batch size (peaks at different LKH degrees

than what is shown in Fig. 58). The LKH degree that has a peak increase o f S-LKH rekey

cost over B^-LKH rekey cost is the same for all group dynamics (for the same group size

and batch size).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

136

100

80 -

60

o 40

20

0

-20

□ gdr = 0 ■ gdr = 0.2 □ gdr = 0.4 O gdr = 0.5

mjMi
12 16 20 24 28 32

LKH degree

Fig. 59. A S-LKH rekey cost percentile increase {rci) over B'^-LKH, where « = 8192 and

batch size = 819.

5.6 Conclusion

Researchers have suggested periodic rekeying to alleviate the problem of having very

small inter-rekey period. A very small time between two consecutive rekeys does not

allow a group key to be established and used by all group members. Periodic rekeying

makes it essential to process a batch of requests. While periodic rekeying with a period

greater than the rekey time solves the problem, it does not take into consideration the

batch size, or the maximum request delay. In addition, simple periodic rekeying doesn’t

take into account the possibility of no requests being accumulated during an inter-rekey

period.

In this chapter, a general and flexible rekey policy is presented. The defined rekey

policy takes into account three parameters: minimum inter-rekey period, batch size, and

maximum request delay. The policy has the flexibility of triggering the batch rekeying

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

137

process using all or a combination of these parameters. A simplified view of the software

objects designed to provide secure group key management is presented. In addition, the

batch rekey message (RM) and its construction in both S-LKH and B'^-LKH protocols is

illustrated. Finally, experiments are performed to demonstrate that the B^-LKH protocol

introduces major rekey cost savings (less number o f rekey packets) for a batch o f requests

compared to the S-LKH protocol. The B^-LKH batch rekey savings compared to S-LKH

increase with the increase o f batch size or the group dynamics. In addition, we concluded

that maintaining a balanced LKH (as a B’̂ -LKH) guarantees a bounded behavior with the

increase of the group dynamics, while the performance o f an unbalanced LKH (S-LKH)

deteriorates with the increase o f group dynamics.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

138

CHAPTER VI

DISTRIBUTED GROUP REKEYING AND RECOVERY

In chapter III, we introduced a software model for secure group key management. We

focused on the case o f a central rekey manager that maintains the group key and performs

group rekeying, when it deems necessary, according to a defined rekey policy. It is

assumed that the rekey manager maintains a logical key hierarchy (LKH) for scalable

rekeying. The existence o f one rekey manager makes it a central point for both

congestion and failure. Deploying a distributed set of rekey agents that equally share the

load of group rekeying provides a more reliable and scalable solution. In addition, in

applications which exhibit short failure time or disconnection times, e.g., mobile ad-hoc

networks, a recovery mechanism is crucial to refresh the state o f the group key

management process. In this chapter, we discuss two enhancements to our group key

management framework: distributed group rekeying and the recovery of a group key

manager and a group member.

The chapter is organized as follows. Section 6.1 presents the distributed group

rekeying protocols. Section 6.2 presents the proposed recovery mechanism for a group

key manager/agent and discusses a group member recovery. Finally, section 6.3

concludes the chapter.

6.1 D istributed G roup Rekeying

In this section, we present four cooperation protocols for distributed group rekeying

between peer rekey agents. It is assumed that each rekey agent is capable of managing a

subset of group members, and participating in the group rekeying process. We show that

the rekey protocol with minimal overhead is that one rekey agent at a time generates and

distributes a new group key to all group members. In addition, we detail the logical key

hierarchy (LKH) maintained at a rekey agent for the different cooperation scenarios. If

any rekey agent is required to distribute a group key to all group members, a naive key

management approach is that every rekey agent maintains (replicates) the group LKH.

Instead, we propose the creation of agents’ LKH (denoted A-LKH) that reduces the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

139

replicated LKH size (compared to the naive approach), and the number o f maintained

keys at a group member. Moreover, we discuss two different approaches for maintaining

A-LKH namely dynamic A-LKH and static A-LKH. The dynamic A-LKH approach has

a drawback of (sometimes) updating (some) group members for a rekey agent join or

leave. On the other hand, the static A-LKH approach allows a transparent rekey agent

join or leave for all group members, although the maximum number of rekey agents has

to be known before starting a session.

The rest o f this section is organized as follows. Section 6.1.1 is an overview of the

distributed group rekeying approach between a group o f rekey agents. Section 6.1.2

defines four different cooperation protocols between the rekey agents. Section 6.1.3

details the LKH maintained at a rekey gent for the different cooperation scenarios.

Section 6.1.4 discusses the two different approaches for maintaining A-LKH.

6.1.1 Distributed Group Rekeying Overview

A distributed set of cooperating rekey agents provides a more scalable and reliable

group rekeying than a central rekey manager. If an agent fails during a group session,

other agents can assume its role and update the failed agent’s subgroup members about

group key changes (if allowed). In addition, a new agent can recover the state o f a failed

agent (recovery is discussed in section 6.2).

Consider a set o f peer rekey agents, i.e., all agents have the same authority and

capability of accessing, generating, and distributing the group key as well as any LKH

key. Since all rekey agents have a full group rekey authority, there is no need to rekey the

group (change GK) when an agent joins or leaves the rekey agents’ group. A leaving

agent is voluntarily relinquishes its responsibility (due to network discormection or

failure), but is still allowed access to further agents’ communication. On the other hand,

an evicted agent is not allowed any access to future agents or group communication. In

this model, evicting a rekey agent is very expensive and would require recreating the

group without that agent.

A rekey agent is responsible of managing a subset o f the group members. Fig. 60

illustrates a rekey agents’ group that manages a group o f members, where every agent

manages a different subset of the group members. At any point o f time, there is one agent

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

140

who acts as the leader of the rekey agents’ group, denoted LA. The LA is a rekey agent

that is responsible for coordinating many group actions, such as the initiation o f the group

rekeying process. In addition, the group rekeying is performed for the LA’s subgroup

membership changes (i.e., members join and/or leave). An agent that exhibits a change in

its subgroup membership has to nominate itself to be the leader to perform a rekeying. If

there is only one rekey agent (in the rekey agents’ group), it is assumed to be the LA until

other agents join. Being a LA should be circulated fairly among all rekey agents.

Choosing a leader among a group and guaranteeing there is only one leader at a time is

the classical distributed systems mutual exclusion problem [17].

rekey agents

f (A) : (T)'\)
s / ' I » '

□
□ □

Fig. 60. Rekey agents and group members.

□

A rekey agent can join the rekey agents’ group at any time (usually before the start of

a group session). Initially, a rekey agent broadcasts its desire to join the agents’ group to

an agent-group channel prompting a response from the LA. The LA provides the initial

status and (LKH) information. In addition, the LA informs other rekey agents o f the new

agent joining. A rekey agent is assumed to be active before any member joins its

subgroup.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

141

When a group member joins, he is assigned one rekey agent to be under its

supervision (each member is supervised by only one rekey agent). There are several

approaches for a client to select one sever among a distributed set of servers as follows:

• The client contacts a directory server (could be the authentication manager) who

directs him to his server according to a load balancing or a route optimization

technique.

• All servers addresses are published and the client chooses the nearest to his location

(in the network sense), at random, or any other selection criteria.

• The servers are inserted in subnets, and the clients contact their subnet server.

• A client can send his request to a servers’ channel, all servers receive the request but

only one will respond according to a specified policy decision (for example, the

leader or the nearest to the member’s network location).

In the following cooperation models, if all agents are required to participate in

generating a key (group key or other), a key agreement protocol (KAP) is needed. The

existing technique known as group Deffie-Hellman [61] defines different protocols for

such key agreement. The Deffie-Hellman protocol for two members requires two

messages to be exchanged between the two parties, whereas group Deffie-Hellman

protocols require several rounds and exchanges between all parties.

6.1.2 Rekey Agents Cooperation Protocols

The main function o f a central rekey manager is to generate the group key (GK) then

distribute it to all group members (G). In distributed rekey management between a group

o f m rekey agents, every agent Aj is responsible o f managing a subgroup SGi, such that

= G . The group rekeying is performed for the elected LA’s subgroup

membership changes. Other agents’ subgroup membership changes are not incorporated

is such rekeying. There are four group rekeying cooperation protocols between a group of

rekey agents in terms of key generation and distribution, namely, all generate and all

distribute; all generate and one distributes; one generates and all distributes; one

generates and one distributes. The following are the four possible rekey agents’

cooperation scenarios.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

142

6.1.2.1 All Generate and All Distribute

All agents participate in generating a new GK through a key agreement protocol

(KAP) and participate in distributing it to the group members. The following is the all-

generate-and-all-distribute rekey protocol. First, the LA sends StartRekey message

(command) to all other agents to start the KAP. Second, the KAP proceeds until all

agents agree on the new GK. The KAP might require several rounds and message

exchanges. Finally, every agent (including the leader) distributes the new GK to its

subgroup members. It is essential that, a rekey agent signs the GK distribution message

so that the group members are able to authenticate its source.

LA ^ Ai: StartRekey

Ai -> Aj: KAP messages

Ai ^ SG;: GK

6.1.2.2 All Generate and One Distributes

All agents participate in generating a new GK then the LA distributes it to all group

members. The following is the all-generate-and-one-distribute rekey protocol^. The first

two steps generate new GK through KAP. Then, the LA distributes it to all group

members. This protocol eliminates the signature overhead performed by each rekey agent

to GK distribution message in the all-generate-and-all-distribute rekey protocol. Only the

LA signs the GK distribution message sent to all group members.

LA -> Ai: StartRekey

Ai -> Aj: KAP messages

LA -> G: GK

' X A Y ; M, denotes X sends Y a message M.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

143

6.1.2.3 One Generates and All Distribute

The LA generates a new GK, and all agents participate in distributing it. The

following is the one-generate-and-all-distribute rekey protocol in two steps. First, the LA

sends a StartRekey message to every agent along with the newly generated GK. Second,

every agent (including the LA) distributes the new GK to its subgroup members. This

protocol eliminates the KAP phase.

LA Ail StartRekey, GK

Ai SGi! GK

6.1.2.4 One Generates and One Distributes

The LA generates and distributes a new GK to all agents and to all group members.

This is the minimal overhead rekey protocol that reduces the overhead incurred in both

the KAP phase and the GK distribution message signature required if all agents are

participating in the rekeying process. Note that, the rekey agents are taking turns in being

the LA.

LA Ai & G: GK

6.1.2.5 Comparison of Distributed Group Rekeying Protocols

We can observe that the first rekey protocol that allows all rekey agents to participate

in generating and distributing the group key in every rekeying requires the maximum

overhead of both the key agreement protocol phase and the signature o f GK distribution

message performed by every rekey agent. The second rekey protocol that allows all rekey

agents to participate in generating the group key, but the LA distributes it to all group

members eliminates the signature of GK distribution message for all other agents. The

third rekey protocol that allows the LA to generate a new GK, then every rekey agent

distributes it to a subset o f group members reduces the overhead incurred in the key

agreement protocol phase that requires exchange of several messages. The fourth rekey

protocol that suggests the LA generates and distributes a new GK to other rekey agents

and all group members provides a minimal overhead rekey protocol for faster rekeying

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

144

process. The fairness in participating in the rekeying process between all rekey agents can

be guaranteed through the leader selection mechanism.

In all cooperation scenarios, it is assumed that all rekey agents are communicating

through an agent secure group channel (A-Chnl). In addition, all rekey agents and all

group members are communicating through a secure rekey channel, G-Chnl, as illustrated

in Fig. 61(a). In all-agents-distribute rekey protocols, every rekey agent instead can have

its own independent subgroup rekey channel, SG-Chnl, as illustrated in Fig. 61(b).

A-Chnl

G-ChnI

□
(a) All members join the same group rekey channel (G-Chnl).

A-Chnl

s

SG rC hnl

\

SGj-Chnl

(b) Each subgroup members join different subgroup rekey channel (SG-Chnl).

