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ABSTRACT

A FRAMEWORK FOR SECURE GROUP KEY MANAGEMENT

Sahar Mohamed Ghanem 
Old Dominion University, 2004 

Director; Dr. Hussein Abdel-Wahab

The need for secure group communication is increasingly evident in a wide variety of 

governmental, commercial, and Internet communities. Secure group key management is 

concerned with the methods o f issuing and distributing group keys, and the management 

of those keys over a period o f time. To provide perfect secrecy, a central group key 

manager (GKM) has to perform group rekeying for every join or leave request. Fast 

rekeying is crucial to an application’s performance that has large group size, experiences 

frequent joins and leaves, or where the GKM is hosted by a group member. Examples of 

such applications are interactive military simulation, secure video and audio 

broadcasting, and secure peer-to-peer networks. Traditionally, the rekeying is performed 

periodically for the batch o f requests accumulated during an inter-rekey period. The use 

o f a logical key hierarchy (LKH) by a GKM has been introduced to provide scalable 

rekeying. If the GKM maintains a LKH of degree d  and height h, such that the group size 

n < d \  and the batch size is R requests, a rekeying requires the GKM to regenerate 

O ( R x h )  keys and to perform 0 ( d  x R x  h) keys encryptions for the new keys 

distribution. The LKH approach provided a GKM rekeying cost that scales to the 

logarithm of the group size, however, the number o f encryptions increases with increased 

LKH degree, LKH height, or the batch size. In this dissertation, we introduce a 

framework for scalable and efficient secure group key management that outperforms the 

original LKH approach. The framework has six components as follows. First, we present 

a software model for providing secure group key management that is independent o f the 

application, the security mechanism, and the communication protocol. Second, we focus 

on a LKH-based GKM and introduce a secure key distribution technique, in which a
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rekeying requires the GKM to regenerate 0 { R x h )  keys. Instead of encryption, we 

propose a novel XOR-based key distribution technique, namely XORBP, which performs 

an XOR operation between keys, and uses random byte patterns (BPs) to distribute the 

key material in the rekey message to guard against insider attacks. Our experiments show 

that the XORBP LKH approach substantially reduces a rekeying computation effort by 

more than 90%. Third, we propose two novel LKH batch rekeying protocols. The first 

protocol maintains a balanced LKH (B^-LKH) while the other maintains an unbalanced 

LKH (S-LKH). If a group experiences frequent leaves, keys are deleted form the LKH 

and maintaining a balanced LKH becomes crucial to the rekeying’s process performance. 

In our experiments, the use o f a B'^-LKH by a GKM, compared to a S-LKH, is shown to 

substantially reduce the number o f LKH nodes (i.e., storage), and the number of 

regenerated keys per a rekeying by more than 50%. Moreover, the B^-LKH performance 

is shown to be bounded with increased group dynamics. Fourth, we introduce a 

generalized rekey policy that can be used to provide periodic rekeying as well as other 

versatile rekeying conditions. Fifth, to support distributed group key management, we 

identify four distributed group-rekeying protocols between a set o f peer rekey agents. 

Finally, we discuss a group member and a GKM’s recovery after a short failure time.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



IV

Copyright © 2004 Sahar Mohamed Ghanem. All rights reserved.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ACKNOWLEDGMENTS

At fisrt, I thank God for enlightening my way and directing me to every success I 

have reached and may reach in future. I am truly blessed to have all the support to 

complete this dissertation.

My deepest gratitude and appreciation are due to Dr. Hussein Abdel-Wahab for 

his continued guidance and support throughout this work. I am indebted to him for long 

hours o f motivating discussion, constructive feedback, and thorough review of this 

dissertation. In addition, I would like to extend my thanks to all my committee members: 

Dr. Kurt Maly, Dr. Mohammad Zubair, Dr. Ravi Mukkamala, and Dr. James Leathrum 

for their fruitful feedback concerning this dissertation.

Special thanks are due to my husband Ayman for his encouragement, motivating 

support, patience, and sincere opinions.The biggest thank you is due to my daughter Rana 

and my son Mohamed for being super good during my extended hours of work.

My utmost thanks for my Mother and Father for their unconditional love and 

support. Finally, I would like to express my deepest gratitude to my sisters, Maha, Nagia, 

and Thanaa and my friend Samya for being there whenever I needed.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



VI

TABLE OF CONTENTS

Page

LIST OF TABLES...................................................................................................................... viii

LIST OF FIGURES...................................................................................................................... ix

Chapter

I. INTRODUCTION................................................................................................................ 1
1.1 Overview........................................................................................................... 2
1.2 Motivation and Objective............................................................................... 6
1.3 Contributions...................................................................................................10
1.4 Outline..............................................................................................................17

II. RELATED W O R K .............................................................................................................18
2.1 Secure Broadcasting.......................................................................................18
2.2 Contributory Group Key Agreement..........................................................20
2.3 Standardized (IETF) Group Key Management......................................... 20
2.4 Distributed Group Key M anagement......................................................... 21
2.5 Logical Key Hierarchy..................................................................................22
2.6 Additional Secure Group Communication Issues.....................................24
2.7 Summary......................................................................................................... 29

III. XORBP: A NOVEL GROUP KEY DISTRIBUTION TECHNIQUE...................... 30
3.1 Secure Group Key Management Components.......................................... 31
3.2 Traditional Rekey Manager.......................................................................... 33
3.3 XORBP: A Novel Group Key Distribution Technique.......................... 37
3.4 Logical Key Hierarchy and XORBP.......................................................... 42
3.5 Scenarios and Comparison........................................................................... 50
3.6 Cost Analysis and Estimates........................................................................53
3.7 Experimental Results....................................................................................59
3.8 Conclusion......................................................................................................69

IV. LOGICAL KEY HIERARCHY REKEY PROTOCOLS............................................71
4.1 Motivation and Overview............................................................................ 72
4.2 S-LKH: A LKH as a Search T ree ............................................................... 73
4.3 B^-LKH: A LKH as a B^ Search T ree....................................................... 83
4.4 B’̂ -LKH Rekey Client Processing...............................................................97
4.5 Experimental Results....................................................................................99
4.6 Conclusion..................................................................................................111

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Vll

V. BATCH PROCESSING OF GROUP REKEYING.................................................. 113
5.1 Motivation......................................................................................................114
5.2 Rekey Policy Definition...............................................................................116
5.3 Group Key Management Software Design...............................................119
5.4 Rekey Sub-Tree Construction.....................................................................122
5.5 Experimental R esults................................................................................... 127
5.6 Conclusion.....................................................................................................136

VI. DISTRIBUTED GROUP REKEYING AND RECOVERY................................... 138
6.1 Distributed Group Rekeying.......................................................................138
6.2 Group Key Manager Recovery.................................................................. 152
6.3 Conclusion.....................................................................................................160

VII. CONCLUSION AND FUTURE EXTENSIONS......................................................162
7.1 Conclusion.....................................................................................................162
7.2 Future Extensions..........................................................................................167

REFERENCES........................................................................................................................... 170

APPENDICES

A. EXAMPLES OF S-LKH AND B^-LKH REKEY PROTOCOLS 176
B. B^-LKH REKEY CLIENT PROCESSING............................................. 184
C. BNl KH r e k e y  s u b -t r e e  l a b e l e d  in s e r t io n  .....................188
D. ACRONYMS................................................................................................ 196

VITA.............................................................................................................................................197

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



vni

LIST OF TABLES

Table Page

I. A + B, WHERE A AND B ARE 2 BITS L O N G .....................................................38

II. A & B, WHERE A AND B ARE 2 BITS LONG.....................................................38

III. A © B, WHERE A AND B ARE 2 BITS LONG.....................................................39

IV. RM FIELD SIZE FOR B+-LKH OF HEIGHT h, AND RM ’S LEVEL L ............96

V. REKEY PACKET SIZE FOR ENCRYPTION-BASED AND XORBP KDTS ...97

VI. S-LKH VERSUS B^-LKH REKEY COST FOR (J  = 4; « =8192; gdr  = 0.4) ....106

VII. S-LKH VERSUS B+-LKH REKEY COST FOR (rf = 4; n =512; gdr  = 0 .4 )...... 107

VIII. S-LKH VERSUS B^-LKH REKEY  COST FOR ( J =  8; « =8192; gdr = 0.4) ....107

IX. LABEL OF KEY NODE N FOR SIMPLE RM TYPES: ADD & REMOVE....188

X. LABELS OF KEY NODES N1 AND N2 FOR A SPLIT KEY NODE 189

XI. LABEL OF MERGED KEY NODE N TO N 1 ....................................................... 190

XII. LABEL OF SHIFTED KEY NODES FROM N1 TO N ........................................190

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



IX

LIST OF FIGURES

Figure Page

1. A Logical Key Hierarchy o f degree J  = 3 for a group of 9 members............................. 8

2. Secure group key management software components.....................................................32

3. The keys maintained by a star rekey manager for 9 members....................................... 34

4. A LICK of degree d=2> and height /z = 3 for a group of 9 members..............................36

5. A LKH of degree d  and height h = \ .................................................................................45

6. A LKH of degree d  and height h = 2 .................................................................................46

7. The path to a leaf node in a LKH of height h ...................................................................48

8. Comparison of estimated LKH storage (LKHS) when used with encryption-based 
versus XORBP KDTs............................................................................................................ 58

9. Comparison of estimated LKH member storage (MS) when used with encryption- 
based versus XORBP KDTs................................................................................................. 58

10. Comparison of estimated LKH rekey message size (RMS) when used with 
encryption-based versus XORBP KDTs.............................................................................59

11. Comparison of RM construction time in for star versus LKH key management 
approaches............................................................................................................................... 61

12. Effect o f LKH degree increase { d - A  versus = 16) on RM construction time when 
encryption-based fCDT is used............................................................................................. 62

13. Effect of LKH degree increase {d = A versus <i = 16) on RM construction time when 
XORBP KDT is used.............................................................................................................62

14. Comparison o f RM construction time when used with DES encryption-based versus
XORBP KDTs.

versus XORBP KDTs.

.64

15. Comparison of RM construction time when used with triple DES encryption-based
.64

16. Comparison of RM construction time when used with DES encryption-based KDT 
versus XORBP KDT that uses secure random number generation................................ 66

17. Comparison of measured and estimated LKH height for a group of size n = 4096. ..67

18. Comparison of measured and estimated member storage (MS) for a group of size n = 
4096..........................................................................................................................................68

19. Comparison of measured and estimated rekey message size (RMS) for a group of 
size n = 4096........................................................................................................................... 68

20. Comparison of measured and estimated LKH storage (LKHS) for a group of size n = 
4096..........................................................................................................................................69

21. A S-LKH stmcture................................................................................................................75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22. A S-LKH o f degree d = 2 and height /z = 3 for a group of size n = 5........................... 76

23. The format of messages used by a S-LKH rekey manager.............................................78

24. The S-LKH new group member addition and RM constmction algorithm..................81

25. The S-LBCH group member removal and RM construction algorithm.......................... 83

26. The format of messages used by a B"^-LKH rekey manager...........................................84

27. An example of different leaf node insertions in a B^-LKH of degree d - A ................ 86

28. An example of different internal node insertions in a B^-LKH of degree <7 = 4 ......... 87

29. The B^-LKIi new group member addition and RM construction algorithm............... 89

30. An example of B^-LKH internal/leaf node right shift operation....................................91

31. An example of B^-LKH internal/leaf node left shift operation......................................92

32. An example o f B^-LKH intemal/leaf node right merge operation................................ 93

33. An example o f B^-LKH intemal/leaf node left merge operation...................................93

34. The B^-LKH group member removal and RM constmction algorithm........................95

35. Frequency of add RM type for the S-LKH protocol......................................................100

36. Frequency of remove RM type for the S-LKH protocol...............................................101

37. Frequency of add RM type for the B^-LKH protocol....................................................101

38. Frequency of remove RM for the B^-LKH protocol......................................................102

39. Frequency of number of rekey packets in add rekey message..................................... 103

40. Frequency of number of rekey packets in remove rekey message.............................. 104

41. Frequency of number of encrypted keys in add rekey message...................................105

42. Frequency of number of encrypted keys in remove rekey message............................105

43. Average number of rekey packets in a RM, where g<7r = 0, and n = 512...................108

44. Average number of rekey packets in a RM, where gdr = 0.4, and n = 512............... 109

45. S-LKH average number of nodes increase over B"^-LKH, where n = 512............... 110

46. S-LKH average number o f nodes increase over B’̂ -LKH, where n = 8192..............110

47. Simplified view o f the main group key management software objects...................... 120

48. An Example of a B^-LKH, a batch o f requests, and a rekey sub-tree.........................123

49. The batch rekey message (RM) format............................................................................125

50. B^-LKH versus S-LKH rekey cost for <7 = 4, « = 8192, and gdr = 0.......................... 129

51. B^-LKH versus S-LKH rekey cost for <7 = 4, r  = 8192, and gdr = 0.5.......................129

52. Degree 4 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).......................................................131

53. Degree 4 B^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).................................................... 131

54. Degree 8 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).......................................................132

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



XI

55. Degree 8 B'^-LICH rekey cost {gdr = 0, 0.2, 0.4, 0.5).................................................... 132

56. A S-LKH rekey cost for different group dynamics {gdr= 0, 0.2, 0.4, 0.5)............... 134

57. A B^-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5)............. 134

58. A S-LKH rekey cost percentile increase {rci) over B’̂ -LKH, where n = 1024 and 
batch size = 1 0 2 .....................................................................................................................135

59. A S-LKH rekey cost percentile increase {rci) over B L lK H , where n = 8192 and 
batch size = 819.....................................................................................................................136

60. Rekey agents and group members.................................................................................... 140

61. Communication channels between the rekey agents and the group members...........144

62. A subgroup LKH of degree 2 for 8 members................................................................. 145

63. A group LICH of degree 2 for 32 members..................................................................... 147

64. An A-LKH and subgroup LKH maintained at rekey agent Ai for 32 members 147

65. Sequence o f a dynamic A-LKH, key creation for 4 rekey agents............................... 149

66. Sequenee of a static A-LKH key generation for 4 rekey agents.................................. 150

67. A group LKH at a checkpoint time.................................................................................. 156

68. A S-LKH member addition and removal examples.......................................................177

69. A B^-LKH member addition and removal examples.....................................................180

70. The B"^-LKH rekey client Rekey(), Loopl(), Loop2(), and Loop3() methods.......... 184

71. The B^-LICH rekey elient SimpleQ, SplitQ, IncreaseQ, and DecreaseQ methods. ...185

72. The B'^-LKH rekey client Merge(), and Shift() methods.............................................. 186

73. Labeled insertion of key array to a B^-LKH rekey sub-tree......................................... 191

74. A B^-LKH key view and a batch o f requests..................................................................192

75. The B^-LKH rekey sub-tree constructed for batch of 8 requests..................................194

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER I 

INTRODUCTION

Many emerging technologies, such as web technology and low cost high performance 

desktops have provided both the inspiration and the motivation o f a wide range of 

applications, for which securing data transmission is an important requirement. Although 

secure point-to-point communications have been predominant so far, the need for secure 

group communication is increasingly evident in a wide variety o f government, 

commercial, and Internet communities. Secure group communication is becoming the 

basis for a growing number of applications such as war gaming, law enforcement, 

disaster relief, stock quotes distribution, news feeds, software updates, live multi-party 

conferencing, shared work space, distributed interactive simulation, Internet video 

transmission, and on-line video games. Some o f these applications engage in one-to- 

many communication while others involve many-to-many communication. Different 

group applications and different application contexts will need different security services.

In secure group communication, just as in point-to-point communication, the privacy, 

integrity, availability, and authenticity of a group service must be protected. However, a 

group security concerns are considerably more involved than those regarding point-to- 

point communication. In secure group communication, dealing with common issues of 

message authentication and confidentiality becomes much more complex. In addition, 

other concerns arise, such as access control, and dynamic group membership [4], [31]. 

Secure group communication is usually categorized by the Internet Engineering Task 

Force (IETF) as secure multicast communication. The IP multicast model [18] uses the 

notion o f a group o f members associated with a given group address. A sender simply 

sends a message to this group address and the network replicates the message and 

forwards the copies to group members located throughout the network.

The journal model for this dissertation is the lEEE/ACM  Transactions on Networking.
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Secure group communication has three major core areas: secure group policy, secure 

group data transfer, and secure group key management [29]. A secure group policy 

provides the definition, implementation and maintenance o f policies governing the 

various mechanisms o f group security, such as key dissemination, access control, 

updating (rekeying) of the group shared keys, and the actions taken -when certain keys are 

compromised. Secure group data transfer is concerned with providing secure group traffic 

techniques such as the methods used to ascertain the authenticity of a piece of data and 

the methods used to establish data confidentiality. Secure group key management is 

concerned with the methods o f issuing and distributing group keys and the management 

o f those keys over period o f time, e.g. updating (rekeying) the existing group key(s) 

under certain conditions following the prescribed policies.

In this dissertation, we present our view and efforts in developing software 

framework for providing secure group key management that is efficient, scalable, 

reliable, and independent of the application, the security mechanism, and the 

communication protocol.

1.1 Overview

Before the widespread use o f the computer, information security was provided by 

physical and administrative means. With the introduction of the computer, the need for 

automated tools for protecting files and information stored on the computer became 

evident. The generic name for such tools is computer security. The introduction of 

distributed systems and the use o f networks and communications facilitate carrying data 

between computers. Network security measures are needed to protect data during their 

transmission. There are no clear boundaries between these three forms o f security.

By viewing the function o f the computer system as providing information, there is a 

flow o f information from a source to a destination, and the attacks could be classified as 

passive attacks, or active attacks. Passive attacks are usually called eavesdropping, 

monitoring, or interception, and its goal is to obtain information that is being transmitted. 

The attacks could be the release of message content, or traffic analysis. They are very 

difficult to detect. Thus, network security emphasis is on preventing them rather than 

detecting their occurrence. Active attacks involve modification o f the data stream or the
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creation of a false one. There are four active attack categories. Masquerade 

(impersonating) in which one entity pretends to be a different entity; Replay in which 

passive capture o f a data units is followed by subsequent retransmission to produce an 

unauthorized effect; Modification o f the message (alteration, delay, or reorder); Denial o f  

service that prevents the normal use o f a service. It is difficult to absolutely prevent active 

attacks. The goal of a network security system is to detect them and possibly recover 

from any resulting disruption or delays.