Fig. 61. Communication channels between the rekey agents and the group members.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

145

6.1.3 Distributed Group LKH Maintenance

For a group of n members managed by m rekey agents, the subgroup managed by a

rekey agent is assumed to be of size (n/m). A logical key hierarchy (LKH) is used to

provide scalable GK distribution. The rekey agents’ cooperation model determines the

LKH maintained at every agent. We will illustrate the LKH maintained at a rekey agent

and the keys maintained by its subgroup members for the two different GK distribution

cases: 1) all agents participate in distributing a new GK each to its subgroup members; 2)

one agent at a time (the LA) distributes a new GK to all group members and to other

rekey agents.

We will illustrate different LKHs o f degree d = 2, where the group size n = 32,

managed by 4 rekey agents (i.e., m = 4), and a rekey agent subgroup size is 8 members.

6.1.3.1 All Agents Distribute

In all-agents-distribute rekey protocols, every rekey agent participates in distributing

a new GK to its subgroup members. It is sufficient for an agent Aj to maintain a LKH for

its subgroup SGi. There is no need for the rekey agents to share (replicate) any key

information other than GK. In this case, every group member maintains his individual

key and in the average log^(n/m) keys, where n is the group size, m is the rekey agents’

group size, and d is the LKH degree.

When n = 32 and m = 4, Fig. 62 illustrates the LKH (of height h = 3) maintained at a

rekey agent for 8 members, where GK is the only replicated key at every rekey agent. A

group member maintains 4 keys including his individual key and GK.

GK

6 h
Fig. 62. A subgroup LKH of degree 2 for 8 members.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

146

6.1.3.2 One Agent Distributes

In one-agent-at-a-time-distributes rekey protocols, the LA distributes a new GK to all

other agents and to all group members. The naive key management solution is every

rekey agent maintains a fully replicated LKH for all group members. In this case, a group

member maintains his individual key and in the average log^(n) keys, where n is the

group size, and d is the LKH degree.

When n = 32 and m = 4, Fig. 63 illustrates the group LKH (of height h = 5) for 32

members that is replicated at every rekey agent. A group member maintains 6 keys

including his individual key and the group key.

The naive solution requires a full replication o f the group LKH rooted at GK.

Alternatively, we suggest a more replication conservative solution. In the new approach,

a rekey agent Ai maintains its subgroup LKH rooted at a rekey agent individual key AKi.

In addition, all agents replicate an agents’ LKH (denoted A-LKH) rooted at GK. The leaf

nodes of A-LKH are the agent keys AKs. The A-LKH and the subgroup LKHs are either

having the same degree or having different degrees. Note that, A-LKH keys are

replicated and known to all rekey agents including the agents’ (individual) keys AKs. In

this approach, a group member maintains an extra set o f A-LKH keys starting from his

agent individual key to GK. A group member maintains his individual key and in the

average log^^(n/m) subgroup LKH keys and log^2 ("^) A-LKH keys, where n is the

group size, m is the rekey agents’ group size, d l is the subgroup LKH degree, and d2 is

the A-LKH degree. This approach allows any rekey agent to distribute a new GK to all

group members but reduces the replicated LKH size at a rekey agent and the number of

keys maintained at a group member when compared to the naive solution.

When n = 32 and m = 4, Fig. 64 shows the A-LKH (of height 2) and the subgroup

LKH (of height 3) maintained at agent Ai, where d l = d2 = 2. A group member maintains

6 keys: his individual key, 2 subgroup-LKH KEKs, an agent key AKi, 1 A-LKH KEK,

and GK.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

147

 , \ . . . ̂ / ■ ̂ ̂ / \ ̂ , . . . / \ .

Fig. 63. A group LKH of degree 2 for 32 members.

A-LKH

AK,

GK

— -y Agent key

Fig. 64. An A-LKH and subgroup LKH maintained at rekey agent Ai for 32 members.

6.1.4 Agents’ LKH (A-LKH) Maintenance

The agents’ LKH (A-LKH) is fully replicated at all rekey agents. There are two

approaches for A-LBCH maintenance: dynamic or static. In the dynamic approach, the A-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

148

LKH is dynamically built up as the rekey agents join the agents group. In the static

approach, the A-LKH is initiated to be of fixed static size that could accommodate the

maximum number of rekey agents as they join. A newly joined agent contacts the LA to

get the latest version of A-LKH. The A-LKH replica should be consistently updated at all

agents through the agents’ group communication channel. In the following sections, the

two A-LKH maintenance approaches will be presented in detail, in addition to how an A-

LKH key can be generated.

6.1.4.1 Dynamic A-LKH

In the dynamic A-LKH maintenance approach, the first rekey agent to start creates

GK and its subgroup LKH. The A-LKH contains only GK, and it is considered the first

agent individual key. The A-LKH dynamically grows as other rekey agents join the

agents’ group. There is no need to regenerate an existing A-LKH key (including GK) as

agents join (the whole A-LKH is known to all agents). When an agent joins the agents’

group, A-LKH keys are created to accommodate the new agent individual key (leaf A-

LKH node). The LA notifies other rekey agents to update their replicated A-LKH. The

new agent creates and maintains its subgroup LKH rooted at its newly created agent key.

In the dynamic A-LKH approach, creating a new A-LKH key requires updating

(some) group members. As previously mentioned, evicting an agent is not valid (section

6.1.1). When an agent leaves, its individual key is deleted from A-LKH (that might lead

to the deletion of other A-LKH keys). Similarly, when a rekey agent leaves, there is no

need to regenerate an existing A-LKH key. The deletion o f an A-LKH key requires

updating (some) group members. This model has the drawback o f sometimes affecting

some group members as A-LKH keys are created or deleted.

Fig. 65 is an example that demonstrates the sequence of A - L K H key creation for 4

rekey agents, where A - L K H degree is 2 . In Fig. 65(a), the first agent A i creates A - L K H

that contains GK. In Fig. 65(b), the second agent A 2 joins, A K] and A K 2 are created. In

this case, A K] should be sent to the subgroup members managed by A] (assuming no

members have joined A 2 yet). In Fig. 65(c), the third agent A 3 joins, and K], K 2 , and A K 3

are created. In this case, K] should be sent to the subgroup members managed by A] and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

149

A 2 . In Fig. 65(d), the fourth agent A4 joins, and AK 4 is created. In this case, none o f the

group members is updated for such join.

GK

(a)

GK

AK AK2

(b)

GK

AK3AK, AK;

GK

AK AKj

(d)(c)

Fig. 65. Sequence o f a dynamic A-LKH, key creation for 4 rekey agents.

6.1.4.2 Static A-LKH

The static A-LKH maintenance approach provides a transparent rekey agent join and

leave for all group members, i.e., no members are updated for an agent join or leave. The

first agent to start creates an empty (no keys) A-LKH that can accommodate a specified

maximum number of agents (leaf nodes). It generates its own agent key AK (in a A-LKH

leaf node), GK (A-LKH root node), and all the keys in the path between its AK and GK.

When other agent joins, a newly generated AK is inserted into an empty A-LKH leaf

node, and other A-LKH keys are generated as needed. When an agent leaves, only its AK

is deleted (A-LKH leaf node is marked empty) allowing other agent keys to be inserted.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

150

There is no need to regenerate an existing A-LKH keys as agents join or leave. The static

A-LKH maintenance approach has a drawback that the maximum number o f rekey agents

has to be known before starting a session.

Fig. 66 is an example that shows the sequence o f A-LKH key generation for 4 agents,

where A-LKH degree is 2 and the maximum number of rekey agents is 4. In Fig. 66(a),

the first agent to join generates AKi, Ki, and GK. In Fig. 66(b), the second agent joins

and A K 2 is generated. In Fig. 66(c), the third agent joins, and A K 3 and K 2 are generated.

In Fig. 66(d), the fourth agent joins and A K 4 is generated.

GK

AK,

(a)

GK

AKz

(b)

GK

AK3AK, AK;

(C)

GK

AK3AK, AK2

(d)

Fig. 66. Sequence of a static A-LKH key generation for 4 rekey agents.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

151

6.1.4.3 A-LKH Key Generation

An A-LKH key to be used the first time by an agent is created by one of the following

methods;

1) Creation hy the leader agent (LA)

2) Creation by the new agent (NA) itself

3) Creation by both the LA and the NA through KAP

4) Creation hy all agents through KAP

The following are the protocols for the four aforementioned cases.

Creation by the LA

The LA sends the NA the updated A-LKH after creating/generating the required keys.

At the same time, the LA sends an update A-LKH message to all other agents.

LA ^ NA: A-LKH; LA ^ Ai: Update A-LKH

Creation by the NA

The LA sends the NA the A-LKH before the creation o f any new key. The NA

updates A-LKH and sends the update to all agents including the LA. This protocol

requires two messages to be sent in sequence.

LA ^ NA: A-LKH

NA ^ A i: Update A-LKH

Creation by both the LA and the NA

The LA sends the NA the A-LKH along with its share in the newly generated keys.

Then, the NA sends back its share in the newly generated keys to the LA. Both the LA

and the NA update A-LKH with the new keys. Then, the LA sends an update A-LKH to

all other agents. This protocol requires three messages to be sent in sequence.

LA NA: A-LKH, new-keys-share

NA LA : new-keys-share

LA -> A i: Update A-LKH

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

152

Creation by all agents

The LA sends the NA the A-LKH, and sends to all other agents a StartRekey message

for the required A-LKH keys (at least one). All agents (including the LA and the NA)

exchange messages for the new keys generation. After the KAP proceeds all agents will

be able to establish the same updates to A-LKH.

LA NA; A-LKH; LA ^ A: StartRekey

Ai ^ Aj: KAP messages

We can observe that the first protocol is the simplest (fastest) since updating an A-

LKH requires the LA to send two messages at the same time, one to the NA and one to

the other rekey agents. However, choosing a protocol for A-LKH key creation/generation

can be a group policy decided by the application.

6.2 Group Key Manager Recovery

In this section, the recovery o f a group key manager and a rekey manager after short

failure time is discussed. It is assumed that, the rekey manager is a software entity

maintained by the group key manager, i.e., the rekey manager fails and recovers as a

component of the group key manager. Such recovery process is concerned with the

recovery of the last state o f the rekey policy, the rekey scheduler, and the LKH. One

approach to recover the state a failed group key manager is to have an independent full

replica(s) of its state that assumes responsibility upon its failure. The drawback o f this

approach is the extra overhead needed to keep all replicas consistent all the time. Instead,

we assume that the group key manager state is not replicated. We are concerned with the

state recovery of a central group key manager that maintains group LKH as well as a

group key agent that maintains a subgroup LKH and possibly an agents’ LKH (A-LKH)

after a short failure time, e.g., due to a server restart. Although the recovery o f a LKH

could be performed using the state stored at group members, we introduce the use o f a

log file that facilitates such recovery in case of members’ failure or inconsistencies. The

proposed logging and recovery mechanism is secure and easy to implement. The logging

system avoids writing any key or revealing random number generator information. Group

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

153

members participate in the recovery of their key manager/agent by sending at least one

encrypted recovery message. The recovery message sent by a group member contains his

maintained list o f keys. We introduce a key selection technique for a group member to

reduce the number of keys sent in the recovery message while allowing the group key

manager to retrieve all LKH keys. To the best o f our knowledge, this topic has not been

previously investigated in the research community.

The rest o f this section is organized as follows. Section 6.2.1 is an overview o f the

proposed recovery system. Section 6.2.2 illustrates the proposed group key manager

logging system. Section 6.2.3 introduces the recovery key used by the group members in

the recovery of their manager. Section 6.2.4 details the group key manager recovery

procedure. Section 6.2.5 demonstrates the group member recovery message and

introduces a key selection technique that reduces the overhead in constmcting the

recovery message.

6.2.1 Recovery Overview

The authentication manager that maintains the group policy is assumed to be

implementing an independent fault tolerance mechanism. In addition, the authentication

manager is assumed to store the group requests (add, remove, and refresh) sent to the

group key manager until a rekeying is successfully ended (i.e., committed). Moreover,

the authentication manger either keeps the group requests or denies all or some types of

those requests during the group key manager failure.

The recovery of a group member after failure could be treated as him leaving the

group and joining at a later time. If the group member failure is for a very short time and

the leave request is not processed (waiting in a batch of requests), when the join request

is received, the group member state is refreshed instead. As previously mentioned in

chapter IV, refreshing a group member state assumes the member lost his maintained set

of keys, and requires sending him the same keys as if he newly joined. However, the

rekey manager doesn’t change LKH keys for refreshing a group member. Such refreshing

optimizes the rekeying process by reducing the number of the newly generated LKH

keys. The mobile computing paradigm is an example where frequent short disconnection

times may occur, due to frequent handoffs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

154

In distributed group rekeying, if the distributed agents’ cooperation protocol allows

any agent to distribute a new GK to all group members, the failed agent subgroup

members will be notified by the changes o f GK during their agent failure period. On the

other hand, if the distributed agents’ eooperation protocol allows every agent to distribute

a new GK to its subgroup members only, the failed agent subgroup members could store

the un-interpreted group messages (due to lack of GK updates) during their agent failure

and proceed interactively after its recovery. In this case, if the agent failure is for a very

short time, its subgroup members might be able restore communication appropriately.

Otherwise, a failed agent subgroup members might loose interactivity with the session.

As previously mentioned in chapter III, the group rekey channel provides a reliable

group communication (multicast) protocol that assures a group member has received the

rekey message (RM). A RM send method call (through the rekey channel) is assumed to

return successfully even if RM didn’t reach some (or all) group members due to their

failures. The new GK is guaranteed to reach the group member by the rekey channel.

The rekey scheduler and the leader selection mechanism guarantee that there are no

nested rekeyings (i.e., no start-rekey is issued before the previous rekeying is committed).

6.2.2 Group Key Manager Logging

The group key manager is configured through the rekey policy to schedule the group

rekeying events while reeeiving requests (from the authentication manager) to add,

remove, and refresh group members. When group rekeying deems necessary, the rekey

manager is notified to issue a rekey message (RM) and send it to the group members. The

proposed recovery mechanism assumes the group key manager is maintaining a log file.

The log file is written to permanent storage (disk) periodically and forcefully at certain

checkpoints, so that any type o f failure does not affect it. Note that, we are not

considering disk or catastrophie failures.

Writing a LKH key to the log file is crucial and requires encryption that is time (and

processing) consuming. In addition, the keys are subject to change in a rekeying process,

and the most recent version of a key is the only needed version after the recovery. The

recovery meehanism avoids writing keys to the log file. Moreover, the randomly

generated numbers (such as keys, IDs, or byte patterns (BPs); see chapter IV) could be

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

155

regenerated if the used pseudo random number generator and its initialization are

revealed to an intruder. It is crucial to store the initial pseudo random generator state

(e.g., its seed) that would allow the generation o f the exact sequence o f random numbers.

The recovery mechanism avoids storing such random number generators state

information.

In summary, a group key manager/agent writes a time stamped entry to the log file in

the following cases;

• Initialization entry that is used to restore the employed protocols, implementations,

and policies,

• Receiving a message to add, remove, or refresh a group member,

• Before initiating a rekeying process (i.e., the leader agent (LA) in a distributed group

rekeying model) a Start-Rekey entry is written,

• After committing an initiated (by itself) rekeying process, a Commit-Rekey entry is

written,

• When committing a rekying process (i.e., not the LA in a distributed group rekeying

model), a Rekey entry is written,

• Change of rekey policy, and

• A LKH signature at specified checkpoints.

The log file is forcefully written to the permanent storage in the following cases:

• Initialization,

• Committing an initiated rekeying process, and

• A LKH signature written at specified checkpoints.

A checkpoint is introduced to facilitate the recovery process. The checkpoint could be

scheduled periodically or after certain number o f committed rekeyings. At a checkpoint,

the rekey manager (governed by the group key manager) writes the LKH signature to the

log file, and forcefully writes the log file to the permanent storage. The LKH should be

checked to have updates since the previous checkpoint. In a distributed group rekeying,

the agents’ LKH (A-LKH) is not written to the log file since it is fully replicated at all

agents and could be easily recovered. In the group key manager recovery, the LKH

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

156

signature determines the shape o f the LKH, the number o f entries at each node, and the

guiding IDs. The following is the LKH signature of the LKH illustrated in Fig. 67. The

LKH is parsed in pre-order and the IDs are written in order with the symbol “(“ used to

group a single node’s entries.

T: LKH-Signature [((120, 205), 400, (900)), 900, ((1120, 1205))]

K.,;

K,, K,.2 K2 .1

K i .1.2 K,,

(a) The S-LKH key view.

900

400

7
120 205 900 1120 1205

(b) The S-LKH search view.

Fig. 67. A group LKH at a checkpoint time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

157

6.2.3 Recovery Key

A group member participates in the group key manager/agent recovery by sending

some of his maintained keys as will be explained in section 6.2.5. For privacy purpose, a

group member sends to the group key manager the recovery messages encrypted by a

recovery key. The group key manager should be able to decrypt such messages, while no

other group member should possess such capability. Using the group key, GK, as a

recovery key, is not suitable, since the group members are aware o f it. Instead, a group

member either uses his individual key or a group key manager public key.

If the authentication manager stores the group members’ individual keys, the group

key manager contacts it at the beginning o f a recovery process to obtain such keys

(among other information). The group key manager recovers the group members’

individual keys before receiving any recovery message from them. In this case, every

group member uses his individual keys as a recovery key (to encrypt the recovery

messages).

On the other hand, if the authentication manager doesn’t store the group members’

individual keys, a recovery key is needed. The recovery key has to be in the form of

private key and public key pair. The recovery key could be a long-term key or a session

recovery key. The private key is kept securely at the authentication manager or at the

group key manager system. The public key is handed to every group member right after

he joins the group to use as a recovery key.

6.2.4 Group Key Manager Recovery

The recovery of a group key manager/agent implies the restoration o f the latest

group/subgroup LKH, policy, scheduler state, and agents’ LKH (if applicable). It is

assumed that contact information to the authentication manager and other group key

agents are recoverable (one could be through the other). The group key manager recovery

process proceeds as follows:

1. Inspect the following log file entries: Initialization entry to reinitialize itself and the

rekey manager; last Rekey-Policy entry to restore the rekey policy and adjust the

scheduler; last LKH-Signarure entry to reestablish the group LKH structure.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

158

2. Apply all committed rekeyings’ changes to the LKH, i.e., insert and delete LKH

nodes that took effect after last signature. Note that, without writing LKH-Signature

the LKH could be restored by redoing all insertions and deletions form the beginning

of the log file.

3. Contact the authentication manager for changes in the rekey policy (if allowed). In

addition, the group key manager retrieves the stored requests at the authentication

manager. If the last Start-Rekey entry in the log file is not followed by a Commit-

Rekey, it is implied that the group key manager crashed during a rekeying. Although

the exact scheduler state can’t be recovered, the group key manager schedules a

rekeying as soon as possible after LKH full recovery.

4. Contact the agents’ group for latest agents’ LKH (A-LKH), and the committed

rekeyings during the failure period to adjust the sequential number SEQ. If all agents

are not available during this recovery (e.g., all failed) and some rekeyings have been

performed, the recovering agent subgroup members will provide partial construction

of A-LKH and that will allow the recovering agent to proceed normally.

5. Send a recovery request to group members to send back their maintained list of keys

to fully restore LKH keys (see section 6.2.5).

6.2.5 Group Member Recovery Message

A group member sends to his group key manager/agent one recovery message upon

receiving a recovery request. The recovery message contains his individual LKH leaf

entry position, his individual ID, last SEQ, and the maintained list o f keys. In addition,

the recovery message is encrypted using the recovery key as explained in section 6.2.3.

As previously illustrated for LKH keys, an individual key is maintained by one group

member, GK is maintained by all group member, a KEK is maintained by a subset o f the

group members. I f every group member sends all his maintained list of keys in the

recovery message to the group key manager, GK and KEKs will be sent several times

(e.g., GK will be sent by all group member). Instead, we propose an enhancement to the

above protocol that allows group members to send a partial list o f their maintained keys.

Allowing only one group member only to send a recovered key is crucial if that member

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

159

fails. On the other hand, if all the members that maintain a key have failed, the group key

manager will not be able to recover such key but will be able to proceed without it.

The proposed LKH keys recovery protocol provides a fair group member key

selection that allows a group member to choose a partial list o f his maintained keys to

send to a recovering group key manager. In addition, it allows the group key manager to

retrieve all keys in one round if no member fails. If some members fail during their group

key manger recovery, LKiH keys recovery might take two rounds as follows:

round

• The group key manager sends a recovery request to all group members.

• A group member sends an encrypted recovery message that contains his individual

key (if not recovered from the authentication manager), his individual ID, and his

LKH leaf entry position. Note that, if a group member didn’t send a recovery message

in the first recovery round, he is detected as failed by the group key manager.

• If the group member’s individual entry falls on the path of the first child o f a key

node (determined from his LKH leaf entry position that equals to I), send that key in

the first round recovery message. The maximum number o f keys a group member can

send in a recovery message is half the LKH height, starting from the key on the 2"*̂

LKH level (i.e., without his individual key).

2“'' round

• If the group key manager didn’t recover a LKH key (KEK) at the first round due to

members’ failure, a recovery request message is sent specifying the missing set of

keys and the next existing neighbors (to the failed members) to send it.

• The specified group members send the specified keys.

We suggest that the above key selection algorithm is fair since an individual entry

LKH position is determined from his randomly assigned individual ID. The probability of

a group member sending a certain key is independent from any other key, and is equal to

the probability o f holding a key that exists in a first entry of a node that is equal to ltd,

where d is the LKH degree.

For example, in the group key manager recovery process of the LKH of height 3

illustrated in Fig. 67, a group member will send a first round recovery message that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

160

includes his ID, LKH leaf entry position, and at most 3 keys (assuming half 3 is 2)

including his individual key. The five recovery messages sent by the five group members

to the group key manager in the format (ID, LKH position, keys) are as follows: (120,

1.1.1, K i .m , K u , K i), (205, 1.1.2, Ki.1 .2 , Ki, GK), (900, 1.2.1, Ki.2 .1 , K 1 .2 , GK), (1120,

2.1.1, K2 .1 .1 , K 2 .1 , K2), and (900, 2.1.2, K 2 .1 .2 , K2).

6.3 Conclusion

Distributed group rekeying between a set o f peer rekey agents provides a more

scalable and reliable secure group key management compared to the central rekey

manager approach. In this chapter, four group rekeying cooperation protocols between a

distributed set of rekey agents, in terms o f group key generation and distribution

mechanism, are proposed. It is demonstrated that, the minimal overhead rekey protocol is

when one rekey agent at a time generates and distributes a new group key to all agents

and group members. In addition, the LKH maintained at a rekey agent in the two cases of

new group key distribution are discussed. The first case is that each agent distributes the

new group key to its subgroup members. The second case is that one rekey agent at a

time distributes a new group key to all group members. The naiVe solution in the latter

case is that every rekey agent fully replicates the group LKH. Altematively, we proposed

the construction and replication o f smaller size agents’ LKH (A-LKH). The proposed

approach reduces the replicated LKH size at each rekey agent and the number of keys

maintained by a group member. Furthermore, we identified two approaches o f such

agents’ LKH maintenance namely dynamic A-LKH and static A-LKH. The dynamic A-

LKH approach has the drawback of affecting group members (by inserting or deleting

keys) as agents join or leave the agents’ group. The static A-LKH approach guarantees a

transparent rekey agent join and leave but requires the specification o f the maximum

number o f rekey agents before starting a session.

Moreover, a logging mechanism for the recovery of a group key manager/agent state

after short failure time is presented. The logging includes all events that change the group

key manager state but avoid writing any security revealing information such as keys.