The following are the defined network security services:

• Authentication that assures the recipient that the message is from the source that it 

claims to be.

• Access control to limit and control the access o f information to authorized users.

• Confidentiality (privacy) is the protection o f transmitted data from passive attacks, so 

it is accessible only for authorized users.

• Integrity that assures the recipient that any modification of a transmitted message is 

done only by authorized users.

• Non-repudiation is to prevent neither the sender nor the receiver from denying a 

transmitted message.

• Anonymity when the identity of the sender o f a message is secret.

• Service availability is the detection and recovery from attacks that result in the loss or 

reduction in availability o f elements of a distributed system.

Many emerging technologies, such as low-cost high performance desktop, video and 

audio processing equipment, and high-speed transmission and switching will enable real­

time information exchange among group of participants. A new generation of distributed 

group applications will take advantage o f these technologies and provide many network- 

based services. Many of these applications will require security provisions for session 

management and information transmission. War gaming, stock quotes distribution, news 

feeds, distributed interactive simulation, live multi-party conferencing, and on-line video 

games are just some of these group applications that require multiparty exchange of data, 

voice, and video among a large number of simulated and real participants. Group 

communication has many varying characteristics such as group size, member 

characteristics (i.e., computing power and available bandwidth), membership dynamics.
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4

expected group lifetime, number o f senders, and volume and type o f traffic. A group 

security service should address the different requirements o f different group 

characteristics in addition to being scalable, reliable, and independent of security 

objective, technology, and communication protocol [10],

Cryptography techniques can be used to provide authentication, confidentiality, 

sender non-repudiation, and message integrity. The use o f cryptography necessitates the 

distribution of shared group key(s). The nature o f group communication presents a 

challenge when trying to provide secure group key management. Secure group key 

management addresses issues such as how to generate a group key, how to securely 

distribute the group key, how to revoke membership of leaving members, i.e., preventing 

leaving members from access to future group communication (perfect forward secrecy), 

how to prevent joining members from access to past group communication (perfect 

backward secrecy), and how to periodically refresh the group key [65].

Extending point-to-point protocols for distributing a group key is not scalable. For 

example, setting up a group o f symmetric keys with the assistance of a centralized group 

key manager (GKM), where the GKM is used for authenticating and distributing the 

group key to group members. Such protocol will involve encrypting the relevant message 

n times, for a group o f n members, which is not scalable. The primary design goal o f a 

secure group key management is to be scalable and make efficient use of processing, 

bandwidth, and storage requirements for a GKM and a group member.

Secure group key management is a relatively recent field of research that is related to 

two classical problems namely secure broadcast and contributory group key agreement. 

In secure broadcast a sender wishes to broadcast a secret (group key) by a single 

transmission (that is received simultaneously by many receivers) to some subset of his 

receivers. Proposed solutions that are based on the mathematical Chinese Remainder 

Theorem [15] or polynomial interpolation [7] are either o f theoretical interest where their 

security is not studied, or not efficient for large group sizes. Contributory group key 

agreement is usually based on a generalization o f Diffie-Hellman (DH) key agreement 

protocol to a group [37], [61]. DH allows two individuals to agree on a shared key, even 

though they can only exchange messages in public. Group DH protocols are contributory 

key agreement protocols that generally require sending several messages and the group
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key is generated and distributed after several rounds. These protocols are suitable for 

small size peer groups, but not suitable for one-to-many type o f applications, or 

applications with heterogeneous environments where group members’ computation 

power and bandwidth varies. Since the rekeying delay is very large, group DH protocols 

are not suitable for highly dynamic or large groups.

Secure group communication is usually categorized by the Internet Engineering Task 

Force (IETF) as secure IP multicast communication. Hardjono et al [29] propose a 

reference framework and problem areas for secure IP multicast protocol suites and define 

the functional building blocks for such protocol suites. Three problem areas are defined, 

namely, multicast data handling, keying material management, and multicast security 

policies. Multicast data handling covers problems concerning the security-related 

treatments of multicast data by the sender and the receiver that includes multicast data 

encryption, group authentication, source authentication, and data integrity. Management 

o f the keying material (i.e., cryptographic key belonging to a group) is concerned with 

the secure distribution and refreshment of keying material along with their associated 

state and parameters. Multicast security policies cover aspects o f policy in context of 

multicast security that include policy creation, high-level policy translation, and policy 

representation. Secure IP multicast provides security throughout the network layer and 

routing protocols, and might require trust in intermediate routers.

lolus [49] is the first system to address the group key management scalability 

problem by noticing that the security association must be dynamic in case of group 

communication, changing as group membership varies. lolus’s approach to provide 

scalability introduces the notion of a secure distribution tree that is composed o f a 

number of smaller secure multicast subgroups arranged in a hierarchy to create a single 

virtual secure group. Scalability is achieved by having each subgroup relatively 

independent. Each subgroup has its own subgroup keying and there is no global group 

key. Several other proposals adopt a distributed group key management to solve the 

group key management scalability problem, e.g. [21], [64].

Wong et al. [67] present a different approach to improve the scalability of group key 

distribution. Instead of a hierarchy of group security agents, they employ a hierarchy of 

keys namely Logical Key Hierarchy (LKH). It is assumed that there exists a trusted and
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secure GKM responsible for group access control and key management using a LKH. 

The LKH keys are distributed to group members while attempting to localize (as much as 

possible) the effects of a rekeying event. The LKH approach gained a lot of interest, and 

several other techniques have been built on top of it to improve the rekeying 

computation, communication, or storage requirements [20],

1.2 Motivation and Objective

Secure group communication is becoming the basis of a wide variety of applications 

in many government, commercial, and Internet communities. Secure group key 

management is concerned with securely issuing and distributing a shared group key to 

group members. In order to ensure perfect secrecy, the shared group key needs to be 

changed and redistributed (rekeyed) as group members join or leave the group. Rekeying 

when a member joins (leaves) the group, used to provide perfect backward (forward) 

secrecy, prevents the member from accessing previous (future) group communication. 

Usually, there exists a dedicated group manager (GKM) responsible for such group key 

{GK) management issues. In terms of scalability, group rekeying presents a challenging 

problem when trying to revoke a membership such that a leaving group member would 

not have future access to the group communication.

A very fast rekeying is crucial to the performance o f an application that has large 

group size, experiences frequent joins and leaves, or the GKM is hosted by a group 

member because of the required computational effort. For example, a distributed 

interactive military simulation that requires the exchange of communication between 

groups of tens of thousands of participants. A second example, is a content-based publish 

subscribe system such as stock quotes distribution, and secure broadcasting of audio and 

video, where a central server experiences frequent join and leave requests. A third 

example is a secure group of few hundred participants, where the GKM is hosted by a 

group member such as in peer-to-peer networks, mobile ad-hoc networks, or grid 

computing environments.

The simplest protocol is for the GKM to maintain the GK and a shared key with every 

group member. Rekeying for a new member joining the group requires the GKM to 

change the GK, encrypt it with its previous version and send it to old group members, and
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encrypt it with the new member shared key and send it to him. Rekeying to revoke a 

membership (i.e., leaving member) requires the GKM to change the GK, encrypt it 

individually with each shared key and send it to the corresponding member. When 

revoking a membership, the GKM can no longer use the previous GK that is known to the 

leaving (evicted) member. This protocol requires two encryptions to provide perfect 

backward secrecy, but requires n encryptions to provide perfect forward secrecy for a 

group of n members. This protocol is not scalable since it scales linearly with the group 

size.

The logical key hierarchy (LKH) [67] provides a scalable approach and requires the 

GKM to maintain a hierarchy (tree) o f keys of degree d. The root of the hierarchy is GK, 

the leaf nodes are the members shared keys, and the other keys (known as key- 

encrypting-keys KEKs) are used to provide scalable rekeying. Every group member holds 

the keys that fall on the path from his shared key leaf node to the root. If  a new member 

joins the group, his shared key is inserted in the hierarchy and all the keys he will be 

holding are changed and redistributed. If  a group member leaves the group, his shared 

key is deleted from the hierarchy and all the keys he was holding are changed and 

redistributed.

For example, the LKH of degree <7=3, shown in Fig. 1, is maintained by a GKM for 

a group of 9 members (a keys is indexed by the members’ numbers whose holding it). 

Rekeying after inserting K^ (member joins) requires the GKM to change to be 

K̂ _g and the group key Kj_g to be K^_g, and to perform the following 4 encryptions' for 

the new keys distribution: {Kg_g}Kg_^, {Kj_g}Kg, {K,_p}Ki_g, and {Ki_g}Kg. While 

rekeying after removing Kg (member leaves) requires the GKM to change Kj_g to be 

K,_g and the group key K̂ _g to be K _̂̂ , and to perform the following 5 encryptions for 

the new keys distribution: {Kg_^}Kj, {K,_g}Kg, {Ki_g}Kj_3 , and

{Kj_g}K7 _g. In general, for a group of n members and a balanced LKH of degree d, 

rekeying after a member joins would require GKM to perform on the average 2 x log^ n 

encryptions and rekeying after a member leaves would require GKM to perform on the

The notation {M }K  implies that the message M is encrypte<i with the key K.
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average d  x log^ n encryptions. A group member stores log^ n keys and has to perform 

at most log^ n decryptions for a rekeying.

-7-9
-1-3

K ,

Fig. 1. A Logical Key Hierarchy o f degree J  = 3 for a group of 9 members.

Traditionally, group rekeying is performed periodically for the accumulated join and 

leave requests (i.e., batch of updates) during an inter-rekey period. If  the GKM maintains 

a LKH of degree d  and height h, such that n < d ^ ,  and the batch size is R requests, a 

rekeying requires the GKM to regenerate 0{Ry . h)  keys and to perform 0 { d x R x h )  

keys encryptions for the new keys distribution. The encryption-based LKH approach 

provided a rekeying cost that scales to the logarithm of the group size, however, the 

number of encryptions performed by a GKM increases with increased LKH degree, LKH 

height, or the batch size, and can be more than the simple approach’s number of 

encryptions (i.e, n encryptions).

Many researchers introduced new techniques for group rekeying on top of LKH 

attempting to reduce compuation, communication, or storage cost for a GKM or a group 

members. While Chang et al. [13] achieve reduction in a GKM storage, their approaches 

allow members to collaborate or collude and break the system easily. The use of one-way 

function to reduce communication cost is suggested by Balenson et al. [2], which might 

increase the computation effort and the rekeying delay. The use o f pseudo-random 

function to reduce communication-storage parameters is suggested by Canetti et al. [11],
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which constraints key generation to applying pseudo random function which makes it 

hard to choose the session key form chosen weak keys.

The objective of our work is to provide a framework for secure group key 

management that outperforms the original LKH approach in terms of a rekeying 

computation effort for all application scenarios. The framework has to be secure, 

scalable, efficient, reliable, and independent o f the application, the security mechanism, 

and the communication protocol.

The main component of the framework is the key distribution technique. The main 

drawback of the LKH approach is that rekeying requires the use of encryption/decryption 

that will delay the process. Many real-time applications require very fast rekeying so that 

it is not disraptive to their performance. In addition, the LKH approach has two different 

procedures for rekeying in case of a member joining or leaving the group. Having two 

un-symmetric rekeying protocols makes it more complex for batch processing, where a 

rekeying is performed after a sequence o f requests of members joining and/or leaving the 

group (i.e., batch of updates). As previously noted, the other approaches built on top of 

LKH either increase the computation effort or are more vulnerable than the original LKH 

approach. Our objective is to introduce a key distribution technique, on top o f LKH, that 

requires much less computation effort and symmetric in both rekeying cases. In addition, 

the new technique should be as secure as the original LKH and does not introduce any 

significant increase in the communication or the storage requirements.

While the use of LKH is becoming standard practice as a group key management 

technique, and many researchers assume a balanced LKH (i.e., all leaf nodes are at the 

same level) for their cost estimates. To the best of our knowledge, no LKH maintenance 

algorithms have been proposed for any LKH degree that keeps it balanced all the time. 

Our objective is to provide LKH insertion and deletion algorithms and the associated 

rekeying protocol(s) that maintain the LKH of any degree balanced at all times.

Since the group rekeying latency is large, it is not practical to apply such process after 

each member joins or leaves the group. Instead, a batch rekeying process should be 

applied for a sequence of members joining and/or leaving the group. The rekeying 

process could be triggered periodically or when a certain condition is satisfied such as the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10

batch size exceeding a certain limit. Our objective is to extend the developed balanced 

LKH algorithms and protocols for individual updates to a batch of updates.

A central key manager becomes a central point o f both congestion and failure. For a 

scalable reliable framework, our design has to provide both central and distributed secure 

group key management mechanisms. In addition, it is essential to incorporate a recovery 

mechanism for a key manager and a group member after short times of failure. The 

mobile computing paradigm is an example where frequent short disconnection times may 

occur, due to handoffs.

1.3 Contributions

First, we presented a new generic software model for providing secure group 

communication. The model identifies five main components along with main 

functionality and interactions. The identified components are authentication manager, 

group key manager, rekey manager and the corresponding rekey client, group rekey 

channel, and cryptographic utility manager [25]. Then, we extended Java'^'^ Security with 

an application-programming interface (API) that can be used to provide group key 

manager, rekey manager, and rekey client functionality as suggested by our model. Our 

secure group key management framework is independent of the application, the security 

mechanism, and the communication protocol. The group key management framework 

requires addressing the following issue; group key distribution, rekey protocol, batch 

rekeying, distributed group key management, and group key manager recovery. We 

briefly present our approach to resolve the aforementioned issues highlighting our 

contributions.

A Key Distribution Technique

We focused on the rekey manager/rekey client protocol that uses a Logical Key 

Hierarchy (LKH) in order to provide scalable group key distribution. Similar to the 

original LKH, we assume the rekey manager (re)-generates any key independent of all 

other keys including its old version. Then, the rekey manager sends a rekey message to 

all group members. The rekey message is received by the rekey client component, and 

contains a rekey packet for every new key. The rekey client chooses which rekey packets
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to process and update his set of keys according to other guiding message information 

(e.g., the location of the new keys).

The original LKH approach encrypts a new key with either other key or its previous 

version. Instead, we proposed a novel XOR-based key distribution technique namely 

XORBP. The proposed approach uses an XOR operation between keys to reduce the 

computation effort, and uses random byte patterns (BP) to distribute the key material in a 

fixed size rekey packet to protect against insider attacks [24]. Compared to the encryption 

approach, our technique provides symmetric rekey protocols in both cases of group 

member joining and leaving. In addition, our experiments have shown that XORBP can 

achieve more than 90% reduction in the rekey message construction time, compared to 

the encryption-based key distribution technique, for the same LKH degree. For example, 

consider a news broadcast GKM that supports a group of size n = 60,000, where up to 

100 listeners could join in a sec, a listener stays tuned for few minutes, and a one block 

encryption consumes 1 msec. Using the original encryption-based LKH, where d=  4 ,h  = 

8, and R = 1000, the rekey manager’s rekey message construction time requires 32 sec. 

Using the suggested XORBP LKH approach, a rekey message construction time is 

reduced to 3.2 sec.

On the other hand, XORBP increases LKH storage, member storage, and the rekey 

communication cost (message size). Due to the un-symmetry of the encryption protocol, 

increasing the LKH degree with such protocol reduces the join rekey computation cost 

while increases the leave rekey computation cost. Using the symmetric XORBP key 

distribution technique and increasing LKH degree would not have the same constraint. 

The symmetry of XORBP protocol allows the use of a larger degree LKH, which reduces 

LKH storage, member storage, and rekey communication cost compared to a smaller 

degree LKH.

LKH Maintenance and Rekey Protocols

The research literature lacks practical LKH maintenance algorithms as well as 

algorithms for keeping it balanced. Keeping a LKH balanced is crucial to the 

performance of group rekeying especially for highly dynamic groups. We proposed two 

novel protocols for establishing and maintaining a LKH (by a rekey manager) with any
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degree as key nodes are inserted and deleted while group members join and leave the 

group. In addition, we detailed the rekey message format and construction in different 

LKH insertion and deletion scenarios as well as the different rekey client updates to 

maintain a group member set of keys. One protocol adopts a balanced LKH while the 

other adopts an unbalanced LKH that is developed for comparison.

Our protocols are based on the rekey manager assigning a unique member 

identification (individual ID) that will be used as a group member sort and search value. 

Individual identifications are sent in the rekey message to guide its processing, so they 

better be randomly generated (not from any names, IP address, or any other true 

individual identification) to prevent the possibility o f traffic analysis. In our protocols, the 

LKH plays a dual role as a key tree and an easily searchable data structure (using an 

individual ID) for the member individual material (name, IP address, k e y ,... etc).

Our first protocol maintains a LKH as a search tree (S-LKH) using the individual IDs. 

We adapt the search tree algorithms to accommodate the constraint that group individual 

materials are entries in the leaf nodes, while the internal nodes contain key-encrypting- 

key s (KEKs). Our second protocol maintains a LKH as a balanced search tree (B^- 

LKH) that has the same structure as S-LKH but guarantees that the LKH is balanced after 

every node insertion or deletion. B"̂  search trees have an extra constraint that all allocated 

nodes have to be at least half full to reduce the required tree allocated memory (storage). 

On the other hand, B’̂ -LKH maintenance introduces complexity and extra overhead in the 

rekey process.

We have performed empirical experiments to compare the rekey performance of S- 

LKH versus B^-LKH for different group sizes and LKH degrees. For individual rekeying 

(i.e., rekey after every join or leave request) the use of B^-LKH results in an increase in 

the average number of rekey packets and the average number o f encrypted keys 

compared to S-LKH. On the other hand, a B^-LKH has smaller height, and introduces a 

decrease in the maximum number of encrypted keys. The maximum number o f encrypted 

keys identifies the minimum period that has to be elapsed between two rekeyings. 

Furthermore, a B"^-LKH requires much less allocated nodes (i.e., storage) compared to S- 

LKH. The reduction of the number of allocated nodes using B'^-LKH reaches 50% of the 

number o f nodes for the same degree S-LBCH for a highly dynamic group. A complete
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h - \

LKH of degree d  and height h contains {d'' -  \ ) l { d - \ )  nodes ( ' ^ d ' ), and can fit a
1=0

group of size n < d ^ . A  leaf node contains d  individual keys, while an internal node 

contains d  key-encrypting-keys. For the aforementioned example, a GKM for 60,000 

group members and a LKH of degree = 4, the B^-LKH number of allocated nodes is 

estimated to be 42,000, (form our experiment, when d  = A, the B'''-LKH number of 

allocated nodes = 0.7 x n). On the other hand, if  a S-LKH is used, the LKH number of 

allocated nodes could increase to more than 84,000 for a highly dynamic group.