Group members participate in the recovery o f their manager by sending an encrypted

recovery message that includes a sub-list of their maintained keys. A fair group member

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

161

key selection technique is proposed to reduce the number of sent keys in a recovery

message.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

162

CHAPTER VII

CONCLUSION AND FUTURE EXTENSIONS

In this chapter, we conclude the dissertation by summarizing our motivation,

objectives, contributions, and the performance of our proposed framework for secure

group key management. Furthermore, we discuss a list o f possible future extensions to

our work in the context of secure group communication, and secure group key

management.

7.1 Conclusion

Secure group communication is quickly becoming the adopted standard in many

applications spanning diverse areas. Throughout the dissertation, we focused on secure

group key management, which deals with group key {GK) issues such as establishing,

distributing, and maintaining that key over the period of the group existence. To provide

perfect secrecy, group rekeying (change o f GK) has to be performed for every group

member joining or leaving the group. Group rekeying is a challenging problem especially

for large group sizes or highly dynamic groups.

The simplest group rekeying protocol is performed with the help of a trusted and

secure group key manager. The group key manager maintains GK, and performs a group

rekeying when it deems necessary according to a defined rekey policy. In a group

rekeying process, a new GK is generated and distributed to group members such that a

joining (leaving) member is not allowed access to previous (future) group

communication. A very fast rekeying is crucial to the performance o f an application that

has large group size, experiences frequent joins and leaves, or the group key management

is hosted by a group member because o f the required computation effort. Traditionally,

newly generated keys are encrypted for secure distribution to group members. Such

technique is denoted encryption-based key distribution technique (KDT). There are two

approaches for group key management, the star key management and the logical key

hierarchy (LKH) approach. In the star key management, the group key manager performs

2 keys encryptions for join rekeying and n keys encryptions for leave rekeying, where n

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

163

is the group size. This approach is not scalable since leave rekeying scales linearly with

the group size. In the LKH approach, if the LKH degree is d, the group key manager

performs on the average 2xlog^ n keys encryptions for join rekeying, and d xlog^ n

keys encryptions for leave rekeying. The LKH provids a scalable group rekeying, and is

becoming the standard approach for group key management. However, when encryption-

based KDT is used with LKH, there are two un-symmetric rekey protocols for join and

leave rekeying. Such unsymmetric property makes increasing the LKH degree result in a

deerease of the join rekey cost and an increase o f the leave rekey cost. In this case, the

optimal LKH degree is estimated to be 4.

Traditionally, group rekeying is performed periodically for the accumulated join and

leave requests (i.e., batch o f updates) during an inter-rekey period. In the star key

management approach, the group key manager is required to regenerate one key and to

perform 0{n) key encryptions for a rekeying, where n is the group size. If the group key

manager maintains a LKH of degree d and height h, such that n< d ’’, and the bateh size

is R requests, a rekeying requires the group key manager to regenerate O (R x h) keys and

to perform 0 (d x R x h) keys encryptions. The encryption-based LKH approach provided

a rekeying cost that scales to the logarithm o f the group size, however, the number of

encryptions performed by a GKM increases with increased LKH degree, LKH height, or

the batch size, and can be more than the star approach’s number of eneryptions.

The objective of our work is to provide a framework for secure group key

management that outperforms the original encryption-based LKH for all application

scenarios. The framework has to be secure, efficient, scalable, reliable, and independent

of the application. The group key management framework addresses the following issues:

secure group communication software model, key distribution technique, rekey protocols,

batch rekeying, distributed group rekeying, and recovery. We briefly present our

approach to resolve the aforementioned issues highlighting our contributions.

Secure group communication software model. We presented a generic software

model for providing secure group communication. The model identifies five main

components as follows: authentication manager, group key manager, rekey manager and

the corresponding rekey client, rekey channel, and cryptographic utility manager. The

model is designed to isolate the group key management components and illustrate the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

164

functionalities and interactions of other components. We have extended Java‘̂“ security

with an application-programming interface (API) that can be used to provide group key

manager, rekey manager, and rekey client functionalities as designed in our model.

Key distribution technique. We focused on the rekey manager that uses a LKH for

scalable rekeying. We proposed a novel XOR-based KDT, namely XORBF. The

proposed approach performs an XOR operation between keys to reduce the computation

effort, and uses a random byte patterns (BP) to distribute the key material in a fixed size

rekey packet (for every new key). The use o f LKH and XOKBP KDT provides

symmetric rekey protocols in both cases of join and leave rekeyings.

We derived analytical cost estimates of XORBP and performed empirical

experiments to compare its performance with the encryption-based KDT for the same

degree LKH. The use o f XORBP doubles the required LKH storage, the required member

storage, and the number of randomly generated bits per a rekeying. The XORBP rekey

message size is comparable to the eneryption-based leave rekeying message size. On the

other hand, the use o f XORBP substantially reduces the rekey message construction time.

Our experiments have shown that XORBP achieves up to 90% reduction in the rekey

message construction time. In addition, contrary to the encryption-based KDT, increasing

the LKH degree, when XORBP is used, reduces both join and leave rekeying cost. Such

property allows the use o f a larger degree LKH, which reduces the LKH storage, the

member storage, and the rekey message size when compared to a smaller LKH degree.

The anal34ical cost estimates assume that the LKH is balaneed, while the experiments are

performed using an un-balanced LKH. Such experiments show that there is a slight

increase in the measured member storage and the rekey message size over the analytical

values, but the measured LKH storage has a 60% increase over the analytical value.

Rekey Protocols. As group members join or leave the group, LKH nodes (keys) will

be inserted or deleted. While, many researchers assume a balanced LKH when estimating

the group rekeying cost, the literature lacks practical LKH protocols that maintain a

balanced LKH of any degree all the time. We proposed two novel protocols for

establishing and maintaining a LKH of any degree. One protocol adopts an unbalanced

LKH while the other adopts a balaneed LKH. The protocols assume that the rekey

manager assigns a unique individual identification (ID) to every group member. For both

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

165

protocols, we detailed the LKH structure, the rekey message format, and the rekey

processing at a rekey manager and at a rekey client for different scenarios o f LKH keys

insertion and deletions.

The first protocol, denoted S-LKH, maintains LKH as a search tree using the

individual IDs. The second protocol, denoted B'^-LKH, maintains LKH as a balanced

search tree that has the same structure as S-LKH. B^ search tree insertion and deletion

algorithms guarantee that the LKH is balanced after each node (key) insertion or deletion.

In addition, B"̂ search trees have an extra constraint that all allocated nodes have to be at

least half full to reduce the allocated LKH storage (memory). On the other hand, B”̂ -LKH

maintenance introduces complexity and extra overhead to the rekey process.

We have performed empirical experiments to compare the performance o f S-LKH

and B^-LKH rekey protocols. The experiments show that, for both protocols, the

frequency o f the simple insertion and deletion scenarios increases with LKH degree

increase. In addition, for B^-LKH the frequency o f the most expensive operation is less

than 1% for any LKH degree. For individual rekeying (i.e., a rekeying after one group

member joins or leaves), the use of B^-LKH results in an increase in the average number

of rekey packets (i.e., newly generated keys) and the average number o f encrypted keys

(measured when encryption-based KDT is used) when compared to S-LKH. On the other

hand, a B^-LKH has a smaller height and introduces a decrease in the expected maximum

rekey time. The expected maximum rekey time identifies a minimum time period that has

to be elapsed between two consecutive rekeyings. Furthermore, a B'^-LKH requires much

less allocated nodes. The reduction o f the number o f allocated nodes using B^-LKH

reaches 50% of the same degree S-LKH for a highly dynamic group.

Batch Rekeying. Individual rekeying for a single join or leave request is not a

practical solution. Instead, researchers suggested periodic rekeying to be performed for a

batch o f requests accumulated during an elapsed period. We have extended S-LKH and

B'^-LKH protocols to support batch rekeying.

We introduced a generalized rekey policy definition that has three main parameters:

minimum inter-rekey period, maximum request delay, and batch size. The defined policy

can be used to provide simple periodic rekeying as well as other complex rekeying

conditions as configured by the application. A simplified design o f the software objects

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

166

used to provide secure group key management is presented. For batch rekeying, the

newly generated keys compose a sub-tree o f the original LBCH. We illustrated how the

rekey manager constructs the rekey sub-tree in both rekeying protocols and how the

rekey tree is used in constructing the rekey message sent to group members for such keys

updates.

We performed experiments to compare the batch rekeying performance of S-LKH

and B^-LKH protocols. Our experiments show that, the batch rekeying performance of a

rekey protocol that uses LKH of degree 4 and encryption-based KDT is better than star

key management only for small batch sizes (less than 20% n). In addition, our

experiments show that using B^-LKH for large batch sizes or highly dynamic groups

substantially reduces the rekey cost when compared to S-LKH. In addition, B^-LKH

performance is shown to be stable (bounded) for highly dynamic groups while S-LKH

performance deteriorates as the group dynamics increase.

Distributed group rekeying. To extend the scalability and the reliability of our

model, we introduced four cooperation group rekeying protocols between a group o f peer

rekey agents. We illustrated that the protocol with the minimal overhead is that one rekey

agent, at a time, generates and distributes a new group key to all group members.

Detailed LKH maintenance in the different cooperation protocols are presented. In

addition, the use o f an agents’ LKH (denoted A-LKH) is introduced to facilitate a new

GK distribution by a rekey agent to all group members. The use o f A-LKH minimizes the

replicated LKH size at every rekey agent as well as the number o f maintained keys at a

group member. Finally, two approaches for A-LKH establishment are presented. The first

is the dynamic A-LKH approach that is flexible but (some) group members might be

updated for a rekey agent joining or leaving the agents’ group. The second is the static A-

LKH approach that requires the specification of the maximum number o f rekey agents

before starting a group session but provides transparent agents join and leave for group

members.

Recovery. Finally, we proposed a logging and recovery mechanism for the group key

manager/agent and the rekey manager/agent. The logging system is secure and easy to

implement. Group members participate in the recovery o f their manager by sending an

encrypted recovery message when requested. The group member recovery message

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

167

contains his individual material and his maintained set of keys. We proposed a key

selection technique to reduce the number of keys sent in the recovery message. In

addition, we discussed the recovery o f a group member after a short failure time.

In conclusion, the designed software model provides group key management

components that are independent of the application, the security mechanism, and the

communication protocol. The proposed XORBP KDT if used with the LKH approach

achieves further reduction to the group rekeying computation cost and provides a more

efficient and scalable solution than the encryption-based KDT. The proposed unbalanced

LKH rekey protocol (S-LKH) can be used for any LKH degree. While, the proposed

balanced LKH rekey protocol (B^-LKH) is practical for a LKH of degree greater than 3.

A B"^-LKH requires much less storage than S-LKH. In addition, the use o f a B^-LKH

when compared to a S-LKH substantially reduces the batch rekeying cost for large batch

sizes or highly dynamic groups and exhibits a bounded performance with increased group

dynamics. Moreover, the proposed rekey policy offers versatile triggering conditions for

the batch rekeying process including simple periodic batch rekeying. Furthermore,

distributed group rekeying enhanees the scalability o f the group key management

framework. Finally, the group key manager and the group member’s recovery mechanism

add reliability to the framework.

7.2 Future Extensions

The secure group key management framework can be extended as follows:

1) Adapting the proposed LKH rekey protocols to constrained LKH key generation

mechanisms such as the use o f a hash function. In our work, it is always assumed

LKH keys are freshly randomly generated. Such constrained key regeneration

techniques are used to reduce the group rekeying cost (i.e., number o f randomly

generated bits, rekey message size, etc...). Unfortunately, constrained key generation

could be less secure.

2) Providing a dynamic rekey policy. Such dynamic rekey policy would require

investigating the possibility of having conflicting policy decisions applied to the

(short) time, interval between two consecutive rekey policies.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

168

3) Investigating distributed group rekeying where more than one rekey agent is

experiencing a change in its subgroup membership. In this case, performing a group

rekeying is similar to performing a distributed nested transaction that requires

distributed concurrency control.

4) Experimenting with batch group rekeying for real application scenarios and different

group sizes. The experiments would compare the batch group rekeying performance

of S-LKH and B^-LKH rekey protocols. Group applications have two benchmark

scenarios. First, one sender and large group of receivers such as video broadcasting.

Second, small group o f peer group members such as a conferencing application where

any member can be a sender.

5) Experimenting with the distributed group rekeying protocols for real application

scenarios. The experiments would compare the different protocols overhead, and

compare the proposed distributed architecture with other distributed secure group

management architectures such as lolus [49].

6) Implementing the proposed group key manager recovery technique and performing

experiments to study its charaeteristics. The experiments will compare the time and

overhead required for a group key manager recovery using the proposed selective

logging technique and a full logging technique. A full logging technique would allow

logging the LKH keys.

7) Experimenting with group member recovery in applications exhibiting short failure

time such as mobile clients.

8) Perform an analytical study o f the proposed key selection technique used by a group

member in the construction of his group key manager recovery message.

9) Refining the implementation of the group key manager/agent, the rekey manager, and

the rekey client as designed in the proposed framework. The finished product is a set

o f packages that extend Java' '̂ ̂ security and can be used by secure group

communication applications. The packages design will revolve around two Java''''^

security design principles: implementation independence and interoperability, and

independenee and extensibility.

10) Integrating the proposed XORBP key distribution technique and the S-LKH and B”̂-

LKH rekey protocols with the work of the IETF secure multicast group.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

169

11) Investigating other secure group communication issues such as a group policy

definition and implementation for the authentication manager, and a reliable group

rekeying transport protocol for implementing the rekey channel.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

170

REFERENCES

[1] K. C. Almeroth and M. H. Ammar, “Multicast Group Behavior in the Internet’s
Multicast Backbone (MBone),” IEEE Communications Magazine, vol. 35, no. 6,
pp. 224-229, June 1997.

[2] D. Balenson, D. McGrew, and A. Sherman, “Key Management for Large
Dynamic Groups: One-Way Function Trees and Amortized Initialization,”
Internet Draft (Work in Progress), Internet Engineering Task Force, draft-
balenson-groupkeymgmt-ofl-OO.txt, Feb. 1999.

[3] A. Ballardie, “Scalable Multicast Key Distribution,” Request For Comments 1949
(Experimental), Internet Engineering Task Force, May 1996.

[4] T. Ballardie and J. Crowcroft, “Multicast-Specific Security Threats and Counter-
Measures,” in Proc. o f the 1995 Symposium on Networks and Distributed System
Security (SNDSS’95), San Diego, CA, USA, Feb. 1995, pp. 2-16.

[5] M. Baugher, R. Canetti, P. Cheng, and P. Rohatgi, “MESP: A Multicast
Framework for the IPsec ESP,” Internet Draft (Work in Progress), Internet
Engineering Task Force, draft-ietf-msec-mesp-01.txt, Mar. 2003.

[6] M. Baugher, R. Canetti, and L. Dondeti, “Group Key Management Architecture,”
Internet Draft (Work in Progress), Internet Engineering Task Force, draft-ietf-
msec-gkmarch-01.txt, Oct. 2001.

[7] S. Berkovits, “How to Broadcast a Secret,” Advances in Cryptography: Proc. o f
EU R0CRYPT’91, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Germany, vol. 547, pp. 535-541, Apr. 1991.

[8] B. Briscoe and I. Fairman, “NARK: Receiver-Based Multicast Non-repudiation
and Key Management,” in Proc. o f ACM Conference on E-commerce (EC’99),
Denver, CO, USA, Nov. 1999.

[9] R. Canetti, P-C. Cheng, D. Pendarakis, J. R. Rao, P. Rohatgi, and D. Saha, “An
Architecture for Secure Internet Multicast,” Internet Draft (Work in Progress),
Internet Engineering Task Force, draft-irtf-smug-sec-mcast-arch-OO.txt, Feb.
1999.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast
Security: A Taxonomy and Efficient Constmctions,” in Proc. o f the 1999 IEEE
Conference On Computer Communications (INFOCOM’99), New York, NY,
USA, Mar. 1999, vol. 2, pp. 708-716,

[11] R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-Storage
Tradeoffs for Multicast Encryption,” Advances in Cryptography: Proc. o f
EUROCRYPT’99, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Germany, vol. 1592, pp. 459-474, 1999.

[12] R. Canetti, P. Rohatgi, and P-C. Cheng, “Multicast Data Security
Transformations: Requirements, Considerations, and Proposed Design,” Internet

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

171

Draft (Work in Progress), Internet Engineering Task Force, draft-irtf-smugdata-
transforms-OO.txt, June 2000.

[13] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key Management
for Secure Internet Multicast using Boolean Function Minimization Techniques,”
in Proc. o f the 1999 IEEE Conference On Computer Communications
(INFOCOM’99), New York, NY, USA, Mar. 1999, vol. 2.

[14] W. Chen and L. R. Dondeti, “Performance Comparison o f Stateful and Stateless
Group Rekeying Algorithms,” in Proc. o f the International Workshop on
Networked Group Communication (NGC’02), Boston, MA, USA, Oct. 2002.

[15] G. Chiou and W. Chen, “Secure Broadcasting Using the Secure Lock,” IEEE
Transactions on Software Engineering, vol. 15, no. 8, pp. 929-934, Aug. 1989.

[16] B. Coan, V. Kaul, S. Narain, and W. Stephens, “HASM; Hierarchical
Application-Level Secure Multicast,” Internet Draft (Work in Progress), Intemet
Research Task Force, draft-coan-hasm-OO.txt, Nov. 2001.

[17] G. Colouris, J. Dollimore, and T. Kindberg, Distributed Systems; Concepts and
Design, 2” *̂ Edition, New York, NY: Addison-Wesley, 1994.

[18] S. E. Deering, “Host Extensions for IP Multicasting,” Request For Comments
1112 (Proposed Standard), Intemet Engineering Task Force, Aug. 1989.

[19] P. T. Dinsmore, D. M. Balenson, M. Heyman, P. S. Kmus, C. D. Scace, and A. T.
Sherman, “Policy-Based Security Management for Large Dynamic Groups: An
Overview of the DCCM Project,” in Proc. o f the 2000 DARPA Information
Survivability Conference and Exposition (DISCEX’OO), Hilton Head, SC, USA,
Jan. 2000, pp. 64-73.

[20] L. R. Dondeti, S. Mukherjee, and A. Samal, “Survey and Comparison o f Secure
Group Communication Protocols,” Technical Report, University of Nebraska-
Lincoln, Lincoln, NE, USA, June 1999.

[21] , “DISEC: A Distributed Framework for Scalable Secure Many-to-
many Communication,” in Proc. o f the IEEE International Symposium on
Computers and Communications (ISCC’OO), Antibes, France, July 2000.

[22] A. Fiat and M. Naor, “Broadcast Encryption,” Advances in Cryptography. Proc.
o f CRYPTO’93, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Germany, vol. 773, pp. 480-491, Aug. 1993.

[23] R. Gennaro and P. Rohatgi, “How to Sign Digital Streams,” Advances in
Cryptography: Proc. o f CRYPTO’97, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, vol. 1294, pp. 180-197, Aug. 1997.

[24] S. Ghanem and H. Abdel-Wahab, “A Simple XOR-based Technique for
Distributing Group Key in Secure Multicasting,” in Proc. o f the J* IEEE
International Symposium on Computers and Communications (ISCC’OO),
Antibes, France, July 2000, pp. 398-403.

[25] , “A Secure Group Key Management Framework: Design and Rekey
Issues,” in Proc. o f the 8 ’̂ IEEE International Symposium on Computers and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

172

Communications (ISCC’03), Kemer-Antalya, Turkey, June-July 2003, pp. 797-
802.

[26] L. Gong, “New Protocols for Third-Party-Based Authentication and Secure
Broadcast,” in Proc. o f the 2"^ ACM Conference on Computer and
Communications Security, Fairfax, VA, USA, Nov. 1994, pp.176-183.

[27] L. Gong and N. Shacham, “Elements o f Trusted Multicasting,” in Proc. o f the
1994 IEEE International Conference on Network Protocols (ICNP’94), Boston,
MA, USA, Oct. 1994, pp. 23-30.

[28] T. Hardjono, B. Cain, and N. Doraswamy, “A Framework for Group Key
Management for Multicast Security,” Intemet Draft (Work in Progress), Intemet
Engineering Task Force, draft-ietf-ipsec-gkmframework-03.txt, Aug. 2000.

[29] T. Hardjono, R. Canetti, M. Baugher, and P. Dinsmore, “Secure IP multicast:
Problem Areas, Framework, and Building Blocks,” Intemet Draft (Work in
Progress), Internet Engineering Task Force, draft-irtf-smug-framework-OO.txt,
Dec. 1999.

[30] T. Hardjono, H. Hamey, P. McDaniel, A. Colegrove, and P. Dinsmore, “Group
Security Policy Token,” Intemet Draft (Work in Progress), Intemet Engineering
Task Force, draft-ietf-msec-gspt-01.txt, Nov. 2001.

[31] T. Hardjono and G. Tsudik, “IP Multicast Security: Issues and Directions,”
Technical Report, Annales de Telecom, Paris, France, July-Aug. 2000, pp. 324-
334.

[32] D. Harkins and D. Carrel, “The Intemet Key Exchange (IKE),” Request For
Comments 2409 (Proposed Standard), Intemet Engineering Task Force, Nov.
1998.

[33] H. Hamey, M. Baugher, and T. Hardjono, “GKM Building Block: Group Security
Association (GSA) Definition,” Intemet Draft (Work in Progress), Intemet
Engineering Task Force, draft-irtf-smug-gkmbb-gsadef-OO.txt, Feb. 2000.

[34] H. Hamey, A. Colegrove, E. Harder, U. Meth, and R. Fleischer, “Group Secure
Association Key Management Protocol,” Intemet Draft (Work in Progress), draft-
hamey-sparta-gsakmp-sec-02.txt, Intemet Engineering Task Force, June 2000.

[35] H. Hamey and C. Muckenhim, “Group Key Management Protocol (GKMP)
Specification,” Request For Comments 2093 (Experimental), Intemet Engineering
Task Force, July 1997.

[36] ___________, “Group Key Management Protocol (GKMP) Architecture,” Request
For Comments 2094 (Experimental), Intemet Engineering Task Force, July 1997.

[37] I. Ingemarsson, D. T. Tang, and C. K. Wong, “A Conference Key Distribution
System,” IEEE Transactions on Information Theory, vol. 28, no. 5, pp. 714-720,
Sep. 1982.

[38] J. Jannink, “Implementing Deletion in B"^-Trees,” ACM Special Interest Group on
Management o f Data (SIGMOD) Record, vol. 24, no. 1, pp. 33-38, May 1995.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

173

[39] P. Judge and M. Ammar, “Gothic: A Group Access Control Architecture for
Secure Multicast and Anycast,” in Proc. o f the 2002 IEEE Conference On
Computer Communications (INFOCOM’02), New York, NY, USA, June 2002.

[40] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private
Communication in a Public World, Englewood Cliffs, NJ: Prentice Hall, 1995.

[41] S. Kent and R. Atkinson, “Security Architecture for the Intemet Protocol,”
Request For Comments 2401 (Proposed Standard), Intemet Engineering Task
Force, Nov. 1998.

[42] __________ , “IP Authentication Header,” Request For Comments 2402
(Proposed Standard), Intemet Engineering Task Force, Nov. 1998.

[43] __________ , “IP Encapsulating Security Payload (ESP),” Request For Comments
2406 (Proposed Standard), Intemet Engineering Task Force, Nov. 1998.

[44] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing
Protocols for securing group communication,” in Proc. o f the 3P ' IEEE Hawaii
International Conference on System Sciences, Kona, Hawaii, Jan. 1998, pp. 317-
326.