Batch Rekeying

As previously mentioned, individual rekeying is not practical. For example, if the 

inter-arrival time o f group members at the start of a session is very small, a new group 

key might be issued (by the rekey manager) before the previous key version has reached 

(or has been used by) the group members. A simple solution is periodic rekeying that 

suggests rekeying after a fixed period of time that is large enough to avoid the above 

problem. Periodic rekeying will require a rekeying for a batch o f updates (i.e, 

accumulated join and leave requests during this period). Periodic rekeying doesn’t take 

into account the batch size or the request delay. We have extended our protocols to 

support batch processing.

First, we introduced a generalized rekey policy based on three main parameters that 

determine the triggering condition for the rekeying process. The three parameters are 

batch size, maximum request delay (i.e., time between receiving the request and the start 

of rekeying), and the minimum inter-rekey period (i.e., minimum period that has to be 

elapsed between two consecutive rekeyings). The application has the flexibility o f using 

all or some o f the rekey policy parameters as a deciding factor for triggering the rekey 

process. The application type determines what blend of parameters is taken into 

consideration. We detailed the designed rekey policy definition and presented a software 

object design for secure group key management.

Next, we extended S-LKH and B"^-LKH rekey protocols for a batch o f updates. For 

individual rekeying we concluded that the use o f B'^-LKH introduces major LKH storage 

savings and slightly increases the rekey cost. Our experiments for batch of updates show
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that using B^-LKH with large batch size and/or high dynamic groups substantially 

reduces the rekey cost by more than 50% when compared to S-LKH. For example, 

assuming a balanced LKH (B'*'-LKH) the number of regenerated keys in the above 

example is estimated to be 8,000 keys, while if an unbalanced S-LKH is used, the number 

of regenerated keys can increase to more than 16,000 keys (and therefore doubles the 

LKH estimated rekeying times). In addition, our experiments demonstrate that B"^-LKH 

performance is stable (bounded) for highly dynamic groups while S-LKH performance 

deteriorates as the group dynamics increase. Such S-LKH instability is due to the fact that 

the minimum number of children o f a node is one while B^-LKH nodes need to be at 

least half full.

Distributed Group Key Management

To extend the scalability and the reliability of our model, we introduced four 

cooperating protocols of distributed group key management between peer rekey agents. 

In a group o f peer rekey agents, every agent manages a subset o f the group members and 

participates equally in generating and distributing the group key (known to all group 

members). We show that the protocol with the minimal overhead is that one rekey agent 

at a time generates and distributes the group key to all members. We provide the design 

details o f the LKH maintained at every agent for the different cooperation scenarios.

If  any rekey agent is required to update all group members o f a new group key, a 

naive approach is that every agent maintains (replicates) the group LKH. Instead, we 

proposed the creation o f agents’ LKH (A-LKH) that reduces the replicated LKH size, and 

the number of maintained keys at a group member. Moreover, we discussed two different 

approaches for maintaining A-LKH namely dynamic A-LKH and static A-LKH. The first 

approach, dynamic A-LKH, allows a flexible agent join and leave but has a drawback of 

(sometimes) updating (some) group members when a rekey agent joins or leaves the 

agents’ group. While, in the second approach, static A-LKH, the maximum number of 

rekey agents has to be known before starting the session and updating A-LKH is 

transparent to all group members.
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Group Key Manager Recovery

Finally, we suggested a recovery protocol o f a group key manager (agent) after a 

short time o f failure. Although the group key manager state (e.g., LKH) could be 

recovered by collecting the state stored at all group members (and rekey agents), we 

introduced the use o f a log file to facilitate such recovery in ease of member failures or 

inconsistency. The logging system avoids writing any key or revealing any random 

number generator information. The log file is used to recover the last rekey policy, the 

rekey scheduler state, and the shape of LKH (without keys). The group members 

participate in the recovery phase by sending at least one encrypted recovery message to 

their rekey manager. The recovery message sent by a group member contains his set of 

maintained keys. Noticing that many LKH keys are stored by more than one group 

member (e.g., the group key is maintained by all group members), we introduced a key 

selection technique for group members to reduce the number o f sent keys in a reeovery 

message while allowing the group key manager to retrieve all LKH keys. The proposed 

logging and recovery mechanism is secure and easy to implement. The recovery of a 

group member after short time o f failure can be treated as the member leaving the group 

then joining later. If  no rekeying is initiated between the leave and join requests, the 

group member state is refreshed (i.e., sending him the same set of keys he was holding). 

In this case, refreshing a group member optimizes the rekey process by reducing the 

number of changed keys. Such refreshing requires the group member to provide his 

individual ID and key.

In summary our contributions can be summarized as follows:

1) A generic software model for secure group key management that identifies the main 

eomponents and their functionalities and interaetion. Extending Java'^“ security with 

an API that can be used to provide the group key manager, the rekey manager, and 

the rekey client functionality suggested in our model.

2) A simple key distribution technique XORBP that can be used with the Logical Key 

Hierarchy (LKH) approach for group key management. Our experiments show that, 

compared to the original encryption technique for key distribution, XORBP has
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symmetric rekey procedures for join and leave, and can achieve more than 90% 

reduetion in the rekey message construction time [24],

3) Two LKH protocols for group individual rekeying (i.e., after each join or leave 

request) that details the LKH insertion and deletion algorithms, and the rekey 

message format and construction performed by a group rekey manager. In addition, 

the protocols detail the rekey elient updates performed by the eomponent that reeeives 

the rekey message at a group member. Our first protocol adopts an unbalanced LKH 

(S-LKH) while the other adopts a balanced LKH (B"^-LKH). Our experiments show 

that B^-LKH reduces the required LKH storage while slightly increases the individual 

rekeying cost compared to S-LKH. The reduction o f the number o f allocated nodes 

using B^-LICH reaches 50% of the same degree S-LKH for a highly dynamic group 

[25].

4) For batch processing (sequence of join and/or leave requests): first, we formalized a 

definition of a flexible rekey policy that has three main parameters: batch size, 

maximum request delay, and minimum inter-rekey period. Then, we provided a 

simplified view of the software objects used to provide secure group key 

management. Next, we extended the above two protocols (S-LKH and B^-LKH) to 

support batch rekeying. Our experiments for batch of updates show that using a 

balanced LKH (B'^-LKH) with large batch size and/or high dynamie group 

substantially reduces the rekey computation and communication cost by more than 

50% when compared to an unbalanced LKH (S-LKH). In addition, our experiments 

show that B'^-LKH performance is stable (bounded) for highly dynamic groups while 

S-LKH performance deteriorates as the group dynamics increases.

5) We introduced four cooperating protocols o f distributed group key management 

between a group of peer rekey agents, and detailed the maintained LKH and the 

group rekey overhead for each model. We introduced the use o f agents’ LKH (A- 

LKH) to reduce the size of the replicated LKH maintained at each agent over a naive 

approach (used in two o f the above protocols). In addition, we proposed two 

techniques for A-LKH maintenance, one allows a transparent agent join or leave to 

group members and the other is not transparent (group members might be 

affeeted/notified).
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6) Finally, we proposed a logging and recovery mechanism for the group key manager 

and the rekey manager. The proposed technique is secure and easy to implement. 

Group members participate in the recovery of their group key manager by sending 

one recovery message (in most cases). A key selection technique is proposed for a 

group member to reduce the size and overhead of the recovery message. In addition, 

we discussed the recovery o f a group member after a short time of failure.

1.4 Outline

The rest of this dissertation is organized as follows. Chapter II presents related work 

to secure group communication and secure group key management. Chapter III 

introduces the software model for secure group key management and presents the new 

key distribution technique XORBP. In addition, the experimental results for comparing 

XORBP key distribution technique with the encryption-based technique are presented. In 

Chapter IV, we detail the designed rekey protocols. The first protocol adopts an 

unbalanced LKH (S-LKH) while the second protocol adopts a balanced LKH (B^-LKH). 

We present the rekey message format, the LKH data structure, the LKH maintenance 

algorithms along with the rekey message construction for both protocols, and the rekey 

client update procedures for B^-LKH protocol. Moreover, the experimental results for 

comparing the two protocols for individual rekeying are presented. In chapter V, we 

introduce a rekey policy definition and implementation, and highlight the extension of 

B^-LKH rekey protocol for batch processing. Furthermore, the experimental results for 

comparing S-LKH and B^-LKH protocols for batch rekeying are presented. Chapter VI 

presents the extended model for distributed group key management. In addition, we 

discuss the recovery of a group member after a short time of failure as well as the 

proposed recovery protocol for the group key manager. Finally, chapter VII concludes 

this dissertation summarizing our contributions and presenting ideas for future 

extensions.
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CHAPTER II 

RELATED WORK

In chapter I, we identified the main requirements and issues for providing secure 

group key management. In a general model, there is a group manager responsible for 

generating and distributing a group key to all group members. The group manager is also 

responsible for changing and redistributing (i.e., rekeying) the group key when it deems 

necessary. The group key has to be changed to prevent new (old) group members from 

accessing previous (future) group communication. Secure group key management has to 

be scalable and reliable. A major scalability problem occurs when a rekeying is 

performed to revoke a group membership. A naive solution allows the group manager to 

perform n encryptions to distribute a new group key to a group o f n members.

In this chapter, we present relevant related work to the secure group key management 

problem. First, we present two (classical) problems similar to group key distribution. 

Section 2.1 presents the secure broadcasting problem, while section 2.2 presents the 

contributory group key agreement problem. As previously noted, secure group 

communication is categorized by IETF as secure multicast. Section 2.3 summarizes the 

lEFT group key management standard. In addition, we summarize the recent research 

work for secure group key management. The approaches for solving the scalability 

problem, identified above, can be categorized as physical distributed management 

(section 2.4) and the logical key hierarchy approach (section 2.5). Moreover, section 2.6 

summarizes several related topics to secure group communication such as multicast 

IPsec, group policy, group access control, group data-origin authentication, and rekey 

transport protocols. Finally, section 2.7 summarizes this chapter.

2.1 Secure Broadcasting

Secure broadcast is motivated by the main property of a broadcast channel, that is a 

single transmission from a source station can be received simultaneously by many 

destination stations. Secure broadcast is defined as the sender wishing to broadcast a
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secret to some subset o f his receivers. Meanwhile, the sender does not perform a separate 

encryption either o f the secret or o f a single key with which to protect the secret, for each 

o f the intended recipients.

Secure lock [15] proposes the locking concept and a secure lock implementation 

based on the Chinese remainder Theorem. The proposed scheme is efficient only when 

the number o f users in a group is small, since the time to compute the lock and the length 

o f the lock (hence the transmission) is proportional to the number o f users.

Berkowis [7] provided a generalized model for a predefined scheme for secure 

broadcasting that uses polynomial interpolation for secret sharing. The general model 

assumes each receiver has a unique pseudo-share (secret) with the sender. The sender 

broadcast a set o f shares, while each subscribed receiver adds his pseudo-share, as a 

possible share, to the received shares. If  that pseudo-share is an actual share he recovers 

the secret, and if  it is not he doesn’t recover the secret. Some examination of the security 

o f his scheme is still necessary. Gong [26] tries to add authentication, integrity check, and 

freshness assurance to the message o f a modified version o f the polynomial method.

Fait and Naor [22] introduce theoretical measures for the qualitative and quantitative 

assessment of the encryption schemes designed for broadcast transmissions. The work 

considers a scenario where there is a center and a set of users. The center provides the 

users with pre-arranged keys when they join the system. At some point the center wishes 

to broadcast a message to a dynamically changing privileged subset o f the users. The 

obvious solution is to give every user its own key and transmit an individually encrypted 

message to every member o f the privileged class. This requires a very lengthy 

transmission. The other simple solution is to provide every possible subset of users with a 

key. This requires every user to store a huge number of keys. The authors provide 

solutions, which are efficient in the two measures, transmission length, and storage at the 

user’s end. In addition, the schemes should be computationally efficient. The security 

parameter was defined to be the length of the key. Another defined parameter is the 

number o f users that have to collude so as to break the scheme. For a given parameter k, a 

k-resilient scheme should be resilient to any subset of k  users that collude and any disjoint 

subset o f any size of privileged users.
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2.2 Contributory Group Key Agreement

There are two types o f group key agreement, centralized or contributory. In 

centralized techniques, the entire key generation is performed by a single entity (which 

actually translates into key distribution, not key agreement). On the other hand, in a 

contributory key agreement, each group member makes an independent contribution to 

the group key. The contributory key agreement model is usually based on a 

generalization of Diffie-Hellman (DH) key agreement protocol to a group [37], [61]. DH 

is a public-key system that allows two individuals to agree on a shared key, even though 

they can only exchange messages in public. Group DH generally require sending several 

messages, exchanges, and the key is generated and distributed after several rounds. These 

protocols are suitable for small size peer groups. While they are not suitable for one-to- 

many (one sender and many receivers) type of applications, applications with a 

heterogeneous environment where member computation power and bandwidth varies. In 

addition, since the rekey latency (delay) is very large, they are not suitable for highly 

dynamic and/or large groups where frequent re-keying is necessary.

2.3 Standardized (IETF) Group Key Management

The Group Key Management Protocol (GKMP) [35], [36] is an application level 

protocol, independent of the underlying communication protocol. The creation and 

distribution of the group key require assignment of roles. The two primary roles are those 

of key distributor and member. The protocol identifies what functions the individual 

hosts perform in the protocol. The controller initiates the creation of the key, forms the 

key distribution messages, and collects acknowledgement o f key receipt from the 

receiver. The member waits for a distribution message, decrypt, validate, and 

acknowledges the receipt of the new key.

Baugher et al. [6 ] present a group key management architecture for multicast security 

that is based upon the group controller model with a single group owner as the root-of- 

trust. The group owner designates a group controller for member registration and rekey. 

The framework and the architecture allow for a modular and flexible design of group key
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management protocols for variety different settings that are specialized to application 

needs.

Hardjono et al [29] propose a reference framevv^ork and problem areas for secure IP 

multicast protocol suites and define a breakdown to functional building blocks for such 

protocol suites. They define three problem areas; multicast data handling, management of 

the keying material, and multicast security policies. Group key management building 

blocks following the reference framework are described in [28], [33].

2.4 Distributed Group Key Management

Ensemble [57] is a group communication system built at Cornell University, and is a 

descendant from an earlier system named Hours, that is descendant from the Isis system. 

The system allows processes to create process groups in which scalable reliable FIFO- 

ordered multicast and point-to-point communication are supported. A process group 

coherently binds together many processes into one entity. Processes may dynamically 

join and leave a group. Ensemble is a user-level library linked to an application, and is 

divided into many layers each implementing a simple protocol. Stacking together these 

layers, the user may customize the system to suite its needs. All members in a group must 

have the same stack to communicate. Ensemble group communication has inherently 

limited scalability, and scales to 100 members. Rodeh et al. [57] describe the security 

protocols and infrastructure o f Ensemble. A completely distributed and fault-tolerant 

algorithm for the management o f Ensemble group keys (arranged as LKH) is described in 

[56].

lolus [49] is a scalable, general-purpose framework that can be used for either secure 

multicasting or multicast key management. lolus discards the idea of large flat secure 

multicast group and replaces it with the notion of a secure distribution tree that is 

composed of multiple smaller secure multicast subgroups arranged in a hierarchy. 

Together these subgroups form a single virtual secure multicast group. The glue that 

holds the subgroups together consists o f the Group Security Agents (GSAs) that manage 

each subgroup. The GSAs cooperate to invisibly deliver all multicast data securely to
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each o f the subgroups, thereby creating a single secure multicast image for the senders 

and receivers.

Versakey [64] is a middleware framework for secure multicasting. The framework 

presents three closely related schemes for key distribution and management, ranging from 

tightly centralized to completely distributed. The framework also provides a set of 

efficient transitions from one scheme to another. All approaches organize the space of 

keys that will eventually be assigned to group members in a unique way, without actually 

generating the keys before they are needed.

DISEC [21] proposes a distributed key management scheme for many-to-many secure 

group communication. The framework uses one-way function trees for key distribution 

and management. DISEC proposes a localized ID assignment scheme thereby eliminating 

the need for a centralized group controller. Each member generates its own key thereby 

contributing a secret towards the computation o f the root key. In addition, DISEC doesn’t 

have a single point o f control, attack, or failure.

2.5 Logical Key Hierarchy

Wong et al. [67] present a novel solution to the scalability problem of group key 

management. They introduce key graphs and its special type, a key tree, to specify secure 

groups. It is assumed that a tmsted and secure key server is responsible for group access 

control and key management, and the key server uses key graphs for group key 

management. A key graph is a directed acyclic graph with two types o f  nodes, w-nodes 

representing members and A:-nodes representing keys. A member is given key k  if  and 

only if  there is a directed path from w-node u to k-node k  in the graph. In addition, they 

present three rekeying strategies, user oriented, key oriented, and group oriented 

join/leave protocols based on these strategies. The strategies are scalable to large groups 

with frequent joins and leaves. In particular, the average server processing time per 

join/leave increases linearly with the logarithm o f group size. The key tree is widely used 

and known as a logical key hierarchy (LKH).

Representing a binary LKH as a one-way function trees (OFTs) is introduced in [2]. 

In comparison with LKH, OFT algorithm reduces half the number o f bits broadcast by
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the manager per add or evict operation. The OFT has the option o f member contributions 

to the entropy of the common communication key. On the other hand, OFT raises some 

interesting questions about the security o f function iterates, and that of bottom-up one­

way function trees.

Key management using a Boolean function minimization technique, introduced in 

[13], is similar to the LKH scheme in the sense that it uses smart distribution o f keys to 

achieve good scaling. However, instead o f using a fixed hierarchy o f keys, they 

dynamically generate the most suitable key hierarchy by composing different keys. The 

paper focuses explicitly on the problem o f cumulative member removal and proposes a 

scheme that can be used to find the minimum number o f messages required to distribute 

the new keys to the remaining group members. An advantage o f their scheme is that the 

controller has to maintain only 0 (log 2  n ) keys as opposed to 0 (w), where n is the number 

o f members in the group. Due to the minimal number o f auxiliary keys that this key 

management maintains, it may be susceptible to collusion attacks. In a collusion attack, a 

set of members previously removed from the group collude and by combining their sets 

o f keys may be able to obtain the current valid set of keys, thereby being able to continue 

unauthorized receipt of group communication.