[45] X. Li, Y. Yang, M. Gouda, and S. Lam, “Batch Rekeying for Secure Group
Communications,” in Proc. o f the 10*̂ World Wide Web Conference (WWW 10),
Hong Kong, China, May 2001, vol. 3, pp. 525-534.

[46] J. Lotspiech, M. Naor, and D. Naor, “Subset-Difference based Key Management
for Secure Multicast,” Intemet Draft (Work in Progress), Intemet Engineering
Task Force, drafl-irtf-smug-subsetdifference-OO.txt, July 2001.

[47] D. Maughan, M. Schertler, M. Schneider, and J. Tumer, “Intemet Security
Association and Key Management Protocol (ISAKMP),” Request For Comments
2408 (Proposed Standard), Intemet Engineering Task Force, Nov. 1998.

[48] P. McDaniel, A. Prakash, and P. Honeyman, “Antigone: A Flexible Framework
for Secure Group Communication,” in Proc. o f the 8 ‘̂ USENIX Security
Symposium, Washington, D.C., USA, Aug. 1999, pp 99-114.

[49] S. Mittra, “lolus: A Framework for Scalable Secure Multicasting,” in Proc. o f the
1997 ACMSIGCOMM, Cannes, France, Sep. 1997, vol. 27, no. 4, pp. 277-288.

[50] A. V. Moffaert and O. Paridaens, “Security Issues in Intemet Group Management
Protocol version 3 (IGMPv3),” Intemet Draft (Work in Progress), Intemet
Engineering Task Force, draft-irtf-gsec-igmpv3-security-issues-00.txt, Dec. 2001.

[51] M. J. Moyer, J. R. Rao, P. Rohatgi, “Maintaining Balanced Key Trees for Secure
Multicast,” Intemet Draft (Work in Progress), Intemet Engineering Task Force,
draft-irtf-smug-key-tree-balance-OO.txt, June 1999.

[52] J. Pegueroles and F. Rico-Novella, “Balanced Batch LKH: New Proposal,
Implementation and Performance Evaluation,” in Proc. o f the 8 ‘’' IEEE
International Symposium on Computers and Communications (ISCC’03), Kemer-
Antalya, Turkey, June-July 2003.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

174

[53] A. Perrig, R. Canetti, B. Briscoe, J. D. Tygar, and D, Song, “TESLA: Multicast
Source Authentication Transform,” Intemet Draft (Work in Progress), Internet
Engineering Task Force, draft-irtf-smug-tesla-OO.txt, Nov. 2000.

[54] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and Secure Source
Authentication for Multicast,” in Proc. o f the 2001 Network and Distributed
System Security Symposium (NDSS’Ol), San Diego, CA, USA, Feb. 2001, pp. 35—
46.

[55] S. Rafaeli, L. Mathy, D. Hutchison, “LKH+2: An Improvement on the LKH+
Algorithm for Removal Operations,” Intemet Draft (Work in Progress), Interent
Engineering Task Force, draft-rafaeli-lkh2-oo.txt, Jan. 2002.

[56] O. Rodeh, K. Birman, and D. Dolev, “Optimized Group Rekey for Group
Communication Systems,” Technical Report TR99-1764, Department of
Computer Science, Comell University, USA, Aug. 1999.

[57] O. Rodeh, K. Birma, M. Hayden, Z. Xiao, and D. Dolev, “Ensemble Security,”
Technical Report TR98-1703, Department o f Computer Science, Comell
University, USA, Sep. 1998.

[58] A. Selck, C. McCubbin, and D. Sidhu, “Probabilistic Optimization of LKH-based
Multicast Key Distribution Schemes,” Intemet Draft (Work in Progress), Internet
Engineering Task Force, draft-selcuk-probabilistic-lkh-OO.txt, Jan. 2000.

[59] S. Setia, S. Koussih, S. Jajodia, E. Harder, “Kronos: A Scalable Group Re-Keying
Approach for Secure Multicast,” in Proc. o f the 2000 IEEE Symposium on
Security and Privacy, Berkeley, CA, USA, May 2000, pp. 215-228.

[60] S. Setia, S. Zhu, and S. Jajodia, “A Comparative Performance Analysis of
Reliable Group Rekey Transport Protocols for Secure Multicast,” in Proc. o f the
2002 Performance, Rome, Italy, Sep. 2002, pp.21-41.

[61] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: A New Approach to Group
Key Agreement,” in Proc. o f the 18̂ ̂ IEEE International Conference on
Distributed Computing Systems (ICDCS’98), Amsterdam, The Netherlands, May
1998, pp. 380-387.

[62] Sun Microsystems, Inc., Java Security Documentation [Online]. Available
http://j ava. sun.com/security/

[63] A. M. Tenenbaum and M. J. Augenstein, Data Stmctures Using Pascal, 2' nd

Edition, Englewood Cliffs, NJ: Prentice-Hall, 1986.

[64] M. Waldvogel, G. Caroimi, D. Sun, N.Weiler, and B. Plattner, “The VersaKey
Framework: Versatile Group Key Management,” IEEE Journal on Selected Areas
in Communications, vol. 17, no. 8, pp. 1614-1631, Aug. 1999.

[65] D. Wallner, E. Harder, and R. Agee, “Key Management for Multicast: Issues and
Architecture,” Request for Comments 2627 (Informational), Intemet Engineering
Task Force, June 1999.

[66] B. Whetten, T. Montgomery, and S. Kaplan, “A High Performance Totally
Ordered Multicast Protocol,” Theory and Practice in Distributed Systems:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://j

175

International Workshop, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, no. 938, pp. 33-57, Apr. 1995.

[67] C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group Communications using
Key Graphs,” in Proc. o f ACM SIGCOMM’98, Vancouver, Canada, Sep. 1998,
pp. 68-79.

[68] C. K. Wong and S. S. Lam, “Digital Signatures for Flows and Multicasts,”
Technical Report TR-98-15, Department o f Computer Sciences, University of
Texas at Austin, TX, USA, July 1998.

[69] Y. R. Yang, X. S. Li, X. R. Zhang, and S. S. Lam, “Reliable Group Rekeying: A
Performance Analysis,” in Proc. o f ACM SIGCOMM’Ol, San Diego, CA, USA,
Aug. 2001, pp. 27-38.

[70] X. B. Zhang, S. S. Lam, D. Y. Lee, and Y. R. Yang, “Protocol Design for
Scalable and Reliable Group Rekeying,” in Proc. o f SPIE conference on
Scalability and Traffic Control in IP Networks, Denver, CO, USA, Aug. 2001,
vol. 4526.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

176

APPENDIX A

EXAMPLES OF S-LKH AND B^-LKH REKEY PROTOCOLS

This appendix contains two examples for S-LKH and B^-LKH rekey protocols. The

examples illustrate the rekey message sent in different group member addition and

removal scenarios. The initial key message (initMsg) format is {ID, position, height,

degree}. The rekey message (rekeyMsg) format for S-LKH rekey protocol is {SEQ, type,

position, level, ID, RekeyPacketi, RekeyPacket2 , ...}. The rekey message format

(rekeyMsg) for B'^-LKH rekey protocol is {SEQ, type, position, level, (IDi, ID 2 , ...),

(isRighti, isRight2 , ...), RekeyPacketi, RekeyPacket2 , ...} where isRight values are T for

true and F for false. Note that maintaining SEQ is not shown in the algorithms (trivial).

Note also that, the rekey message level filed is not assigned in all cases.

A LKH key is identified by its LKH position and that position is changing due to

insertion/deletion of node entries. An addRekey packet is identified by a key and the

directly/indirectly inserted entry number in the associated child node. If encryption-based

KJDT is used, such addRekey packet contains the new version o f the key encrypted by its

previous version and by that specified child node key entry. For example addRekey(K.2.u

2) packet is [{-Kj J K j [,{ ^ 2 1) ^ 2 1 2]• A rmvRekey packet is identified by a key. If

encryption-based KDT is used, such rmvRekey packet contains the new key encrypted by

every key in the associated child nod. For example rmvRekey(K2 .\) packet is

[{K\ 1 }K,, K. e node(P2 1)], where node(P2 1) is the node pointed to by the pointer P2 ,1 .

S-LKH Examples

Fig. 68(a) illustrates the initial nodes o f a S-LKH of degree 4 that is used to

demonstrate the three member addition and the two member removal scenarios. The S-

LKH is constructed using S-LKH AddMember (Fig. 24) and RemoveMember (Fig. 25)

algorithms. The S-LKH height h > 3 (part o f the tree is not expanded). For all other

figures the S-LKH search view is used to illustrate the changes to the initial S-LKH.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

177

Fig. 68(b) is the S-LKH search view after AddMember(240,) is performed. The

returned initMsg is {240, 2.1.2, h, 4} and the returned rekeyMsg is {SEQ, ADD, 2.1.2, 2,

240, addRekey(K2A, 2), addRekey(K.2, 1), addRekey(GK, 2)}.

Fig. 68(c) is the S-LKH search view after AddMember(420, K y) is performed. The

returned initMsg is {420, 2.2.4, h, 4} and the returned rekeyMsg is {SEQ, SPLIT, 2.2.4,

2, 420, rmvRekey{K2.2), rmvRekey(K2.z), addRekey(K2 , 3), addRekey{GK, 2)}.

Fig. 68(d) is the S-LKH search view after AddMember(609, K ^) is performed. The

returned iniMsg is {609, 3.3, h, 4} and the returned rekeyMsg is {SEQ, INCREASE, 3.3,

1, 609, rmvRekey{K-i.\), rmvRekeyiK^ i), addRekeyQL^, 1), addRekey{GK, 3)}.

Fig. 68(e) is the S-LKH search view after RemoveMember(666) is performed. The

returned rekeyMsg is {SEQ, REMOVE, 3.2.1, 2, 666, rmvRekey{)L-i.2), rmvRekeyiK^),

rmvRekey{GK)}.

Fig. 68(f) The following figure is the S-LKH after RemoveMember(790) is

performed. The returned rekeyMsg is {SEQ, DECREASE, 3.2.1, 1, 666, rmvRekey(JL{),

rmvRekey(GK)}.

GK

root

(Ki, P,), 170, (Kj, P2), 490, (K3, P3), 900, (K4, P4) I

N, N2 N3

(K 2 ,,P2 ,) ,2 5 5 ,(K 2 .2 ,P 2 .2) 1
N4

(K3,„ 575), (K.3.2, 589), (K.3.3, 666), (K,3,4, 790)

N2 N2

(K2.1.,, 230), (K2.,.2, 255) (K2.2.,, 290), (K,2.2.2, 300)), (K2.2.3, 388), (K.2,2.4, 490)

(a) The S-LKH initial nodes.

Fig. 68. A S-LKH member addition and removal examples.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

178

170 490 900

255

230 240 255

575 589 666 790

290 300 388 490

(b) The S-LKH search view after AddMember(240,) is performed.

170 490 900

255 388

290 300 388 420 490

(c) The S-LKH search view after AddMember(420, Ky) is performed.

170 490 900

609

575 589 609 666 790

(d) The S-LKH search view after AddMember(609,) is performed.

170 490 900

609

575 589 609 790

(e) The S-LKH search view after RemoveMember(666) is performed.

Fig. 68. (Continued)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

179

170 490 900

575 589 609

(f) The S-LKH search view after RemoveMember(790) is performed.

Fig. 68. (Continued)

B^-LKH Example

Fig. 69(a) illustrates a B'^-LKH of degree d = A and height A = 3 constructed using the

B’̂ -LKH AddMember (Fig. 29) and RemoveMember (Fig. 34) algorithms. Note that,

parts of the tree are not expanded but the maintenance algorithms guarantees that all

nodes are at the same level, so the height h of that B^-LKH is 3. The B^-LICH is used in

demonstrating the different B'^-LKH member addition and removal scenarios.