Loptsiech et al. [46] describes a key management mechanism for group 

communication sessions that is based on the “Subset-Difference” algorithm. The Subset- 

Difference algorithm is especially suitable for stateless receivers. Its main advantage over 

LKH is that it requires to transmit only 2 x r  keys instead of 2  x r  x log 2  n keys in order 

to revoke r users from a set of n users, regardless o f the coalition size, while maintaining 

a single decryption at the user’s end. In return, it requires every receiver to store 

log 2 (2 xn ) keys instead of logj nkeys. The receiver needs to employ 1 decryption for 

every rekeying event plus log 2  n applications o f a pseudo-random generator. Chen and 

Dondeti [14] study the advantage and applicability of statefull and stateless rekeying 

algorithms to different applications. An analytically comparison is presented o f the 

storage eost and the rekeying cost o f LKH and the Subset-Difference revocation 

algorithm in immediate and batch rekeying scenarios.
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Canetti et al. [11] present a rekeying protocol for wide range o f efficiency 

requirement with respect to several parameters. An upper bound is deduced in the 

tradeoff between storage and communication parameters In addition, lower bounds are 

presented on the tradeoff between communication and user storage. Moreover, the 

proposed scheme is shown to be almost optimal with respect to these lower bounds. The 

security o f their scheme can be reduced to the strength or the security o f  the pseudo­

random function used in the computation. Repeated applications o f a pseudo-random 

function, to the input will make it difficult (for the group controller) to guarantee that the 

root key is not from a weak key space.

Another improved LKH algorithm, LKH+2, is proposed in [55], where a group 

manager can use keys already in the tree to drive new keys. LKH+2 achieves K  x log^ n 

message size for leave operations, where K  is the size o f a key.

Selck et al. [58] present a modification to the LKH scheme where the new approach 

proposes an organization o f the LKH trees with the respect to the members’ compromise 

probabilities instead of keeping a balanced tree, in a spirit similar to data compression 

techniques such as Huffman and Shannon-Fano coding.

2.6 Additional Secure Group Communication Issues

In this section we present the following additional secure group communication 

issues: multicast IPsec, group policy, group data-origin authentication, rekey transport 

protocols, and secure multicast services.

2.6.1 Group/Multicast IP Security (IPsec)

IPsec [41] is designed to provide interoperable, cryptographically based security 

services for IPv4 and IPv 6 . These services are provided at the IP layer, offering 

protection for IP and/or upper layer protocols (e.g. TCP, UDP, ICMP, etc). These 

objectives are met through the use of two traffic security protocols, the Authentication 

Header (AH) [42] and the Encapsulating Security Payload (ESP) [43], and through the 

use of cryptographic key management procedures and protocols. These mechanisms are
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designed to be algorithm-independent with a specified standard set o f default algorithms 

to facilitate interoperability in the global Internet.

IPsec security services can be provided between a pair of communicating hosts, 

between a pair of communicating security gateways, or between a security gateway and a 

host. The protection offered is based on requirements defined by a Security Policy 

Database (SPD) established and maintained by a user or system administrator. Packets 

are selected for one o f three processing modes based on IP and transport layer header 

information matched against entries in the SPD. Each packet is either afforded IPsec 

security services, discarded, or allowed to bypass IPsec.

Afforded IPsec packets (use o f AH and/or ESP) make use o f Security Associations 

(SAs). SA is a simplex connection that affords security services to the traffic carried by 

it. The Security Association Database (SAD) contains parameters that are associated with 

each active SA to specify the security services to be provided, protocols to be employed, 

and algorithms to be used. The Internet Security Association and Key Management 

Protocol (ISAKMP) [47] defines the procedures and packet formats to establish, 

negotiate, modify and delete security associations (SAs). Theses formats provide a 

consistent framework for transferring key and authentication data which is independent 

of the key generation technique, encrjqition algorithm and authentication mechanism. The 

Internet Key Exchange (IKE) [32] is an ISAKMP to negotiate, and provide authenticated 

key material for security associations in a protected manner.

Extending IPsec to support secure (multicast) groups is not standardized, however, 

there are several drafts try to extend IPsec to such support. Canetti et al. [9] propose an 

architecture for secure IP multicast that mimics the IPsec architecture, and re-uses exiting 

IPsec mechanisms wherever possible.

The IPsec ESP provides a set o f security services that include data origin 

authentication, which enables an IPsec receiver to validate that a received packet 

originated from a peer-sender in a pair-wise SA. However, for secure IP multicast groups, 

ESP supports only “group authentication” and does not support data-origin 

authentication. Multicast ESP (MESP) [5] is an extension o f the ESP transform for 

multicast data-origin authentication. Canetti et al. [12] propose another MESP transform
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in addition to an Application MESP (AMES?) that is designed to work in the 

application/transport layer.

Similar to ISAKMP, the Group Secure Associate Key Management Protocol 

(GSAKMP) [34] defines the message passing requirements to provide mechanisms to 

disseminate group policy, perform access control decisions during group establishment, 

generate group keys, recover from the compromise o f group members, delegate group 

security functions, and destroy the group. In GSAKMP group responsibilities are 

decomposed into authorized roles. Roles are defined for Group Owner, Group Controller, 

SubGroup Controller, and Member.

2.6.2 Group Policy

Security policy is a statement of the rules enforced by security mechanisms. Policies 

can be described by whom they cover and by what they cover. Group security policy can 

be static or it can be dynamic and tailored to the requirements o f the group.

Hardjono et al. [30] define group security policy expressed in the form o f policy 

token or policy certificate. It describes the elements that make-up an instance o f group 

policy and explains the intended functions o f each element.

The Antigone framework [48] provides an interface for the definition and 

implementation of a wide range o f secure group policies. Policies are implemented by the 

composition and configuration of a defined set o f mechanisms that provide the basic 

services needed for secure groups. Antigone provides mechanisms for providing the 

following functions; authentication, member join, session key and group member 

distribution, application messaging, failure detection, and member leave.

The Dynamic Cryptographic Context Management (DCCM) [19] provides a policy- 

based security for large ( 1 0 0 , 0 0 0  members), dynamically changing groups of 

participants. In DCCM, groups at all levels have policies. These policies are represented, 

negotiated, managed, and an unambiguous set o f mechanisms and configuration (called a 

cryptographic context) is created to make particular interactions possible subject to these 

policies.
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2.6.3 Multicast Group Access Control

Multicast communication provides one-to-many and many-to-many communication 

[18]. There are a number o f available multicast routing protocols that provide the 

efficient transport mechanisms o f multicast by routing packets with one group destination 

address to multiple recipients. A host uses the Internet Group Membership Protocol 

(IGMP) to notify the routing system that it should deliver packets for a particular 

multicast group to this host. Gong and Shacham [27] discuss threats, requirements for 

security, and some trade-offs between scalability and security. They outlined the 

fundamental security issues in building a trusted multicast facility such as protecting 

traffic, controlling participation, and restricting access o f unauthorized users.

IGMP operates in a different portion of the network from the multicast routing 

protocol. IGMP operates between hosts and edge routers. Moffaert and Paridaens [50] 

discuss security aspects in IGMPv3. Coan et al. [16] propose an application-level secure 

multicast technique that addresses some o f the limitations of end-to-end secure multicast. 

The technique has a defense against denial-of-service attacks by using a secure extension 

to IGMP. Ballardie [3] describes how a Core Based Tree (CBT) multicast protocol can 

provide for secure joining o f a CBT group tree.

Gothic [39] is an architecture for providing group (receiver) access control. Gothic is 

composed o f two systems; the group policy management system and the group member 

authorization system.

2.6.4 Group Data-Origin (Source) Authentication

The problem of stream authentication is solved for the case o f one sender and one 

receiver. The sender and receiver agree on a secret key, which is used in conjunction with 

a message authenticating code (MAC) to ensure the authenticity of each packet. In case 

of multiple receivers, however, the problem becomes much harder to solve, because a 

symmetric approach would allow anyone holding a key (that is, any receiver) to forge 

packets. Alternatively, the sender can use digital signatures to sign every packet with its 

private key. This solution provides adequate authentication, but digital signature are 

prohibitively inefficient.
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Wong and Lam [6 8 ] present a chaining technique for signing/verifying multiple 

packets using a single signing/verification operation. Gennaro and Rohatgi [23] present 

two solutions to the problem of authenticating digital streams. The first one is for the case 

of a finite stream, which is entirely know to the sender. The second case is for a 

potentially infinite stream, which is not known in advance to the sender.

TESLA [53] is a secure sender authentication mechanism for multicast data streams. 

It provides authentication of individual data packets, regardless of the packet loss rate. In 

addition, TESLA features low overhead for both the sender and the receiver, and does not 

require per-receiver state at the sender. For TESLA to be secure, the sender and the 

receiver are required to be loosely time synchronized. Loosely time synchronized means 

that the synchronization does not need to be precise, but the receiver musk now an upper 

bound on the dispersion (the maximum clock offset). Perrig et al. [54] propose several 

substantial modifications and improvements to TESLA.

2.6.5 Reliable Group Rekey Transport Protocols

Group re-keying involves two operations -  key encoding and key distribution. The 

key-encoding phase involves generating a set of encrypted keys that have to be 

transmitted to the members of the group. The key distribution phase is concerned with 

packing these encrypted keys into packets and delivering the packets to the members of 

the group in a scalable, reliable, and timely manner. Although reliable multicast transport 

protocols such as RMP [6 6 ] can be used for reliable delivery o f such packets, the reliable 

key delivery problem has some characteristics that can be exploited to design custom 

protocols that are more light-weight in nature. Possible tailored solutions to the reliable 

group key distribution problem are presented in [60] and [70].

2.6.6 Other Secure Multicast Service

The SecureRing [44] group communication protocols provide reliable ordered 

message delivery and group membership services despite faults caused by modifications 

to the programs o f a group member following illicit access to, or capture of, a group 

member (called Byzantine faults).
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Non-repudiation is a proof of delivery that the receiver did indeed receive data when 

they might deny reception. Using the Nark scheme [8 ], each multicast receiver can 

reliably prove whether any fragment o f the data hasn’t been delivered or wasn’t delivered 

in time. Further, each receiver’s data can be subject to an individual watermarked audit 

trail. This provides a deterrent against a receiver giving away or re-selling either the keys 

or the decrypted data.

2.7 Summary

In this chapter, we presented relevant related work to the secure group key 

management problem. We presented two classical problems related to the group key 

distribution problem: secure broadcasting and contributory group key agreement. In 

addition, we summarized the lETF’s group key management standard. Furthermore, we 

presented the different approaches for distributed group management. Moreover, we 

summarized the logical key hierarchy (LKU) approach for scalable group key 

distribution, and several variations. Finally, we presented a summary of other related 

topics such as multicast IPsec, group policy, group access control, group data-source 

authentication, and rekey transport protocols.
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CHAPTER III

XORBP: A NOVEL GROUP KEY DISTRIBUTION TECHNIQUE

In this chapter, we present the contributed software model for providing (central) 

secure group communication. The model identifies the main software components along 

with their functionalities and interactions. We focus on the details o f the rekey manager 

that generates the shared group key and distributes it to all group members. A rekey 

(change of group key) is necessary when a member joins the group to prevent him from 

accessing group communication sent before he joined (such operation is denoted join  

rekey). A  rekey is also necessary when a member leaves the group to prevent him from 

accessing further group communication (such operation is denoted leave rekey). We 

highlight the two traditional rekey management techniques namely star and logical key 

hierarchy (LKH). The traditional group key management systems used to encrypt a newly 

generated key with other key (such as the key’s previous version or a group member key) 

before distributing it to group members. We demonstrate the drawbacks o f encryption- 

based key distribution techniques (KDT) such as having a non-symmetric join and leave 

rekey costs, and being not scalable when used with star or high degree LKH key 

management. Moreover, we present our novel XOR-based KDT, namely XORBP. The 

proposed approach uses bit XOR operation between keys to reduce the computation 

effort, and random byte patterns (denoted BPs) to distribute the key material in a fixed 

size rekey packet. We demonstrate that XORBP is symmetric in the join and leave rekey 

operations. Furthermore, we empirically study and compare the cost o f the encryption- 

based and XORBP KDTs. Our experiments have shown that XORBP can achieve up to 

87% reduction in the rekey time compared to an encryption-based KDT.

The rest o f the chapter is organized as follows. Section 3.1 presents a generic 

software model for secure group communication. Section 3.2 discusses star and LKH 

rekey management techniques, and studies the properties of the traditional encryption- 

based KDT. Section 3.3 introduces XORBP the proposed group key distribution 

technique. Section 3.4 demonstrates how XORBP can be used with LKH. Section 3.5 

presents scenarios and comparison of the new key distribution technique versus the
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traditional approaches. Section 3.6 analyses and eompares the cost estimates o f XORBP 

versus the encryption-based KDT. Section 3.7 presents the experimental results 

confirming the analyzed estimates. Finally, the chapter is concluded in section 3.8.

3.1 Secure Group Key Management Components

Fig. 2 illustrates the designed model of the software eomponents for secure group key 

management. The authentication manager is responsible for ensuring the identity o f the 

group members defined according to the group policy. The authentication manager could 

receive a request from a group member to join the group, or could be in charge o f inviting 

the members to join the group. Afterwards, it applies an authentication protocol (using 

long-term keys) to decide whether to accept or reject a member. In addition, it negotiates 

the session parameters, such as the protocols and implementation used, and establishes a 

session individual key with every new member. Moreover, the authentication manager 

could be in charge of ending a member’s participation in the session, according to a 

defined policy, a request from the member himself, or due to detected member 

communication failure.

The authentication manager notifies the group key manager (GKM) o f every member 

removal, and every new member addition along with that member’s individual key. GKM 

applies a group rekey policy, as to when to change the group key {GK). Different policies 

determine whether rekeying is necessary when a member is added and/or removed, or 

whether it is performed periodically. In addition, the rekey policy could determine the 

batch size (number of added and/or removed members), or the rekey period. For example, 

a rekey startup policy configures the group key manager to wait a certain amount of time 

before starting the creation o f the group key to avoid a startup implosion scenario. When 

a rekey is necessary, GKM asks the rekey manager to generate new GK along with the 

rekey message RM to be sent (broadcast) to all group members for such GK update.

In our model, we assume when a new member joins the group he receives an initial 

key message that is sent through his private channel. Afterwards, the rekey manager 

sends (broadcasts) a RM to all group members (including the new member), through a 

group rekey channel that updates GK. When a group member leaves (or is evicted from) 

the group, only one RM is sent to the remaining group members. The group rekey
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channel implementation should guarantee message reliability, integrity, freshness, and 

source authentication. In addition, it should synchronize GK between all group members.

new GKadd/remove a member

add and/or remove 
members (batch)

Group Manager

Group Member

new GK
Rekey Client

Rekey ManagerGroup K ey Manager

Authentication Manager

Cryptographic Utility Manager

Cryptographic Utility Manager

Fig. 2. Secure group key management software components.

Note that the authentication manager, the group key manager, and the rekey manager 

could be (all or some) software components running on the same machine, or could be 

software components running on different machines and communicating through network 

channels and protocols.

The rekey client is the group member component that receives RMs and maintains 

GK. Both the rekey manager and the rekey client immediately notify a cryptographic 

utility manager with a change of GK. The cryptographic utility manager is responsible for 

providing different group security services to the application. The cryptographic utility
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manager has an Application Program Interface (API) that is used by the application to 

provide different security services. The cryptographic utility manager could derive 

several group keys (from the shared GK) for different uses, such as group encryption, 

message integrity, and authentication. Note that, the cryptographic utility manager is 

needed at the group manager if  it will act as a group member.

3.2 Traditional Rekey Manager

The tradition approaches for providing central group rekey management either uses a 

star key management or a logical key hierarchy (LKH). Both approaches use encryption- 

based key distribution technique as explained next.

3.2.1 Star Rekey Manager

A star rekey manager for a group o f n members maintains one group key GK, and n 

individual keys one for every group member. Every group member i maintains two keys, 

GK and his own individual key K ..

If  a new member (n + 1) joins the group, the rekey manager changes (regenerates) 

GK to be G K ', and sends a RM that has two encrypted^ keys [{GK }GK,[GK }K „ ^).

The first encryption is the new GK ( G K ') encrypted with the previous group key, and is 

decrypted by old group members to retrieve G K '. The second encryption is GK' 

encrypted with the new member individual key , and is decrypted by the new

member to retrieve G K '.

When member n leaves the group, the rekey manager sends a RM that has {n -1 )

encryptions of the new group key [{Gi^ }K,.,1 < i<  (n -1 )] . Bach individual encryption is

decrypted by the associated group member’s key to retrieve the new group key.

Fig. 3 illustrates an example o f the keys maintained by a star rekey manager for 9 

members. If  a new member joins the group and his individual keyK^ is to be inserted,

GK is regenerated, and a RM that has two encrypted keys [{GK }GK,{GK }Kg{ is

{M}K  denotes the message M  is encrypted with the key K.
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constructed and distributed to group members. If  that member leaves the group, his 

individual key . ^ 9  is deleted, a new group key GK is regenerated, and a RM is 

constructed and distributed to group members. In this case, the RM has 8  encrypted keys 

{ { G K } K , A G K ^ K , , { G K } K , , { G K } K , , { G K } K , , { G K ] K , , { G K } K , , { G K ' ' ) K , ] .

We can conclude this technique does not provide a scalable RM construction cost 

since the cost (time and size) when a member leaves the group increases linearly with the 

group size.

GK

Fig. 3. The keys maintained by a star rekey manager for 9 members.

3.2.2 Logical Key Hierarchy (LKH) Approach for a Rekey Manager

A LKH rekey manager maintains one group key GK,  an individual key for every 

group member, and a set of key-encrypting keys (KEKs) used for scalable rekeying. A 

LKH of a specified degree d  is constructed such that GK is the root o f the hierarchy, and 

every individual key represents a leaf node. Fig. 4 illustrates a LKH of degree J  = 3 and 

height A = 2 for 9 members, where the root node represents GK and the leaf nodes 

represent the members’ individual keys.

Every group member holds the set o f keys at the nodes that fall in the path that leads 

to the root, starting from his individual leaf node key. To guarantee perfect backward 

secrecy, if a new member joins the group his individual key is inserted in the hierarchy
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and all the keys on the path from his individual key leaf node to the root are regenerated. 

Similarly, to guarantee perfect forward secrecy, if  a member leaves the group, his 

individual key is deleted from the hierarchy and all the keys he was holding are 

regenerated. In both cases, the rekey manager needs to construct a RM that contains such 

keys update. The constructed RM will contain a rekey packet for every new (regenerated) 

key.

For example, in Fig. 4 if  a new member joins the group and his individual keyATjj is 

to be inserted, two keys need to be regenerated K-̂  and GK. The RM in this case has two 

rekey packets for the two new keys, [{K^}K^,{K'^)K^j] and [{GK }GK,{GK }K'^] . The 

first rekey packet has two encryptions of K ^, the first encryption is decrypted by old 

group members (who maintain K ^) to retreive Kj ,̂ and the second encryption is 

decrypted by the new member’s individual key to retrieve K ^ . Similarly, the second

rekey packet has two encryptions o f GK,  the first encryption is decrypted by all old group 

members to retreive GK' , and the sencod encryption is for the new member (after he gets 

K ^). On the other hand, if  that member leaves the group and his individual key K̂  ̂3  is to 

be deleted, the same two keys need to be regenerated. The RM in this case has the two 

rekey packets [{Kl}Ki„{Kl}K^^]  and [{GK"}K^,{GK"}K2 ,{GK"}K',].  The new keys 

K'{ and GK  can no longer be encrypted with their previous versions since the leaving

member already knows them, instead every new key is encrypted individually by each 

sibiling node key (after deleting the individual key node o f the leaving member).

We can see that when using LKH and inserting K^ 3  the RM has 4 encrypted keys

compared to only 2 in the star rekey manager. On the other hand, when deleting K^ 3 the

RM has 5 encrypted keys compared to 8  in the star rekey manager.
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-3.3■2.2 -3.2-2..3

GK

GK KEK individual key

Fig. 4. A LKH of degree = 3 and height A = 3 for a group of 9 members.

3.2.3 Encryption for Key Distribution

The traditional technique for distributing the group key in the above two rekey 

managers (star and LKH) is the use of encryption. The star rekey manager, for a group of 

n members, performs 2  key encryptions when a new member joins the group and 

performs {n - 1) key encryptions when a member leaves the group to construct a RM that 

updates GK. The leave rekey cost, using star rekey manager, increases linearly with the 

group size n increase.

A rekey manager that maintains a LKH of degree d  and height A, for a group o f n 

members, performs (at most) ( 2  x h) key encryptions when a new member joins the 

group and performs (at most) (J  x A - 1 ) key encryptions when a member leaves the 

group. If the LKH is a complete tree for n members then the height h = log^ n . The 

rekey cost is logarithmic in the group size n in both the join and leave cases, which is a 

scalable solution. Although the use of LKH provides a scalable group rekey solution, the 

cost o f join and leave rekeyings are not symmetric. In addition, increasing the degree of 

the hierarchy d  that decreases its height h and leads to a decrease o f the join rekey cost 

while increases the leave rekey cost. For example, for a group o f size n = 512 members, a 

LKH of degree = 2 is of height h =9 (assuming it is constructed as a complete tree), 

while a LKH of degree J  = 8  is of height A = 3. In the first case, d = 2 ,  the join rekey cost
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is 18 encrypted keys and the leave rekey cost is 17 encrypted keys. On the other hand, 

when <7=8 the join rekey cost is 6  encrypted keys (1/3 the first case) and the leave rekey 

cost is 23 encrypted keys (4/3 the first case, and 4 times the join case). Wong et al. 

proved that the optimal LKH degree is 4 when enciyption is used [67].

3.3 XORBP: A Novel Group Key Distribution Technique

Brute force techniques used to guess a key have to search on the average half the key 

space. Unless plain text is provided, the analyst must be able to recognize plain text as 

plain text. If  the message is just plain text in English, then the result pops out 

immediately (although the task o f recognizing English would have to be automated). If  

the message is some more general type o f data, such as a “numerical” data, the problem 

becomes even more difficult to automate.

From the above observation, we can notice that all techniques that encrypt the new 

GK  by any other key (previous GK,  individual key, or KEK) do uimecessary work, and 

the same security can be achieved with much less computation effort. The new proposed 

computation method will use bit XOR operation between two keys instead o f encrypting 

one with the other. The XOR operation is sufficient to protect the key material from 

outsider attacks (members outside the group) but doesn’t protect individual key material 

from insider attacks (members inside the group). Hence, to protect from insider attacks, 

we suggest distributing the key material in random byte patterns (BPs) in a fixed size 

rekey packet.

3.3.1 Why XOR

Assume C -  A ®  B , where A and B are keys of size k  bits^. The XOR operation has 

the following properties:

• Easy computation.

• The output C is always the same size as the two inputs (k bits). This property is not 

valid in addition and subtraction operations (e.g. in TABLE I: 11 + 11 = 110).

' The symbol ©  denotes a logical XOR operation w hile <fe denotes logical A N D  operation.
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Reversible easy computation, i.e. knowing A and C, we can uniquely and easily 

calculate B. Unique reversible computation is not valid in AND and OR operations 

(e.g. in TABLE II; 10 & 11 = 10 & 10 = 10).

All output values are uniformly distributed in the output space. The output matrix size 

is ( 2 * X 2  ̂ = 2 ^*), every output value in the range [0 :( 2 * - 1 )] appears 2 * times (see 

TABLE III). This property is not valid in all other simple operations (AND, OR, 

addition, or subtraction).

Every output value can be generated w ith2^ combinations. That is, knowing C only 

2^ guesses are needed to know A and/or B. This property is not valid in all other 

simple operations.

TABLE I.

A + B, WHERE A AND B ARE 2 BITS LONG

+ 00 01 10 11

00 00 01 10 • 11

01 01 10 11 100

10 10 11 100 101

11 11 100 101 110

TABLE II.

A & B, WHERE A AND B ARE 2 BITS LONG

& 00 01 10 11

00 00 00 00 00

01 00 01 00 01

10 00 00 10 10

11 00 01 10 11
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TABLE III.

A © B, WHERE A AND B ARE 2 BITS LONG

© 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

The last two properties o f XOR operation makes (A ® B)  as secure as (A}B , to all 

members who don’t know both A and B. Performing XOR operation between the keys 

solves the problem of protecting the key material from outsider attacks. But this operation 

doesn’t protect the key material from insider attacks. For example, if  we have a group of 

two members X and Y, each one has his own individual key that is known only by him 

and by the rekey manager. Let the individual key of X is Kj^ , and the individual key o f Y 

is K y . Assume the rekey manager needs to send them the group key GK. Previous 

methods used to broadcast a rekey packet that contains [{GK}jKj^,{GK}Ky], the group 

key encrypted with every member individual key. Every member reads his own part in 

the packet, and decrypts it to retrieve the group key. Members outside the group can’t 

leam any key material, and members inside the group can’t learn each other keys.

Alternatively, the new method suggests sending a rekey packet that contains 

[GK ® Kj^,GK K y ] . We can see that Y who knows KyC&n retrieve GK easily, but 

also can retrieve , since he can read {GK © K ^ ) and thus {GK © K ^ ) © GK = K ^ . 

Hence, adding a security barrier to insider attacks is essential. The suggested method to 

protect from insider attacks is to distribute the key material in random byte pattern BP in 

the broadcast rekey packet. Every BP is known only by the rekey manager and by the 

individuals similar to K ^  and Ky . Every BP specifies a unique byte numbers in a fixed 

size rekey packet.
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For example if  all keys are o f size 3 bytes, and the rekey packet size is 260 bytes. 

Assuming = {200,120,79} and = {110,205,55}, the suggested technique for 

distributing GK to the two members, is to distribute the 3 bytes o f (GK © K^,) in BP^ 

packet bytes numbered 200, 120, and 79 respectively, and distribue the 3 bytes of 

(GK © Py) in BPy packet bytes numbered 110, 205, and 55 respectively.

3.3.2 Protection from Insider Attacks

If  the key length is k  bits, the key space that is searched by attackers has 2* different 

key values. Let K  -  \ k / S]  be the size of the key in bytes. For a group o f n members, the 

rekey manager that uses encryption (encrypt GK with every member individual key) to 

broadcast GK will send a rekey packet o f size ( n x K )  bytes. The rekey manager that uses 

XOR and BP for distributing GK for n members should broadcast a rekey packet o f size 

( n x  K  + E ) bytes, i.e. the rekey packet contains E  extra bytes.

The worst-case insider attack is that (n - 1) colluding members trying to guess the BP 

(and therefore the key) of the remaining member. A group o f ( n~ \ )  members can 

exclude ( ( n - l ) x  K )  bytes from the packet that contain their own versions o f the key. 

The remaining are (K + E) bytes, and they are trying to select K  ordered bytes. In this 

case E  is estimated so that they have a search space larger than or equal to the search 

space o f the protected key. We can see that there is an E extra bytes increase in the 

message size, and this increase is the price paid for reducing the computation form n 

encryptions to simple XOR operations. The inequality > 2^ is used to estimate the

extra bytes size"*.

Note that if  we distribute the key material GK in the byte patterns BPs instead o f the 

XORed keys (GK ® K^)  and (GK ® K y)  the rekey packet will contain a repeated byte 

patterns of GK and that will make it easier (less permutation) for attackers to make a 

guess. If  GK is distributed in “bit patterns” instead o f bjde patterns that will solve the 

repeated byte patterns problem but will increase the size of the data needed to keep the

P^ = — ^ — ; c ! = c x ( c - l ) x . . . x l  
“ ( b - a ) \
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patterns. For example: I f  we have a key of size K  bytes, and a rekey packet o f size S  

bytes. To decode a “byte” location in the rekey packet s bits are needed such that 

s = I"log2  s'] . To decode a “bit” location in that rekey packet (s + 3) bits are needed. The

data size for a key and byte pattern BP is = + bytes. Using a bit pattern

(there is no need for the key), the data size = K x ( s  + 3) bytes. The data size required 

using byte pattern BP is less than the data size required using bit pattern for all positive 

values of .S’ (Ai x ( 5  + 3) > (jST + x s- /  s]) for all s' > (-16 / 7) ). On the other hand, using

bit patterns might decrease the required extra bytes E  and therefore the message size. If 

bit patterns are to be used, the rekey message extra bytes E  can be estimated by solving 

the inequality > 2 ^.

3.3.3 Extra Bytes Adjustment

The insider attack by one member in which he can exclude his own BP {K bytes), and 

make a guess for any other BP has a search space size equals to phe insider

attack by m members has a search space of size in the worst-case insider

attack by {n - 1) members, the search space size is , in which E  is estimated to 

make the search space size greater than or equal to the search space of the protected key 

to have the same security achieved by encryption.

The extra bytes E  depends only on the key size K, and does not depend on the group 

size n. We can further reduce E  if  the insider attacks are rare, or the cost o f protecting the 

key from insider attacks (represented in £) is greater than the benefits gained from that 

protection. For example, if the keying material is changing frequently, we can assume 

that the lifetime o f the key is shorter than the time required for making a correct guess 

using a reasonable cost machine. We can estimate a reasonable search space size Q from 

the lifetime of the key and calculate the extra bytes E  such thatP^^'^^^ > Q,  where Q is 

the reduced search space size.

In addition, using XOR operation instead o f encryption helps in protecting the 

individual key material from the “known plain text attack'. Known plain text attack, is an 

attack in which plain text and its corresponding cipher text are known by the attacker. It
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has been proven that in some cases this information can reduce the search space for the 

key. Using encryption methods, an insider can build a database from the rekey messages 

RMs that contains pairs of {GK, GK  encrypted by other individual key(s)). This database 

can help him in guessing the other individual key(s). The database can grow quickly if  

the group has frequent joins and leaves and therefore frequent RMs are sent. This type of 

attack does not exist when using XORBP. Using the above observation, if  the known 

plain text attack reduces the search space size from 2^ to Q. Then extra bytes E  is chosen 

such that > Q , where Q is the reduced search space size.

3.4 Logical Key Hierarchy and XORBP

The following is a summary o f the terminology used. The group key is GK. All key 

sizes are K  bytes. The LKH degree is d. The group size (number of members) is n. The 

LKH height h for n members \s h -  [log^ ri\, assuming it is constructed as a complete 

tree.

The key data maintained by a rekey manager is a LKH o f degree d  and height h. 

Using XORBP, each non-root node key (KEK or individual key) is accompanied by a 

byte pattern BP. Each member is assigned a leaf node in the LKH, which contains his 

individual data (key, BP, ...etc). In addition, every member knows his leaf node position 

in the LKH, and holds all the entries o f the LKH in the path from his leaf node up to the 

root.

It is assumed there is only one join or one leave at a time in which GK and all LKH 

entries (keys and BPs) that are held by that member need to be regenerated (batch 

rekeying for a set join and/or leave requests is discussed in chapter V). The rekey 

manager broadcasts a rekey message RM for every join or leave rekey. The RM contains 

a message-identifier, a rekey packet for every new key, and an encoded BP for every new 

BP. The message-identifier is the leaf node position o f the member who caused the rekey 

either because he joined or left the group.
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3.4.1 XORBP Rekey Packet Construction

The rekey message RM contains a rekey packet for every newly generated key, GK or 

KEK. A rekey packet contains the new key distribution information and is targeted to a 

corresponding set of members that should hold that key. No other member in the group or 

outside the group should be able to easily retrieve any key information from the rekey 

packet.

A XORBP rekey packet size is S = d x K  + E  bytes; where d  is LKH degree, K  is the 

key size in bytes, and E  is the estimated extra bytes (section 3.3.3). A XORBP rekey 

packet constructed for a new key at LKH node u contains multiple versions of

XORed with the keys at the LKH sibling nodes o f u. If  u is the key node path starting 

from the root, then uv is a path to a sibiling node o f u. If  the number o f sibilings for node 

u is  e {e is less than or equal to LKH degree d) there exists e sibling nodes determined by 

the path uv, 1 < v < e , where each node contains All sibling nodes o f a node

u will be denoted ( K ^,, )

The rekey packet is constructed for the new such that for every v, the bytes 

in the rekey packet contains (X„ © ). The remaing empty bytes in the rekey packets

contains dummy (randomly generated) bytes.

3.4.2 Encoded Byte Pattern

When generating a new key, its corresponding BP needs to be regenerated too. 

Similar to the key, the newly generated BP needs to be sent in the rekey message RM to 

the group members who should hold it. As previously described, a new key will be 

distributed in a rekey packet o f size S  bytes such that S = d x K  + E , where d  is LKH 

degree, K  is the key size in bytes, and E  is extra bytes. Each sibling node o f the 

distributed key node should have a unique byte pattern BP that specifies unique K  bytes 

in the rekey packet o f S  bytes.

Guaranteeing unique BPs can be implemented by maintaining an array R of Booleans 

of size S  with every key, every entry in R corresponds to a byte in the rekey packet. 

Initially all array entries are set to true, a true value means the byte is free (i.e. not 

assigned to any sibling key node) while a false  value means the byte is already assigned
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and can’t be assigned to any other sibling. When regenerating a BP, the old K  bytes (old 

BP byte numbers) have to be freed (i.e. marked true in R) and then new free K  bytes are 

selected (and marked fa lse  in R). The generation o f a random BP will require the 

generation o f K  random numbers in the range [0;5'-l]. Since the maximum number of 

node siblings is d, this would guarantee at least (K  + E) free bytes for a new BP o f K  

bytes. If  any of the randomly generated byte numbers is not free (locked up in R), the 

nearest free byte is chosen instead.

Similar to a key, a new BP can’t be sent plain in a RM, instead it is encoded so that it 

can be retrieved only by the targeted members (members who maintains its 

corresponding key). The encoding o f a newly generated BP is performed using its 

corresponding newly generated key. The new BP is first represented as a string of bits 

then XORed with the corresponding generated key. The bit representation of BP might be 

of shorter or longer length than the key. If  it is shorter than the key, it is XORed with the 

first same-length bits of the key. If  it is longer than the key, the key bits are repeated fully 

or partially (one or more times) until the exact length is reached.

For example, if  the key size X is 3 bytes (24 bits), and the rekey packet size S  is 260 

bytes. Since S  equals 260, 9 bits are enough to represent a byte number in the range 

[0:259]. A BP can be represented by a string o f length 3x9  = 27 bits that is

approximated to 4 bytes when sent in a RM. For a key
3 rd -byte  2 n d —byte \s t-b y te

K  = 110110111000010010100100, and BP = (200, 79, 120) that can be represented as

I20(9bits) 79(9bits) 200(9bits)

string o f bits = 001111000001001111011001000 , the encoded BP is calculated as
1 20  7 9  2 0 0

___________A___________ __________A__________ ___________A

001111000001001111011001000©

follows: ^ 3  l i o i j ^ l ^ o o c a ^ l ^ j f r ^  _ ggg
\s t-3 b its  3 rd -b y te  2 nd -by te  1st—byte

101 001110110001101001101100
Ath-byte 3 rd-byte  2nd -byte  \s t-b y te

byte is repeated to reach the exact BP bit string size.
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3.4.3 Simple Case: LKH of Height A = 1

A LKH of height h = \ can fit a group o f maximum size n such that n < d  . The RM 

distributed by the rekey manager contains one rekey packet for a newly generated GK per 

every join or leave. The key data maintained by the rekey manager is shown in Fig. 5.

GK

Fig. 5. A LKH of degree d  and height h = \ .

The rekey procedure for a join or a leave o f a member X whose individual key is :

1. Determine, the leaf node position for member X individual data to be inserted/deleted. 

The member position will be used as a message-identifier.

2. If (X is joining) then {Select freeRH^ and send it to member X through his private 

channel along with his leaf node position; Insert the individual leaf node {K^ ,BP^)  

into LKH.} else (Delete the individual leaf node ) from LBCH.}.

3. Generate new GK.

4. Construct a rekey packet for the new GK  u s i n g ( a s  described in section 

3.4.1).