Fig. 69(b) is the B^-LKH search view after performing AddMember(600,)

followed by AddMembr (790, Ky) . The first returned initMsg is {600, 3.1.2, 3, 4} and

the first retumed rekeyMsg is (SEQ, ADD, 3.1.2, -, (600), -, addRekey{K3,i, 2),

addRekey(K-i, 1), addRekey{GK, 3)}. Then the second retumed initMsg is (790, 3.2.3, 3,

4} and the second retumed rekeyMsg is (SEQ, ADD, 3.2.3, -, (790), -, addRekey(K3 2 , 3),

addRekey(KT„ 2), addRekey{GK, 3)}.

Fig. 69(c) is the B'^-LKH search view after AddMember(770, K ^) is performed. The

retumed intiMsg is {770, 3.2.2, 3, 4} and the retumed rekeyMsg is {SEQ, SPLIT, 3.2.2,

1, (770, 786), -, rmvRekey(K3 2), rmvRekeyQLz^), addRekey(K.3 , 2), addRekey{GK, 3)}.

Fig. 69(d) is the B"^-LKH search view after AddMember(590,) is performed. The

retumed initMsg is {590, 3.1.2, 3, 4} and the retumed rekeyMsg is {SEQ, INCREASE,

3.1.2, -, (590, 600, 786, 786), -, rmvRekey{K\2 ,\), rmvRekeyOLi^.i), rmvRekey{K\3),

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

180

rmvRekeyQL.2.\), rmvRekeyQLx), rmvRekeyQL.7), addRekey{GK, 1)}. The B"^-LKH height h

becomes 4.

Fig. 69(e) is the B'^-LKH search view after RemoveMember(990) is performed (an

expansion o f extra part o f the tree is shown). The retumed rekeyMsg is {SEQ, REMOVE,

2.1.2.3, (990), rmvRekey{]L2 .\.2), rmvRekey{K2.\), rmvRekeyiJLj), rmvRekey{GK)}.

Fig. 69(f) is the B^-LKH search view after RemoveMember(817) is performed. The

retumed rekeyMsg is (SEQ, SHIFT, 2.1.2.1, 0, (817, 810, 990), (F, T, F),

mrgRekey(lL2 2 .\, F), mrgRekey(K2 .2 , T), rmvRekey{K.2), rmvRekey(K\), rmvRekey{GK}}.

Fig. 69(g) illustrates an expansion o f Pi sub-tree. Fig. 69(h) is the B^-LKH search

view after RemoveMember(380) is performed. The retumed rekeyMsg is {SEQ,

MERGE, 1.2.3.1, 2, (380, 230), (F), mrgRekey(]L\2 .2 , F), rmvekey{K\2), rmvRekey(Ki),

rmvRekey{GK)}.

Fig. 69(i) is is the B'^-LKH search view after RemoveMember(lOO) is called. The

retumed rekeyMsg is {SEQ, DECREASE, 1.1.1.2, -, (100, 100, 170, 490), (T, T, T),

mrgRekey(}L\,\, T), mrgRekeyQLu T), mrgRekey(GK, T)}.

GK

root

\ (K,, P,), 170, (K2, P2), 490, (K3, P3), 990, (K4, P4)

N, N2 N3
■ ■

N s.i

I (K3,,, P3,,), 675, (K3.2, P3.2), 810, (K3.3, P3.3)

N 3.2

N4
■

N3

(Kj.,,, 530), (K3.,.2, 655), (Kj.z.,., 675) (K 3.2.2, 749), (K.3.2.3,786), (K.3.2.4, 810)

(a) The B^-LKH initial nodes.

Fig. 69. A B'^-LKH member addition and removal examples.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

181

D
170 490 990

C
675 810

A
530 600 655 675 749 786 790 810

B

(b) The B"^-LKH search view after AddMember(600,) and (790, K y) are performed.

170 990490

675 810786

B1
786 790 810749 770

B2

(c) The B’̂ -LKH search view after AddMember(770, K ^) is performed.

786

D1

170

C l

490

7 .

D2

990

600 675

C2

810

A1 A2

530 590 600 655 675

(d) The B"^-LKH search view after AddMember(590,) is performed.

Fig. 69. (Continued)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

182

786

D2D1

990170 490

C2

999600 675 810

B2

790 810 950817

(e) The B'*'-LKH search view after RemoveMember(990) is performed.

490

D1 : a D2

170 786

C l
600 675

B2
790

/
950 999

810 950

(f) The B^-LKH search view after RemoveMember(817) is performed.

100

H / I

59 100 166 170 198 210 270 330

(g) The B’̂ -LKH expansion o f P] sub-tree.

Fig. 69. (Continued)

380 490

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

183

490

m .
786170

100
210

270170 198 210 330100 166 490

(h) The B'''-LKH search view after RemoveMember(380) is performed.

D2

786490

170 210

198 210 270 330 490166 170

(i) The B”̂ -LKH search view after RemoveMember(lOO) is performed.

Fig. 69. (Continued)

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX B

B^-LKH REKEY CLIENT PROCESSING

184

Method Rekey(rekeyMsg)
Globals: h, d, Min d, ID, position, keyList, KDT,

rekeyPos, level, match, isRight, isRNghbr, isLNghbr, S;

{ rekeyPos = rekeyMsg.position; level = rekeyMsg.level; match = -1;
for (I = 0 to (b-1)) if (position[I] equals rekeyPos[I]) then match = I; else breakFor;
match = h - match; if (match equals 1) then match = 2;
X = h + 1-match; isRght = rekeyMsg.isRght[match-3];
isRNghbr = isRght and (position[X] equals (rekeyPos[X]+l));
isLNgbr = (not isRght) and (position[X] equals (rekeyPos [X]-l));
if (match < (h-level+2)) then S = h-level; else S = match-1;
IF (rekeyMsg.type)
{ equals ADD or REMOVE: Simple();
equals SPLIT: Split();equals INCREASE: Increase();
equals MERGE: MergeQ; equals SHIFT: Shift(); equals DECREASE: Decrease();}

Method Loopl(startI, endl, adjust)
{ for (I = starti to endl) keyList.update(I + adjust, rekeyMsg.packet[I]);
^j'k-k'kj

Method Loop2(startI, endl, adjust)
{ for (I = starti to endl)

{ if (ID > rekeyMsg.ID[I]) then increment position[h-l-I];
packetNo = 2* I;
if (position[h-l-I] > Min_d)

then { increment position[h-l-I] by (Min_d+1); packetNo = packetNo+l; }
keyList.update(I + adjust, rekeyMsg.packet[packetNo]);}

Method Loop3 (starti, endl, adjust)
{ for (I = starti to endl)

{ if (ID > rekeyMsg.ID[I]) then decrement position[h-l-I];
if (KDT equals XORBP)

then keyList.updateBP(I, rekeyMsg.xoredBP[I, position[h -l-I]]);
if (not rekeyMsg.isRght[I]) then increment position[h-l-I] by Min_d;

keyList.update(I -f- adjust, rekeyMsg.packet[I]);}
}

Fig. 70. The B^-LKH rekey client Rekey(), Loopl(), Loop2(), and Loop3() methods.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

185

Method SimpleQ
{ if ((match equals 2) and (ID > rekeyMsg.ID[0]))

then if (rekeyMsg.type equals ADD) then increment position[h-l];
else decrement position[h-l];

Loop 1 (match-2, h-1, 1);
j/***/
Method Split()
{ Y = h-leveI-2;

Loop2(match-2, Y, 1);
if (((match-2) < (h-level)) and (ID >rekeyMsg.ID[Y+l]))

then increment position[level];
LoopI(Y+S, Y+h, -Y);

J/***/
Method IncreaseO
{ increment h; Loop2(match-2, h-1, 1);
y-k-k-kj

Method Decrease()
{ if (match > 3)

then { if (isRNghbr) then increment position[X+l] by (Min_d -1);
if (isRNgbr or isLNghbr) then Loop 1 (match-3, match-3, 1);}

Loop3(match-2, h-2, 1);
decrement h ; free position[0]; keyList.free(h+l);

}

Fig. 71. The B’̂ -LKN rekey client Simple(), Split(), Increase(), and Decrease() methods.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

186

Method MergeQ
{ if (3 < match < (h-level+2))

then { if (isRNghbr) then increment position[X+l] by (Min_d-1);
if (isRNghbr or isLNghbr) then Loop 1 (match-3, match-3, 1);}

Loop3(match-2, h-L-2, 1);
if (((match-2) < (h-level)) and (ID >rekeyMsg.ID[h-level-l]))

then decrement position[level];
Loopl(S-l, h-1, 1);

Method ShiftQ
{ if (3 < match < (h-level+1))

then { if (isRNghbr) then increment position[X+l] by (Min_d-1);
if (isRNghbr or isLNghbr) then Loop 1 (match-3, match-3, 1);}

if (match equals (h-level+1))
then if (isRNghbr or isLNghbr)

then { if (isRght and (position[level] equals (rekeyPos [Ievel]+1)))
then decrement position[level+l];

if ((isRght and (position[level+l]<l)) or
(not isRght and (ID > rekepMsg.ID[match-2])))

then { if (isRght)
then { decrement position[level];

increment position[level+l] by Min_d; }
else { increment position[level]; position[level+l]==l;}

if (KDT equals XORBP)
then keyList.updateBP(match-3, rekeyMsg.xoredBP(match-3, 1));

Loop 1 (match-3, match-3, 1);
} else Loop 1 (match-2, match-2, 0);

}
Loop3(match-2, h-level-3, 1);
if (match < (h-level-1))

then { if (rekeyMsg.isRght[h-level-2] and (ID > rekeyMsg.ID[h-level-2]))
then decrement position[level+1];

Loopl(h-level-2, h-level-2, 1);}
LoopI(S, h, 0)

}

Fig. 72. The B"^-LKH rekey client MergeQ, and ShiftQ methods.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

187

Example

This example illustrates B"^-LKH rekey client processing for the retumed rekeyMsg

{SEQ, DECREASE, 1.1.1.2, -, (100, 100, 170, 490), (T, T, T), mrgRekey{K^A, T),

mrgRekey{K\, T), mrgRekey(GK, T)} in the last step in the B'* -̂LKH example in appendix

A. Initially, all rekey clients maintains h = 4, and when rekeyMsg is received they will

execute the Decrease() method. All rekey clients will adjust h to be equal to 3 and keyList

size will be 4 after the method is executed.

Note that keyList.update{key_number, rekeyMsg.packet[packet_number]) will be

shortened to KLU{key_number, packe_ number). We will trace the rekey client position

and the updated keys for four members with match = 2, 3, 4, and 5.

The group member whose ID = 50 has match = 2 and position = l . I . l . l . The rekey

client executes Loop3(0, 2, 1) {(KLU(1, 0); KLU(2, 1), KLU(3, 2)} and position

becomes 1.1.1.

The group member whose ID = 166 has match = 3 and position = 1.1.2.1. The rekey

client executes the condition with X = 2 and isRight = T {position =1.1.2.2, KLU(1, 0)}

and then executes Loop3(l, 2, \){position =1.1.1.2, KLU(2, 1); KLU(3, 2)} and position

becomes 1.1.2.

The group member whose ID = 198 has match = 4 and position =1.2.1.1. The rekey

client executes the condition w ith X = 1 and isRight =T {position =1.2.2.1, KLU(2, 1)},

then executes Loop3(2, 2, 1) {position =1.1.2.1, KUL(3, 1)}, finally position becomes

1.2 .1.

The group member whose ID = 530 has match = 5 and position = 2.1.1.1. The rekey

client executes the condition with X = 0 and isRght =T {position = 2.2.1.1, KLU(3, 2)}

and position becomes 2.1.1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

188

APPENDIX C

B^-LKH REKEY SUB TREE LABELED INSERTION

This appendix details the B^-LKH rekey sub-tree (rekeyTree) labeled insertion of key

nodes. A key node is inserted into rekeyTree in one of four ways namely, insert,

insertSplit, insertMerge, and insertShift. The simple insertion insert(H, RC, type) inserts

the key node N labeled according to the policy determined rekey condition RC and the

rekey message type that is either ADD or REMOVE as shown in TABLE IX. Another

form of simple insertion is insertQsi, label) that inserts the key node N with the specified

label, and InsertQtT) that inserts the key node N with no label.