5. Send a rekey message RM that contains the constructed rekey packet to all group 

members.
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3.4.4 Another Simple Case: LKH of Height A = 2

A LKH of height h = 2 can fit a group o f maximum size n, such that d < n < d ^ .  

Using a LKH of height 2, group members can be virtually viewed as arranged in d 

partitions (at most), and every partition contains d members (at most). A LKH of height 2 

maintained by a rekey manager is shown in Fig. 6 . For any partition p , all members at 

that partition hold the same partition key and the same partition BP that are used

in constructing a new GK rekey packet. Moreover, each member X holds his individual 

key and his individual BP that are used in constructing a new partition key

Kp  rekey packet. For every join or leave rekeying, the rekey message RM distributed by

the rekey manager contains two rekey packets one for a newX^ and the other is for a new

GK. In addition, RM contains one encoded new BP BP^.

GK

Fig. 6 . A LKH of degree d  and height h = 2.
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The rekey procedure for a join or a leave o f a member X whose individual key

1. Determine the position, and therefore the partition p, where member X individual leaf 

node will be inserted/deleted. The member position will be used as a message- 

identifier.

2. If (X is joining) then {Select free5P^^ and send it to member X through his private 

channel along with his leaf node position; Insert the individual leaf node ^ , BP^ ̂ ) 

into LKH.} else (Delete the individual leaf node (Kp^,BP^^)  from LKH.}.

3. Generate new partition p  node entries and BP^.

4. Constmct a rekey packet for the new using the individual leaf nodes 

{Kp*,BP^^). (as descibed in section 3.4.1)

5. Encode the new BP^ with the new (as described in section 3.4.2).

6 . Generate new GK.

7. Construct a rekey packet for the new GK using partition nodes (X ,, BP, )

8 . Send a rekey message RM that contains the two rekey packets (from step 4 and 7) and 

the encoded BP (from step 5) to all group members.

Is changing the partition BP^ necessary? Yes it is necessary, and we will show this

by example, assuming everybody knows the rekey procedure. If  member X joins the 

group in partition A then he will hold K^  and BP^. Assume X left the group for a while 

and joined it again in different partition B. Assume K^ is changed to K'^ when X left but 

BP^ is the same, and X (who knows the procedure) is able to memorize BP^. A member 

X can retrieve the new K \  when he joins partition B because he knows GK (member of 

the group), and he can read {GK © ) at the same BP^. I f  X left the group again and

no other member joined or left partition A, X can retrieve the new GK and aecess further 

information by knowing BP^ and K'^ (note that he was a member o f partition B, and K^ 

is changed once he left but K \  is the same).
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3.4.5 General Rekey Procedure by the Rekey Manager

Assume the inserted/deleted leaf node immediate parent position is

illustrated in Fig. 7, where decodes a child node position o f the root node (child at

level h), decodes a child node position o f the node determined by (child at level

(h-l)),  /j decodes a child node position o f the node determined by/j  (child at level 2 )

and is the immediate parent of the leaf node that contains the member data (individual 

key and individual BP) among at most (d-l)  other individual members data nodes.

level h 

level (h-1)

GK

A

level 2 

level 1

Fig. 7. The path to a leaf node in a LKH o f height h.

The rekey procedure for a join or a leave of a member X:

1. Determine the leaf node position o f member X individual data to be inserted/deleted, 

and therefore determine all the LKH nodes entries that need to be regenerated from 

the root node to the leaf node immediate parent. Assuming the position is >

and the LKH entries are GK, (Ky^ ), ...., and

( K , , I ,BP, I I ). The position is used as the RM message-identifier.
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2. If (X is joining) then {Select free individual BP , and send it to member X

along with his position through his private channel. Insert the member individual leaf 

node ( K , , ,, ,BR , , , )  at the first level of LKH.} else {Delete the member

individual leaf node ( X , , ,, ,B P ,, , f rom the first level o f LKH.}

3. For every LKH entry at level i - 2 t o  h {

a. Generate new key K, ,̂  ̂  ̂ , and select new BP BP,̂ ,̂  , .

b. Construct a rekey packet for the new  ̂ , using B P , j t )  nodes at

level (f-1) (as described in 3.4.1).

c. Encode the new BP,̂ ,̂   ̂ , with the new , (as described in 3.4.2).}

4. Generate new GK.

5. Construct a rekey packet for the new GK to all members using level h keys and BPs 

{ K „ B R ) .

6. Send a RM to all members that contains the message-identifier, all constructed rekey 

packets, and all encoded BPs.

Note that, the rekey procedure is almost symmetric for both join and leave cases. 

Note also that all if all LKH new entries are generated at once (step 3.a and step 4), 

constructing the rekey packet and encoding BP for each new entry can be performed in 

parallel (step 3.b-c and step 5).

3.4.6 How Group Members Retrieve the New Keys and the New Byte Patterns

Not all rekey packets and all encoded BPs should be read and processed by all group 

members. Since every members knows his position and the RM includes the 

identification position o f the member who joined/left). Every member can

select the rekey packets and the encoded BPs to process. The RM contains h rekey 

packets and {h-l) encoded BPs.

For every i, where 1 < r < /z, the i* rekey packet and the i* encoded BP contain a new 

key and a new BP for a node at the (z +1)'* level. This data should be retrieved by at 

most members who have their position matches The /z'*rekey packet

contains the new GK, and should be retrieved by all n (at most d  *) members
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3.5 Scenarios and Comparison

In this section, we compare the group rekeying performance when the traditional key 

management approaches (star and encryption-based LKH) are used, and when the 

proposed approach (XORBP LKH) is used. Two examples are used to demonstrate such 

approaches, a group o f members joining a subscription News broadcast server, and a 

group of peer-to-peer machines communicating securely.

We assume the group rekeying is performed periodically by a GKM that will leam 

the join and leave requests right before a rekeying process is initialized. The GKM will 

perform some time-consuming operations, e.g., random number generation and 

encryptions, before a rekeying, if  any, and delay the rest o f the operations, e.g., 

encryptions, until the exact requests are known. The following are the. three approaches 

under consideration.

Approach 1; The traditional star key management approach. The GKM changes 

the group key and encrypts it individually for every group member. This approach 

requires the GKM to regenerate one key and to perform 0(n)  keys encryptions to provide 

perfect forward secrecy for a group o f n members, i.e., the rekeying cost scales linearly 

with the group size. A group member performs 1 decryption to retrieve the group key. In 

this approach, the GKM can regenerate a new group key and encrypt it with the every 

group member individual keys right after a rekeying is committed and before leaming the 

next requests.

Approach 2: Encryption-based LKH. The use o f a LKH by a GKM provides a 

scalable group rekeying that scales to the logarithm o f the group size. If  the LKH degree 

is d, and its height is h ( n < d ^ ) ,  the GKM is required to regenerate 0(h)  keys and to 

perform O ( d x k )  keys encryptions to provide perfect forward secrecy after single leave 

request. However, for a batch of R requests, the GKM is required to regenerate O ( R x h )  

keys and to perform O ( R x d x k )  keys encryptions. A group member is required to 

perform at most h decryptions to retrieve the new group key (more than the required cost 

by the star approach).

Approach 3: XORBP LKH: The new key distribution technique, XORBP, is used 

with the LKH approach to provide a more scalable and efficient group rekeying that
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doesn’t require any encryption/decryption to be performed by the GKM or by any group 

member. Similar to the encryption-based LKH approach, for a batch of R requests, the 

GKM is required to regenerate 0 { R x h )  keys, in addition, the GKM random number 

generation overhead is increased. Since no encryption is used, this approach reduces a 

rekeying time to 10% o f the encryption-based LKH rekeying value, for the same LKH. 

Most o f this time is spent in random number generation. The three approaches offer the 

same security capabilities.

3.5.1 A News Broadcast Server Example

Consider a News broadcast server that encrypts its broadcast using a group key that is 

handed to every newly joined member. Assume that the total number of connected group 

members at any point o f time is 30,000 and the used encryption algorithm requires 1 

msec for a single encryption/decryption. In addition, assume the server changes the group 

key periodically every 30 sec, and the average number o f leave requests is 100 and the 

join requests are 50 in the 30 sec inter-rekey period. Consequently, a newly joined 

member might have to wait at most 30 sec before being able to decrypt the broadcast, and 

a leaving member might be able to decrypt the broadcast for maximum of 30 sec after he 

leaves.

Star key management: The GKM is required to perform 30,000 key encryptions 

which consume 30 sec. A group member only has to perform 1 decryption to extract the 

group key that consumes 1 msec. The GKM can start encrypting a new group key with 

every group member key before a rekeying. When he leams of the requests, he will throw 

away the encryptions performed for the leaving members (100 encryptions) and has to 

perform encryptions for the newly joined members (50 encryptions). The GKM needs the 

whole inter-rekey period to perform the encryptions. The traditional star key management 

has a problem in the following cases: the need to support a larger group size, the use o f a 

more time consuming encryption standard, and the 30 sec maximum request delay is not 

acceptable.

Encryption-based LKH: If  the LKH degree d = 4, height h = 10 due to nodes 

insertion and deletion, and the number o f LKH new keys (rekey sub-tree size) for the 150 

requests is 100 keys. The total number of key encryptions at the server = 100x4x10 = 4
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sec (compared to 30 sec in the star approach). A group member has to perform at most 10 

decryptions that is 10 msec (every 30 sec). A group member decryption cost is increased 

compared to the star approach.

The GKM can perform all random number generation before leaming the exact 

requests. However, most o f the encryptions (if not all) has to be performed after leaming 

the exact join and leave requests. This can be a drawback of LKH if we need to reduce 

the time after leaming the requests and the start o f the rekeying. However, if  the rekeying 

is performed frequently, the total time spent by the GKM performing encryptions is a 

better cost measure.

The rekey cost for LKH with encryption based KDT increases in the following cases:

1) The LKH degree is increased.

2) The number of requests is increased. For example, 1000 new keys need to be 

distributed (instead of 100), in this case, the cost o f LKH is worse than the star 

approach and requires 40 sec of GKM encryption time.

3) The LKH height is increased due to nodes insertion and deletion (i.e., maintaining a 

balanced LKH greatly affect the number o f new keys/encryptions).

XORBP LKH: The rekeyig time is reduced to 10% of the above values that is 400 

msec for the GKM and 1 msec for a group member (every 30 sec). The number of new 

keys for a single request is 0{h). The total number of new keys for the 150 request is 

100 X10 = 1000 keys. The rekeying time doesn’t increase with the LECH degree increase 

and slightly increases with larger number o f requests or an unbalanced LECH since no 

encryption is performed (i.e., more XOR operations are performed). A group member can 

have the minimum cost achieved using the star key management.

Similarly, the GECM can perform random number generation before leaming the 

requests. Compared to the star approach, the GECM can achieve better performance after 

leaming the requests, since in the star approach the GECM has to perform encryptions for 

the newly joined members.

3.5.2 A Secure Peer-to-Peer Network Example

Consider a secure peer-to-peer network for a group o f 1000 members (machines), and 

1 ipsec encryption/decryption standard. If one machine (member) is hosting the GKM
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and there are 50 member join/leave requests every 30 sec. A new group key will be 

issued every 30 sec. The following are the rekeying time costs for the considered 

approaches.

Star key management: the server encryption time = 1 sec; a group member 

decryption time = 1 msec (every 30 sec).

Encryption-based LKH: the server encryption time =

50(requests) x A{d) x A{h) = 800 msec; a group member decryption time = 4 msec.

XORBP LKH: the server time cost = 80 msec; a group member time cost is less than 

1 msec.

We can observe that the increase in the number o f requests in the encryption-based 

LKH approach could lead to a worse performance than the star approach. The group 

member hosting the GKM prefers the minimum overhead approach that doesn’t affect 

(disrupt) the application.

Similarly, performing pre-operations could reduce the time between knowing the 

requests and the actual rekeying in the star approach over the encryption-based LKH 

approach. The encryption-based LKH approach is better than the star approach if  the total 

server (light-weight) time spent performing encryptions are compared. The XORBP LKH 

approach outperforms the other two approaches in both cases.

3.6 Cost Analysis and Estimates

The parameters to the cost equations are the key size K  and its corresponding search 

space size Q (used in estimating the extra bytes E), and the LKH degree d.

3.6.1 How to Select the Key Size

It is usually assumed that group members are sharing a symmetric encryption key. 

Using symmetric cryptography usually achieves faster encryption/decryption than 

asymmetric cryptography. The key size is dependent on the used encryption algorithm. 

The two widely used symmetric key encryption algorithms are “Data Enciyption 

Standard” (DBS) that uses 56 bits key and “International Data Encryption Algorithm” 

(IDEA) that uses 128 bits key [40]. While an IDEA key is encoded in 16 bytes 

(128/8 = 16), a DBS key is encoded in 8 bytes (7 bits in every byte contain part o f the
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key (7x8  = 56) and the 8* bit in every byte is used for parity ebeck). Another widely 

used version of DBS is ealled triple DBS (or DBS-BDB) that uses 3 DBS keys [40].

Assuming the maximum key search space size g  = 2^, the estimated extra bytes E  

for the above three algorithms are as follows:

• For DBS, the extra bytes E  can be estimated from > 2^®(7.2e'^); where E = \ 2 1  

bytes satisfies the ineqality (Pg^  ̂ « 8.9e'^) .

• For IDBA, the extra bytes E  can be estimated from > 2*^*(3.4e^®); where E  = 

264 bytes satisfies the inequality (7]f° « 9.2e^^).

• For triple DBS, the extra bytes E  can be estimated from P^^*^ ^  2’'’*(3.7e^”) , where 

P  =116 bytes satisfies the inequality {P^l^ «  3.9e^'’) .

3.6.2 How to Select the Degree of the Hierarchy

If  it is desired to keep the rekey packet size S  less than 1500 bytes to fit in one UDP 

packet (Bthemet network)^ in which case, a rekey packet can be sent without 

fragmentation. The degree d  can be calculated using the equation S  =̂ d~>^K + E , where 

K  is determined form the used encryption algorithm and E  is the estiamted extra bytes.

Increasing d will decrease h, and therefore will decrease the computation cost at the 

rekey manager and at every group member if XORBP is used as a KDT. On the other 

hand, increasing d  increases the LKH node size as well as the rekey packet size S. 

Moreover, selecting d  such that the byte pattern BP is represented in an exact size of 

bytes will omit adding extra bits (section 3.4.2). The LKH degree d  can take into 

consideration the disk block size if  the LKH will be stored on disk. In such case, it is 

better to keep each node in one disk block for easier access.

3.6.3 Cost Estimation

The following are the cost estimates o f LKH key management approach used with 

XORBP KDT. Assuming the rekey packet size S  = d x K  + E , where d is the LKH 

degree, K  is the key size in bytes, and E  is the estimated extra bytes. Let s = [logj iS] that 

is 5 bits are needed to identify a byte location in a rekey packet. If  the group size is n, and
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LKH height is h {h = [log^ n \ for a balanced LKH); the maximimun group size for the

same height LKH M ax_n  = d^ (assuming the LKH is complete). The analytical cost

estimates is as follows:

• Byte pattern size: BPS = j'i' x K / S ]  bytes.

• LKH root node {GK) size = K bytes.

• LKH non-root node size (NS) that contains a key and BP N S - K  + BPS  bytes.

• A LKH (of degree d  and height h) storage size can be estimated by adding the nodes’

sizes at all levels. The required LKH storage (LKHS) for a group o f size n smaller

than Max_n can be estimated as

T T ^ r r c ,  ”  ^  l i  ^ d x ( M a x  n - l ) x N S . ,  ^LKHS = ----------- x ( K + >  d x N S ) - ------------{K + -------------=---------------) bytes
M ax_n  M ax_n  {d ~^)

• A group member holds the LKH root node entry {GK), and (at most) h non-root nodes

entries. The required group member storage (MS) can be estimated as

MS = K  + h x N S  hylQS.

• The rekey message RM contains (at most) h rekey packets and {h-l) encoded byte 

patterns BPs. The maximum RM size (RMS) can be estimated as 

RMS = h x  S + {h -V)x  BPS  bytes.

• Maximum number o f newly generated keys = h per a rekey.

• Maximum number of newly generated BPs is (/z-1). Therfore, the maximim number 

of randomly generated byte locations^ can be estimated as = { h - \ ) x K  per a rekey.

• If  e. is the number of sibilings at the i* level of a newly generated key node at level {i 

+ 1). The rekey packet for that key contains { e ^ x K )  bytes of key material (XORed 

keys), while the remaing bytes are filled with randomly generated bytes. The total
h

number of the randomly generated bjdes can be estiamted as = ( ^  5  -  e, x X ) per a
j= i

rekey.

• As previously explained in section 3.4.6, for every rekey message RM, there are (at 

most) d  members who will process all h rekey packets, d^ members who will process
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(A-1) rekey packets, members who will process (A-2) rekey packets, d ’' (all 

members) who will process one packet (for GK). The average number of rekey 

packets processed by a group member can be estimated as =
h~\

, (Max n - d )  ,
1 + — -------= 1 + ̂ ^  per a rekey.

M ax_ n M a x _ n x ( d  -V)

In a rekey message RM, there exists an encoded BP that corresponds to every rekey 

paeket except for GK. Similar to the rekey packet, the encoded BP is processed by the 

same group members that process the corresponding rekey packet. From the above 

estimate, the average number o f encoded BPs processed by a group member = 

(Max _ n - d )
M a x _ n x ( d  - I )

per a rekey.

For a LKH with encryption-based KDT, the byte pattern size (BPS) is equal to 0 in 

LKH storage (LKHS) and member storage (MS) estimates as given above. Let Enc_K  be 

the size of an encrypted key in bytes. In such case, the rekey message RM has two 

different sizes; join RMS (jR M S  = 2 x h x E n c _ K )  bytes, and leave RMS 

( IRMS = ( d x h - l ) x  E n c _ K )  bytes. Moreover, when an encryption-based KDT is used 

the only randomly generated numbers are the new keys.

Comparing the cost o f XORBP versus encryption-based KDTs when used with the 

same degree (d) LKH and for the same group size n: from the above analytical cost 

estimates, XORBP introduces an increase in LKH node size and therfore an increase in 

the LKH storage (LKHS) and member storage (MS). In addition, the rekey message size 

(RMS) is subject to increase depending on the encrypted key size. On the other hand, the 

use o f XOR operations between keys, instead of encryption, promises a substantial 

decrease in the rekey message construction time as well as the rekey processing time by a 

group member.

For example, for a group of size n = 4096 that uses DBS encryption, key size K  = S 

bytes, encrypted key size EncJE -  16 bytes, and the (larger) estimated extra bytes E =

 ̂A  byte location is a number in the range [0:5-1], where S  is the rekey packet size.
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127 bytes. Fig. 8, Fig. 9, and Fig. 10 illustrate the analytical cost estimates for XORBP 

(“x” prefix) versus encryption (“e” prefix). The LKH degree is increased by 4 starting 

from 4 to 32. Note that; the same figures are obtained by trying different group sizes. Fig. 

8. illustrates LKH storage (LKHS) and Fig. 9 illustrates member storage (MS) for both 

KDTs. As expected, the use of XORBP increases the storage requirement for the rekey 

manager and the rekey client. We can observe that LICHS and MS are slightly decreasing 

with the degree increase, and xLKHS and xMS are almost double cLKHS and eMS, 

respectively, for the same LKH degree.Fig. 10 illustrates the rekey message size (RMS) 

for the two encryption cases of join (eJRMS) and leave (elRMS) and for XORBP 

(xRMS). We can observe that when using encryption, the join RMS (ejRMS) is slighlty 

decreasing with LKH degree increase, while the leave RMS (elRMS) is linearly 

increasing with LKH degree increase. Similary, increasing LKH degree linearly increases 

elRM construction time (number of encryptions). Such leave rekey cost linear increase 

with LKH degree makes it unfeasible to use larger degree LKH with encryption-based 

KDT. On the other hand, when XORBP is used, xRMS (and therfore the construction 

time) is symmetric for the join and leave cases. As shown in Fig. 10, xRMS is larger than 

elRMS for all LKH degrees, but smaller/comparable to elRMS for larger LKH degrees 

(xRMS has a nonliner relation with LKH degree).
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Fig. 8. Comparison o f estimated LKH storage (LKHS) when used with encryption-hased 

versus XORBP KDT s.
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Fig. 9. Comparison of estimated LKH member storage (MS) when used with encryption- 

based versus XORBP KDTs.
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Fig. 10. Comparison of estimated LKH rekey message size (RMS) when used with 

encryption-based versus XORBP KDTs.

3.7 Experimental Results

We have implemented an initial prototype for the secure group key management 

components (section 3.1) extending Java'^“ security [62]. The implementation provides 

both star and LKH rekey managers. In addition, both encryption-based and XORBP 

KDTs are available with the use of LKH rekey manager. Moreover, two LKH 

maintenance algorithms and rekey protocols are available. One protocol adopts an 

unbalanced LKH while the other adopts a balanced LKH. Chapter IV provides the details 

of such algorithms and protocols.

We performed experiments to illustrate and compare the rekey message RM 

construction time in different cases. All experiments ran on the same machine: Sun Ultra- 

250 with processor speed of 400 MHz, main memory o f 2 GB, and operating system 

Solaris 2.8. In the following experiments: a LKH rekey manager uses the unbalanced 

LKH algorithms. The group size is increased from 32 to 2048 in multiple of 2 (unless 

otherwise stated). For each group size, 100 LKHs are constructed by a sequence of
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member additions. For every constructed LKH, 10 readings of RM construction time are 

measured for 5 join rekeyings and 5 leave rekeyings (one join followed by one leave 5 

times). Next, the LKH join/leave RM construction time, for that group size, is considered 

as the average of the 500 readings.

The following experiments study and compare RM construction time as follows: 1) 

star versus LKH approach for group key management; 2) effect o f increasing LKH 

degree when used with encryption-based or XORBP KDT; 3) effect o f increasing the 

encryption time (i.e. more complex encryption standard) on the saving o f RM 

construction time when XORBP KDT is used over the encryption-based KDT; 4) effect 

o f using secure random number generation on XORBP KDT; and 5) comparing the 

estimated and measured rekey costs.

3.7.1 Star Versus LKH Key Management Approaches

The first experiment compares RM construction time for star rekey manager versus 

LKH rekey manager. Both managers are using encryption-based KDT with DBS 

encryption. LKH degree is 4, and the group size increases from 32 to 256 in multiple o f 

2. Fig. 11 illustrates RM construction time for both managers in both the join and leave 

rekey cases. For star rekey manager sJoin and sLeave are the RM construction time in the 

join and leave rekeyings respectively. For LKH rekey manager eJoin(4) and eLeave(4) 

are the RM construction time in the join and leave rekeyings respectively, where . 4 

identifies LKH degree. We can observe that sLeave increases linearly with the group size 

increase and therefore star rekey manager does not provide scalable rekeying. The 

experiment confirms that using star rekey manager is not practical even for small group 

sizes.
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Fig. 11. Comparison o f RM construction time in for star versus LKH key management 

approaches.

3.7.2 Increasing LKH Degree

The second experiment shows the effect o f increasing LKH degree on a LKH rekey 

manager that uses encryption-based versus XORBP KDTs. The encryption algorithm is 

DBS with extra bytes E =  121 bytes. The experiments are performed for LKH of degree 4 

and 16. Fig. 12 illustrates the results when encryption-based KDT is used. We can 

observe that increasing LKH degree decreases the join rekey cost (eJoin(16) is 47% of 

eJoin (4)) while increasing the leave rekey cost (eLeave(16) is 135% of eLevae(4)). Such 

result confirms our analysis that the use of higher degree LKH (more than 4) with 

encryption-based KDT is not practical. Fig. 13 illustrates the results when XORBP KDT 

is used. We can observe that increasing LKH degree decreases both the join and leave 

rekey costs (xJoin(16)/xLevae(16) is 66% of xJoin(4)/xLeave(4)). Such result confirms 

our analysis that increasing LKH degree with XORBP KDT decreases both join and 

leave rekey costs.
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Fig. 12. Effect o f LKH degree increase {d = A versus J  = 16) on RM construction time 

when encryption-based KDT is used.
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Fig. 13. Effect of LKH degree increase (J  = 4 versus = 16) on RM construction time 

when XORBP KDT is used.
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3.7.3 Increasing Key Size

The third experiment shows the RM construction time saving for the same degree 

LKH when XORBP KDT is used versus encrjqrtion-based KDT for different encryption 

standards. LKH degree is 4, and the group size increases form 32 to 4096 in multiple of 

2. Fig. 14 illustrates the results when DBS encryption algorithm is used (extra bytes E  = 

127). We can observe that the use o f XORBP KDT decreases both the join and leave 

rekey costs when compared to encryption-based KDT (xJoin is 23% of eJoin, and xLeave 

is 12% of eLeave). Fig. 15 illustrates the results when triple DBS enciyption algorithm is 

used (extra bytes £ ’=116). Triple DBS key size is 3 times DBS key size and performing a 

triple DBS encryption is more time consuming than DBS. Similarly, the use o f XORBP 

reduces the rekey cost (xJoin is 40% of eJoin, and xLeave is 20 o f % eLeave). Note that 

Fig. 14 and Fig. 15 demonstrate XORBP KDT symmetric rekey cost for both join and 

leave rekey cases, and the un-symmetry o f the encryption-based KDT. Comparing RM 

construction time saving when DBS is used versus tripe DBS, we can observe that the 

time saving of XORBP is increased when used with smaller key size encryption protocol. 

When DBS is used xJoin is 23% of eJoin while when triple DBS is used xJoin is 40% of 

eJoin (i.e. when DBS is used join RM construction time saving achieves 77%, while if  

triple DBS is used the saving is reduced to 60%). Similarly, when DBS is used leave RM 

construction time saving achieves 87%, while if triple DBS is used the saving is reduced 

to 80%. Such saving is because larger key size introduces more random number 

generation for larger byte patterns and rekey packets’ filling bytes. Random number 

generation is an expensive operation in terms o f computation time but not as much as 

encryption.

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



6 4

^ —  eLeave(4) 

■e—  xLeave(4)

eJoin(4) 

- ■ - A- - - xJoin(4)

14

12

10

8

6

4

2

0

500 1000 1500 2000 25000
group size

Fig. 14. Comparison o f RM constmction time when used with DES encryption-based 

versus XORBP KDTs.
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Fig. 15. Comparison of RM construction time when used with triple DES encryption- 

based versus XORBP KDTs.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



65

3.7.4 Secure Random Number Generation

The use of XORBP introduces extra random number generation (section 3.6.3). The 

key generation in the above experiments is performed using javax.crypto.KeyGenerator 

class, while other random numbers and bytes are generated using java.util.Random  class 

[62]. In addition, the above experiments perform un-optimized random byte generation, 

i.e. when a rekey packet is instantiated it is filled with newly generated random bytes 

then some of those bytes are overwritten with XORed keys (those bytes shouldn’t be 

generated in the first place). Moreover, when encoding a BP, an unnecessary extra 

random byte is usually generated to augment the rest of the unused byte of the encoded 

BP.

Secure random number generation is more expensive than the usual (un-secure) 

random number generation. This experiment is performed using 

java.security.SecureRandom class that uses “SAHIPRNG” algorithm instead of 

java.util.Random  class [62]. The same experiment as in section 3.7.3 for DES is repeated 

with the new random generation class while key generation uses the same 

javax.crypto.KeyGenerator class. The same code that performs un-optimized random 

byte generation is used. From our experiments, it is estimated that SecureRandom 

generation consumes 2.5 times the time of the same Random generation.

The experiment shows RM construction time saving for the same degree LKH when 

XORBP KDT is used versus an encryption-based KDT. LKH degree is 4, and the group 

size increases form 32 to 4096 in multiple of 2. Fig. 16 illustrates the results when DES 

encryption algorithm is used (extra bytes E =  116). Similarly, the use SecureRandom with 

XORBP KDT decreases both the join and leave rekey costs versus encryption-based 

KDT (xJoin is 56% of eJoin, and xLeave is 31% of eLeave). Comparing the saving with 

the results shown in Fig. 14, the join RM construction time saving is reduced from 77% 

using Random to 44% using SecureRandom. The leave RM construction time saving is 

reduced from 87% using Random to 69% using SecureRandom.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 6

eJoin(4)

- - - A- - - xJoin(4,SR)

-H—  eLeave(4)

■s—  xLeave(4,SR)

14

12

10

8

6

4

2

0
2500500 1000 1500 20000

group size

Fig. 16. Comparison o f RM construction time when used with DES encryption-based 

KDT versus XORBP KDT that uses secure random number generation.

3.7.5 Estimated and Measured Costs

This experiment compares the estimated and measured LKH height for different LKH 

degrees and group size n = 4096. The LKH degree is increased from 4 to 32 by step 4 

(i.e., 4, 6, 12, ..., 32), and the rekey manager uses XORBP KDT. For every LKH degree, 

n members are added and the LKH height and the number o f allocated nodes are 

recorded. As previously mentioned, the experiments in this chapter adopt unbalanced 

LKH maintenance algorithms. The average of 500 readings is plotted.

Fig. 17 shows that the measured LKH height is usually larger than the estimated 

height for smaller LBLH degrees, and almost the same for larger LKH degrees. Fig. 18 and 

Fig. 19 illustrate the difference between the required member storage (MS) and rekey 

message size (RMS) respectively using the measured and estimated LKH heights. Similar 

to the height, usually the measured MS and RMS have slight increase from the estimated 

values. Fig. 20 illustrates the difference between the required LKH storage (LKHS) o f the 

measured and estimated values. Unlike MS and RMS, there is in the average 60%
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increase in the measured LKHS over the estimated LKHS. Such increase is due to the use 

of unbalanced LKH maintenance algorithms. Such increase is expected to get higher with 

either a group size or group dynamics increases. Group dynamics determines the join and 

leave patterns.
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Fig. 17. Comparison of measured and estimated LKH height for a group of size n -  4096.
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Fig. 18. Comparison o f measured and estimated member storage (MS) for a group of size 

n = 4096.
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Fig. 19. Comparison of measured and estimated rekey message size (RMS) for a group of 

size.n = 4096.
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Fig. 20. Comparison o f measured and estimated LKH storage (LKHS) for a group of size 

n = 4096.

3.8 Conclusion

In this chapter, we introduced a software model for secure group key management, 

where the main components along with their functionalities and interactions were 

identified. Concentrating on secure group key management, we highlighted two 

traditional rekey manager approaches for group rekeying, namely star and logical key 

hierarchy (LKH). The star key management approach is a simple approach that doesn’t 

provide scalable leave rekeying since the leave rekey cost increases linearly with the 

group size. The LKH approach provided a scalable join and leave rekeying. Using the 

LKH approach, both join and leave rekeyings scales linearly with the logarithm o f the 

group size. On the other hand, the LKH approach has un-symmetric rekeying procedures 

for join and leave cases and doesn’t scale well with LKH degree increase. The original 

LKH key distribution technique (KDT) for a newly generated key in a rekey message is 

to encrypt a new key either with another key or with its previous version (encryption- 

based KDT).
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We introduced XORBP, a new KDT that can be used with the LKH approach. 

XORBP performs a simple XOR operation between keys instead of encryption and 

distributes the key material in random byte patterns (BPs) in a fixed size rekey packet for 

every new key. The rekey message contains a rekey packet for every new key that is 

targeted to a set o f group members that should hold that key. The use of XORBP 

provided symmetric rekey procedures for join and leave rekeyings. In addition, it 

substantially reduces the rekey time. On the other hand, the use of XORBP increases the 

required LKH storage, member storage, and the rekey message size. In addition, XORBP 

introduces extra random number generation when compared with encryption-based KDT.

We derived analytical cost estimates of XORBP KDT, and performed empirical 

experiments to compare its performance versus encryption-based KDT. Our experiments 

show that, increasing LKH degree when used with encryption-based KDT increases the 

un-symmetry of join and leave rekey costs, which makes the use o f an LKH degree 

greater than 4 not practical. Using XORBP as KDT and increasing LKH degree allows 

the decrease of join and leave rekey costs. Using XORBP KDT versus encryption-based 

KDT, with the same degree LKH, can achieve 90% savings in the rekey message 

construction time. Using XORBP KDT with higher degree LKH (compared to lower 

degree LKH) provides extra savings in all cost metrics: storage, time, and 

communication. Finally, our experiments, using unbalanced LKH maintenance 

algorithms, show that there exists a slight increase in the measured LKH height, member 

storage, and rekey message size over the estimated values. On the other hand, the 

experiments show that the measured LKH storage for small group size has a 60% 

increase over the estimated value. Such undesirable increase motivates us to develop 

balanced LKH maintenance algorithms and protocols as explained in chapter IV.
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CHAPTER IV 

LOGICAL KEY HIERARCHY REKEY PROTOCOLS

As previously mentioned in chapter III, for secure group key management, there 

exists a (central) rekey manager that maintains a logical key hierarchy (LKH) for scalable 

rekeying (change of group key, GK, due to either new group member addition or group 

member removal). The rekey manager sends a rekey message (RM) to all group members 

for every group rekeying. The rekey message contains a rekey packet for every new LKH 

key. The rekey client is the group member component that maintains a set of LKH keys 

(including GK), and receives and process RMs for such keys update.

In this chapter, we propose two techniques for a rekey manager to maintain a LKH, 

and the associated rekey protocols. One technique adopts an unbalanced LKH (denoted 

S-LKH) while the other adopts a balanced LKH (denoted B'^-LKH). We detail the LKH 

node structure, and the RM format and construction for all scenarios of LKH node 

insertion and deletion. In addition, we present the rekey client processing for different 

RM types. We performed empirical experiments to compare the rekey performance of S- 

LBH protocol versus B'^-LKH protocol for different group sizes and LKH degrees. The 

B'^-LKH protocol causes a small increase in the average number o f rekey packets, and the 

average number o f encrypted keys in a RM when compared to the S-LKH protocol. 

However, in chapter V we show that introducing hatch rekeying (rekeying for several 

members addition and/or removal) results in a reduction in the B^-LKH case. On the 

other hand, the use of B'^-LKH decreases LKH height and the maximum number of 

encrypted keys in a RM when compared to S-LKH. The expected maximum rekey time is 

used in adjusting the minimum inter-rekey period that has to be elapsed between two 

consecutive rekeyings. Moreover, the use of B'^-LKH reduces the number of allocated 

nodes for a LKH (up to 50% reduction) when compared to S-LKH.

This chapter is organized as follows. Section 4.1 presents motivation and overview of 

the new techniques and protocols. Section 4.2 presents S-LKH node structure, RM 

format, and S-LKH maintenance algorithms along with RM construction. Section 4.3
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presents B^-LKH maintenance algorithms along with RM construction, and algorithms 

analysis. Section 4.4 details B'^-LKH rekey client processing when receiving a RM to 

update the maintained set o f keys. Section 4.5 presents performance evaluation 

experiments and results. Finally, section 4.6 concludes the chapter.

4.1 Motivation and Overview

A LKH is maintained by a rekey manager to provide scalable rekeying. A balanced 

LKH is a key tree where all leaf nodes are at the same distance (level) from the root. 

Keeping a LKH balanced is very important to the performance o f group rekeying 

especially for highly dynamic groups (many joins and leaves). Several researchers 

assume a balanced LKH when estimating and analyzing the cost of group rekeying [11], 

[67]. Keeping a LKH balanced is a crucial issue. However, the literature lacks practical 

LKH maintenance algorithms as well as algorithms for keeping a LKH of any degree 

balanced all the time [51] [52]. As concluded in chapter III, when an unbalanced LKH is 

used, there is always an increase in the measured LKH height over the estimated value. 

The increase in LKH height leads to a small increase in member storage, and rekey 

message size over the estimated values. Nevertheless, there is a substantial increase in the 

allocated LKH storage over the estimated value (the increase achieves 60% as shown in 

section 3.7.5).

The proposed LKH maintenance algorithms require the rekey manager to assign a 

unique identification for every group member, namely individual ID. For example, an 

individual ID could be a randomly generated number. Individual IDs are used in 

constructing the LKH and are sent in a RM to guide its processing (by a rekey client). 

Using LKH keys or true member identification (such as name or IP address) as IDs 

makes the rekey protocol vulnerable to traffic analysis. Since individual IDs are part o f a 

RM, true IDs can be used to reveal the LKH structure and group members information.

Our proposed LKH maintenance techniques provide a dual LKH purpose, as a key 

tree and as an easily searchable data structure for individual material (ID, key, ...etc). 