TABLE IX

LABEL OF KEY NODE N FOR SIMPLE RM TYPES: ADD & REMOVE

RC\type ADD REMOVE

NO N E “A ” -

PBS “GA” -

PFS “A ” “GR”

PBaFS “GA” “GR”

The insertSplit(H, RC) o f a key node N inserts two key nodes N1 and N2 to the

rekeyTree for two nodes that result o f node N spliting. Every internal key, GK or KEK,

has an LKH internal entry that contains a pointer to its child node, where the child node

for GK is root node. A split key node N means the child node pointed to by that key

internal entry is split. Let N be the node specified to be split to two nodes N1 and N2,

where N1 is chosen from the two nodes such that it contains the newly inserted entry and

N2 is its neighbor that share entries previously inserted in N. Initially, the key for both

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

189

nodes N1 and N2 entries will contain the key that was in N and at least N1 key will be

regenerated. The label of the two key nodes when inserted in the rekeyTree is specified

according to RC as shown in TABLE X. Note that if N exists in the rekeyTree, N1 and

N2 both will start with N label that could be upgraded. Also note that if RC is NONE, N1

will be labeled “GA” to guarantee the generation (creation) of that key (which initially

contained the same key as N2) although “A” would be suitable otherwise.

TABLE X

LABELS OF KEY NODES N1 AND N2 FOR A SPLIT KEY NODE

RC N l N2

NONE “GA” -

PBS “GA” -

PFS “GR” “GR”

PBaFS “GR” “GR”

The insertMerge(N, isRight, RC) of key node N inserts the key node N1 in the

rekeyTree that is merged with N. The key node N1 is determined from isRight value

(right or left neighbor). If N already exists in the rekeyTree, it is deleted first then N1 is

inserted. Inserting N I implies inserting all merged children entries with no label or with

their label if any existed in the rekeyTree. The key node N l will be labeled according to

RC as shown in TABLE XI.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

190

TABLE XI

LABEL OF MERGED KEY NODE N TO N l

RC N l

NONE “A ”

PBS “GA”

PFS “A ”

PBaFS “GA”

The insertShiftQ^, isRight, RC) of key node N inserts two key nodes N and N l in the

rekeyTree. The node N l is the N neighbor determined from isRight value where an entry

is shifted from N l to N. Both N and N l nodes are labeled according to RC as shown in

TABLE XII.

TABLE XII

LABEL OF SHIFTED KEY NODES FROM N l TO N

RC N N l

NONE - -

PBS “GA” -

PFS “GR” “GR”

PbaFS “GR” “GR”

A leaf entry position in a B^-LKH is represented by an array o f size LKH height h,

where each array entry specifies a child position in the path that leads to the leaf entry.

There are (h + I) keys specified from the position PiP2 ---Ph follows; the group key

GK, {h-l) KEKsK^_, ..., andX^_^^ ^, and a leaf (individual) key

Assuming the keys specified by certain position are the keys of key array of size {h + 1).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

191

The rekeyTree insertion o f such key array depends on the parameters RC, type, level, and

isRight array. Fig. 73 illustrates the insertion of the key array to rekeyTree, for all possible

rekey message types and policy-determined rekey condition (RC).

if ((type equals ADD) or (type equals REMOVE))
then { for (I = 1 to h) rekeyTree.insert(key [I], RC, type);

if (type equals ADD) then rekeyTree.insert(key[h+l]); }

if (type equals SPLIT)
then { for (I = 1 to (level +1)) rekeyTree.insert(key[I], RC, ADD);

for (I = (level+2) to h) rekeyTree.insertSplit(key[I], RC);
rekeyTree.insert(key[h+l]);}

if (type equals INCREASE)
then { rekeyTree.insert(key[l], RC, ADD);

rekeyTree.insert(K], “GR”);
rekeyTree.insert(K 2 , “GR”);
for (I =2 to h) rekeyTree.insertSplit(key[I], RC);
rekeyTree.insert(key[h+l]);}

if (type equals MERGE)
then { for (I = 1 to (level+1)) rekeyTree.insert(key[I], RC, REMOVE);

for (I = (level+2) to h)
rekeyTree.insertMerge(key[I], isRight[h+l-I], R C);}

if (type equals SHIFT)
then { for (I = 1 to (level+1)) rekeyTree.insert(key[I], RC, REMOVE);

rekeyTree.insertShift(key[level+2], isRight[h-level-l], RC);
for (I = (level+3) to h)

rekeyTree.insertMerge(key[I], isRight[h+l-I], R C);}

if (type equals DECREASE)
then { rekeyTree.delete(GK);

for (I = 1 to (h -1)) rekeyTree.insertMerge(key[I], isRight[h-I], RC); }

Fig. 73. Labeled insertion o f key array to a B^-LKH rekey sub-tree.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

192

Example

For the B''^-LKH key view shown in Fig. 74, where degree <i = 4, height h = 3, and

group size n = 29. I f RC is PBaFS, and a rekeying has been initiated for batch o f requests

that contains 4 Add requests, 2 Remove requests, and 2 Refresh requests as shown in the

figure. The 2 removed entries’ positions are marked “Rplc” for replacement by 2 added

entries, the other 2 added entries’ positions are marked “Add”, and the 2 refreshed

entries’ positions are marked “Rfrsh”.

GK

•2.2 -2.3 -3.2-1.2

Rfrsh Rplc RplcRfrsh
AddAdd

Fig. 74. A B'^-LKH key view and a batch of requests.

A LKH leaf entry position is determined by a path that starts from the root node and

specifies the child node number in all nodes in the path that leads to that leaf node. The

positions of the two refreshed individuals’ entries are 1.2.3, and 2.2.1 (Rfrsh marked

nodes). The two removed individuals’ leaf entries will be replaced by two new

individuals’ leaf entries (i.e., a new member will be assigned the same ID of a removed

member). The two replaced entries are at positions 2.3.3 and 4.2.2 (Rplc marked nodes).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

193

The other two new individuals’ leaf entries are assigned two newly generated IDs and

inserted into the original LKH. From a new individual ID the position o f his individual

leaf entry is determined (Add marked positions). The rekeyTree, shown in Fig. 75, is

constructed for the replaced, refreshed, and added entries as follows:

1. Replacing the leaf entry at position 2.3.3 leads to rekeyTree insertion o f the key

nodes GK, K 2 , and K 2 . 3 labeled “GR”, and the leaf key K 2 . 3 . 3 with no label.

2. Replacing the leaf entry at position 4.2.2 leads to rekeyTree insertion of the key

nodes GK, K 4 , and K 4 . 2 labeled “GR”, and the leaf key node K 4 , 2 , 2 with no label. Note

that GK is inserted before with the same label.

3. Refreshing the entry at position 1.2.3 leads to rekeyTree insertion o f the key nodes

GK, Ki, and Ki , 2 labeled “A”, and the leaf key node Ki.2 . 3 with no label. Note that GK

is inserted before with higher ranked label.

4. Refreshing the entry at position 2.2.1 leads to rekeyTree insertion of the key nodes

GK, K 2 , and K2 . 2 labeled “A”, and the leaf key node K2 ,2 .i with no label. Note that

GK, and K 2 are inserted before with higher ranked labels.

5. The randomly generated IDa for the first added individual positions his entry at

1.1.2, where RM type for such insertion is ADD. Inserting that leaf entry leads to

rekeyTree insertion of the key nodes GK, Ki, and Kj i labeled “GA” and the leaf key

node K i ,] . 2 with no label. Note that GK is already inserted before with higher ranked

label and Ki is already inserted before with “A” label that is upgraded to “GA”.

6. The randomly generated IDb for the second added individual positions his entry at

3.2.2, where RM type of such insertion is SPLIT and level is 1. Inserting that leaf

node leads to rekeyTree insertion of the key nodes GK, and K 3 labeled “GA”. For the

split node K 3 . 2 where N l (that has the new entry) is K 3 . 2 and N 2 is Ksj^ both N l and

N2 will be inserted labeled “GR”. The leaf key node 1C3 .2 . 2 is inserted with no label.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

194

i “ G A

1 i K2 1 ! K3 1 1 K4 1
I I “GR” ! 1 “G A ” i i “GR” i

f Ki.i 1 K1.2 1 i K2.2 1 I K2.3 i K3.2 i 1 K3.3 1 K4.2
1 “G A ” i “A ” 1 I “A ” I i “G R” i “GR” i i “GR” I “G R” i

K,.,.2 K i .2.3 K 2.2.I K 2.3.3 K 3.2.2 K 4 .2.2

Fig. 75.The B^-LKH rekey sub-tree constructed for batch of 8 requests.

The batch RM for such batch o f requests contains:

o Two replaced positions 2.2.3, and 4.2.2

o Two refreshed positions 1.2.3, and 2.2.1

o Two individual RM headers {type = ADD, position = 1.1.2, IDa} and (type = SPLIT,

position = 3.2.2, level = 1, (IDb, IDc)}

o The rekey packets constructed for all labeled keys in the rekeyTree each according to

its label. The rekeyTree is parsed in post-order generating the rekey packets for the

keys in the following order: K u , K 1 . 2 , K], K 2 . 2 , K 2 . 3 , K 2 , K 3 . 2 , K 3 . 3 , K 3 , K 4 , 2 , K 4 , GK.

If encryption-based KDT is used, the rekey packets are as follows:

o For the two “A” labeled keys are: [{Ki.2 }Ki.2 .3] and [{K2 .2 }K2 .2 .i]

o For the three “GA” labeled keys are: [{K,', }Ki.i, {Kj j }Ki.i,2], [{K,' }Ki, {K[}Ki.j,

(K;}K,.2Land[{K;}K3, {K',}K,.2, {K',}K,.,]

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

195

o For the “GR” labeled key K 2 . 3 is [{ <̂̂2 , 3 }K-2 .3 ,i, {-^2 . 3 } ^ 2 .3 ,2 , {-̂ 2̂ . 3 } ^ 2 .3 .3]- All other

“GR” labeled key (K2 , K 3 .2 , K jj, K4 .2 , K4 , GK) are constructed the same way: a new

key version is generated and encrypted with all its children keys (at the original

LKH).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

196

APPENDIX D

ACRONYMS

BP Byte Pattern

DBS Data Encryption Standard

GK Group Key

GKM Group Key Manager

KAP Key Agreement Protocol

KDT Key Distribution Technique

KEK Key Encrypting Key

LKH Logical Key Hierarchy

PBS Perfect Backward Secrecy

PFS Perfect Forward Secrecy

PBaFS Perfect Backward and Forward Secrecy

RM Rekey Message

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

197

VITA

Sahar Mohamed Ghanem was born in Alexandria, Egypt, on May 24“̂ , 1972. She

received her Bachelor of Science in Computer Science and Automatic Control from The

Faculty o f Engineering, Alexandria University, Egypt, in June 1994. She worked as a

Teaching Assistant for the Department o f Computer Science at The Arab Academy for

Science and Technology from September 1994 to May 1997. She worked as a Teaching

Assistant for the Computer Science and Automatic Control Department at The Faculty of

Engineering, Alexandria University, Egypt, from June 1997 to December 1997. In

December 1997, she received her Master of Science degree from the Department of

Computer Science at The Faculty of Engineering, Alexandria University, Egypt. She

started working on her Ph.D. Degree in Computer Seience at Old Dominion University,

Virginia, in January 1998. During the course of her Ph.D. work, she co-authored ten

scientific papers and technical reports.

Permanent address; Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

USA

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Old Dominion University
	ODU Digital Commons
	Spring 2004

	A Framework for Secure Group Key Management
	Sahar Mohamed Ghanem
	Recommended Citation

	ProQuest Dissertations