The first proposed technique maintains a LKH as a search tree [63], denoted S-LKH, 

using individual IDs as searched values. A search tree is not balanced and is used to 

provide sort and search algorithms for a set of searched values. In a search tree, any value
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is located only once at any tree node (internal or leaf). We adapt the traditional search 

tree algorithms to accommodate the constraint that a group member individual material 

(ID, key, ...etc) is always an entry in a leaf node. The S-LKH internal nodes contain key- 

encrypting-keys (KEKs). We detail S-LKiH node structure and maintenance algorithms 

that show how a S-LKH grows (shrinks) when an individual entry is inserted (deleted) 

into a leaf node. In addition, the algorithms show how a RM is constructed for different 

insertion and deletion scenarios. The S-LKH maintenance algorithms are applicable for 

any LKH of degree d>2 .

The second proposed technique maintains LKH as a balanced search tree [63], 

denoted B^-LKH, that has the same structure as S-LKH but guarantees that a LKH is 

balanced after every node insertion or deletion. B"̂  search trees have an extra constraint 

that all allocated nodes have to be at least half full to reduce the required LKH storage 

(allocated memory space). B^-LKH maintenance introduces complexity and extra 

overhead in RM construction and in the rekey client processing. We detail B"^-LKH 

maintenance algorithms along with RM construction for different insertion and deletion 

cases. In addition, we detail the rekey client RM processing (for key updates) for 

different RM types.

4.2 S-LKH: A LKH as a Search Tree

In a binary search tree, each node N contains a single search value v and points to two 

sub-trees (children). The left sub-tree (child) contains all the search values in the tree 

rooted at N that are less than or equal to v, and the right sub-tree (child) contains all the 

search values in the tree rooted at N that are greater than v. A multi-way search tree of 

degree J  is a general tree in which each node has d  or fewer children (sub-trees) and 

contains one fewer search values than it has children. That is, if  a node has four children, 

it contains three search values. The search tree is constructed such that the search values 

are sorted in an ascending order in each node. In addition, the searched values are sorted 

across all nodes.

A rekey manager that maintains LKH as a S-LKH is required to provide a unique 

individual identification, ID, for every new member. S-LKH is constructed as a search 

tree for those individual IDs. An individual ID can be a newly generated random number.
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Using LKH keys as sort/search values will reduce an insider attack search space. For 

example, colluding group members can specify a smaller search space for LKH keys by 

revealing their keys and positions to each other. Individual IDs are sent in a RM to guide 

the rekey client processing. Using true member identification such as name or IP address 

as an individual ID makes the protocol vulnerable to traffic analysis. Generating IDs as 

random numbers prevents both the insider attack and the traffic analysis problems.

Similar to a search tree, a S-LKH internal node has at least one child, while a S-LKH 

leaf node has no children. The proposed S-LKH maintenance algorithms adapt the 

traditional search tree algorithms to the constraint that an individual material (ID, key, 

...etc) is always an entry in a leaf node. Consequently all searched IDs are entries in leaf 

nodes while the internal nodes contain replicas of certain IDs that are used as an index to 

guide the search for leaf entries’ IDs.

4.2.1 S-LKH Node Structure

In a S-LKH of degree d, the node size e is the number of entries in a node such that 

l < e < ( 7 .  The leaf node structures is where the pair

(K. , IDj) is an individual entry that contains an indiviudal key K.  and an indiviudal ID

/D,.among other individual information such as name, IP address,..etc (not shown). The

individual IDs are the sorted/searched values used in constructing S-LKH and are unique 

through all leaf nodes. The internal node structure is 

[(K ,,Pj) ,/D j, { K j , P2 ),...,/D^_i, (K^ ,P J ] , where the pair (K.,P.)  is a child node entry in 

which K- is a KEK and Pi is a pointer to the (internal or leaf) child node. The internal 

nodes’ IDs are replicas of certain leaf IDs and are choosen to guide the search.

A leaf node entry insertion requires a pair (K,.,/D,.) of the individul key and ID in

addition to other individual material (not illustrated). While, an internal node entry 

insertion requires an ID, except for the first insertion, and a child node. An internal node 

entry is created to contain the pair (K,.,P^.), where K,. is a newly generated KEK and

is a pointer to the child node. Internal node IDs are inserted between childem entries as 

shown in the internal node structure above. A S-LKH is constructed such that for every 

internal node, the first entry P, points to a child node whose every IDi entry IDi < ID^,
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the last entry points to a child node whose every ID. entry ID^_  ̂ < ID ., and every

other Pj points to a child node whose every ID. entry IDj_^ < ID. < I D . . In addition, all

entries o f a leaf node are sorted in ascending order by their IDs. Fig. 21 illustrates a S- 

LKH structure maintained by a rekey manager. The rekey manager maintains two 

entities: the group key GK and root the pointer to the S-LKH root node.

G K

(K ,, PO, ID , (K j, L ) , ID j,..., IDe.,, (K=,Pe)root

Fig. 21. A S-LKH structure.

A S-LKH provides dual purpose as a key tree and as an easily searched data structure 

for individual material. A S-LKH has two views, the key view  that shows the 

corresponding key tree (LKH), and the search view that shows the search tree for 

individual IDs. For example. Fig. 22(a) is a S-LKH of degree d  = 2 and height /z = 3 for a 

group o f size n = 5; Fig. 22(b) is the S-LKH key view, and Fig. 22(c) is the S-LKH 

search view.

When S-LKH is used with XORBP key distribution technique (KDT) (chapter III), 

every key entry in an internal node or in a leaf node is associated with a byte pattern 

(BP). The BP will be allocated (generated) when the entry is first inserted. In the 

remainder of this chapter, we assume the use of encryption-based KDT, and explain the 

changes, if  any, when XORBP is used.
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(K,, Pi), 900, (Kz, P2)

(K,.,,P,.,), 400, (K,.2, P1.2)

GK

(K,.,.,. 120), (K,.,1,2, 205) (K2,,.,,1120),(K2„,.2, 1205))

(a) The S-LKH nodes.

GK

-2.1.2

(b) The S-LKH key view.

900

400

900 1120 1205120 205

(c) The S-LKH search view.

Fig. 22. A S-LKH o f degree d  = 2 and height A = 3 for a group o f size n - 5 .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



77

4.2.2 S-LKH Rekey Message Format

Fig. 23 depicts the rekey message RM format used by a S-LKH rekey manager. Fig. 

23(a) illustrates the initial key message sent to a group member before receiving any RMs 

and is used to initialize his state (ID, position, LKH height, and LKH degree). Where ID 

is the member unique identifleation assigned by the rekey manager, and position is an 

encoded LKH position of the individual leaf entry. The individual BP  is sent only if 

XORBP is used as a KDT. Fig. 23(b) illustrates the RM format, which is sent to all group 

members for every rekeying, where SEQ  is a sequential number that indicates RM 

number starting from I for the first message, type is the message type that could be ADD 

if the rekey is due to new member addition or REMOVE if  the rekey is due to group 

member removal (other types will be introduced later when the algorithms are presented), 

position is the encoded LKH position o f inserted/deleted leaf node entry, level specifies 

the distance between the root node and the effected leaf node, ID is the inserted/deleted 

leaf entry ID, and a RekeyPacket is constructed for every new key.

If  an encryption-base KDT is used, the RekeyPacket, shown in Fig. 23(c), contains 

several encryptions of a new key (encKey). Each encKey is targeted to a different set of 

group members. On the other hand, if  a XORBP KDT is used, the RekeyPacket, shown in 

Fig. 23(d), contains a fixed length o f bytes (size is S'bytes as estimated in section 3.3.3) 

and an encoded BP encodedBP for the assoeiated BP as explained in section 3.4.2. Note 

that, GK is not associated with a BP and a rekey packet for GK doesn’t contain an 

encoded BP.
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ID Position LKH height LKH degree Individual BP

(a) Individual (initial) key message.

SEQ Type Position Level ID

RekeyPacket),RekeyPacket2, ...

(b) Rekey Message (RM).

encKeyi, encKey2, ...

(c) Encryption rekey packet.

S  bytes encodedBP

(d) XORBP rekey packet.

Fig. 23. The format of messages used by a S-LKH rekey manager.

4.2.3 Rekey Packet Construction

For an internal node entry {K^ , P^ ) m  an internal node N, there are two types of 

constructed rekey packets for a newly generated K \ . The first type is addRekey packet 

that is constructed after an insertion of an entry to the intemaFleaf node A, where node A 

is the child of N pointed to by (node A for GK is root node). The second type is
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rmvRekey packet that is constructed after the deletion of an entry from node A. The rekey 

packets are constructed by calling the methods addRekey(A) and rmvRekey{A) provided 

by every internal node N (and by GK). Note that the inserted/deleted entry could be 

directly in node A or indirectly in the path o f one o f its children.

If  an encryption-based KDT is used, the addRekey packet contains two encryptions of 

K \ {{K\ )K^  , [K \ }Kg ] where Kg is the new entry key in node A. The rmvRekey packet 

contains e enctryptions of K^ where e is the number of entries in node A

Note that for the first time a newly created key is distributed, a rmvRekey has to be 

constructed since no previous version of the key exists. In addition, if  an operation 

performs both insertion and deletion to node A, a rmvRekey packet has to be constructed 

for K \  (the key previous version can not be used since some entries are deleted).

If XORBP KDT is used, an internal node entry (X ^,5P^,P^) contains a BP that has 

to be regenerated along with the key K ^ . Both addRekey and rmbRekey packets 

construction is symmetric and uses node A entries as described in section 3.4.1. Every 

XORBP rekey packets, except for GK, contains an encodedBP for BP^ using K^ as 

descibed in section 3.4.2.

4.2.4 S-LKH Algorithm for New Group Member Addition

Fig. 24 is the S-LKH new member addition algorithm, AddMember, where the new 

group member has a unique identification memberlD  and an individual key memberKey. 

The algorithm details how the S-LKH of degree d  rooted at node root is growing while 

adding the new member entry as well as how the individual key message initMsg and the 

RM rekeyMsg are constructed for the different addition cases (RM type). There are three 

possible RM {rekeyMsg) types ADD, SPLIT, and INCREASE as will be explained next.

Initially, the S-LKH rooted at root node is searched by memberlD for the appropriate 

position in a leaf node N for the new member entry. The lookup method searches the S- 

LKH rooted at root node guided by memberlD  and returns the appropriate position for 

the individual entry to be inserted, in addition, it returns all visited nodes in nodeStack, 

(where the first pushed node is root and the last pushed node is the leaf node that should
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contain the new individual entry). Then, the new entry is inserted where there are three 

cases. The first case occurs if  the leaf node N has space for the new entry (number of 

entries less than d), a simple insert is performed and rekeyMsg type is set to ADD^. Note 

that, if  XORBP KDT is used the individualBP filed in initMsg message is assigned after 

the leaf node insertion is performed (Fig. 23 (a)).

The other two cases occur if  the leaf node N is full (has d  entries). I f  N is full, a new 

leaf node newNode is allocated and N entries (including the new one) are split equally 

between the two nodes (N and newNode). If the number of entries (c/ + 1) doesn’t split 

equally between the two nodes (odd number), we keep one more entry in N than 

newNode. The newNode is to be the right neighbor o f N. The splitlnsert method returns 

an ID that is the maximum ID value in node N after the split. An internal node entry 

(KEK and pointer) that points to newNode should be inserted in the parent o f N (to the 

right of N entry). There are two cases for that insertion according to whether the parent 

node is flill or not.

The second addition case occurs when the parent o f N has space for a new entry, the 

newNode entry is inserted and rekeyMsg type is set to SPLIT. The third addition case 

occurs if the parent o f N is full, a new internal node newParent is allocated to be the 

parent for the two children N and newNode. The pointer at the parent node that was 

pointing to N should be replaced to point to newParent instead and rekeyMsg type is set 

to INCREASE. The last case leads to an inerease of S-LKH height only if  the distance 

between root and N (denoted level in the algorithm) equals to Qi-l). Note that, the 

underlined code highlights the assignment of the constructed rekey packets to rekeyMsg 

fields. Also note that, rmvRekey packets are constructed for the newly created KEKs and 

for KEKs that experience deletion in the associated node.

The number o f rekey packets in rekeyMsg is {level+l), (level+2), and (level+3) in the 

cases of ADD, SPLIT, and INCREASE, respectively. The first two packets in the cases 

of SPLIT & INCREASE are rmvRekey packets while all other packets are addRekey 

packets. Please see appendix A for examples of the different new group member addition 

cases.

^  denotes an assignment to multiple fields in a message.
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Method AddMember(memberID, memberKey)
Globals: root, h, d, GK;
Returns: initMsg, rekeyMsg;

if (h equals 0) then { root = AllocateNew LeafNodeQ; h = 1; }
(position, nodeStack) = root.lookup (memberlD); 
level = nodeStack.sizeO -1 ; N = nodeStack.pop(); 
initMsg <- (memberlD, position, h, d); 
rekeyMsg G- (position, memberlD, level);
if (N.size() < d) then { N.insert (memberKey, memberlD); rekeyMsg.type = A D D ;} 

else { newNode = AllocateNew LeafNode();
ID = N.splitInsert(memberKey, memberlD, newNode); 
parent = nodeStack.pop(); 
if ((level > 0) and (parent. size() < d)) 

then { parent.insert(ID, newNode); decrement level; 
rekeyMsg.type = SPLIT;
rekeyMsg<- (parent.rmvRekev(NL parent.rmvRekev(newNode)) ;}

else
{ newParent = AllocateNew InternalNode(); 

newParent.insert(null, N); newParent.insert(ID, newNode); 
rekeyMsg.type = INCREASE;
rekevM sg^(newParent.rmvRekey(N), newParent.rmvRekey(newNode)); 
if (level equals (h-1)) then increment h; 
if (level equals 0) then root = newParent; 

else parent.replace(N, newParent); }
}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO; 

rekeyMsg <-N.addRekey(prevN); } 
rekeyMsg ^  GK.addRekev(root); 
return initMsg, rekeyMsg;

Fig. 24. The S-LKH new group member addition and RM construction algorithm.
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4.2.5 S-LKH Algorithm for Group Member Removal

Fig. 25 is the S-LKH group member removal algorithm, RemoveMember, that details 

how the S-LKH rooted at node root is shrinking after the removal of a group member 

entry as well as how the RM {rekeyMsg) is constructed for the different removal cases 

(RM type). There are two possible RM rekeyMsg types REMOVE, and DECREASE. The 

removed member is identified by his unique memberlD.

Initially, the S-LKH rooted at node root is searched by memberlD  to determine the 

position of the leaf entry at node N to be deleted. The first removal case occurs when the 

leaf node N, after the deletion, contains one or more entries, the rekeyMsg type is set to 

REMOVE. The second case occurs when node N, after the deletion, has no more entries. 

In this case, node N entry (KEK and pointer) has to be deleted from its parent node. If  the 

parent after the deletion has no more entries, its entry has to be deleted from its parent, 

and so on. The deletion could propagate to upper nodes and stops when it reaches the first 

non-empty node. The rekeyMsg type is this case is set to DECREASE and could lead to 

the decrease of LKH height h if  it the deleted leaf node is the only node that has distance 

equals to {h-\) from the root. The height h might be decreased by more than one if  more 

nodes are deleted. The number o f rekey packets in rekeyMsg is {level + 1 ) .  Please see 

appendix A for examples o f the different group member removal cases.
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Method RemoveMember(memberlD)
Globals: root, h, d, GK;
Returns: rekeyMsg;

(position, nodeStack) = root.lookup (memberlD); 
rekeyMsg (position, memberlD); 
level = nodeStack.sizeO -1 ;
N = nodeStack.popO; N.delete(memberlD); 
if (N.sizeO > 0) then rekeyMsg.type = REMOVE; 

else { while (N.size() equlas 0)
if  (level equals 0) then { decrement level; free root; h = 0; breakWhile; } 

else { decrement level; prevN = N; N = nodeStack.popO; 
N.delete(prevN); } 

h = root.getHeight(); 
rekeyMsg.type = DECREASE;

}
rekeyMsg.level = level; 
for (i = 0 to (level-1))

{ prevN = N; N = nodeStack.popO; 
rekeyMsg <~N . rmvRekevtprevNl: } 

if (root does-not-equal null) then rekeyMsg GK.rmvRekev(root); 
return rekeyMsg;

Fig. 25. The S-LKEl group member removal and RM construction algorithm.

4.3 B^-LKH: A LKH as a Search Tree

A B^-LKH rekey manager maintains a balanced LKH adapting search tree 

insertion and deletion algorithms [63], [38]. A B^-LKH is a S-LKH that has the same 

node structure shown in Fig. 21. A B^ search tree of degree d is subject to two 

constraints, the first is all its leaf nodes are on the same level (i.e. balanced), and the 

second is all allocated nodes except the root are at least half full. The root node size is at 

least 2, while all other nodes’ sizes are at least \ d l 2 \  that will be denoted Min_d.
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Maintaing a B -LKH introduces complexity and extra overhead in RM construction as 

well as in the rekey client processing. B^-LKH algorithms are suitable for any LKH of 

degree d  greater than or equal to 4. When d  equals 2 or 3 M injd  is 1 (and so is S-LKH) 

and using B"^-LKH algorithms introduces exta overhead versus S-LKH.

4.3.1 B^-LKH Rekey Message Format

The initial key message and many fields in RM are similar to the messages explained 

in section 4.2.2 for S-LKH protococl. Fig. 26 illustrates the changes to the messages 

format used by a B’̂ -LKH rekey manager. Fig. 26(a) is RM format that contains several 

IDs, and several boolean (bit) values isRght, where isRght is a Boolean value that 

indicates either “is right” or “is left” that is used with some message types as will be 

explained later when introducing the B^-LKH RemoveMember algorithm. Fig. 26(b) is a 

XORBP rekey packet that contains several xoredBPs. A xoredBP is eonstructed with two 

same (bit) length BPs XORed, and is used with some message types as will be expaliend 

later when introucing the B"^-LKH RemoveMember algorithm.

SEQ Type Position Level

ID i,ID 2, . . . isRght], isRghtz, ...

RekeyPacket], RekeyPacket2, ...

(a) Rekey Message (RM).

S Bytes encodedBP

xoredBP], xoredBP2 , . ..

(b) XORBP rekey packet.

Fig. 26. The format o f messages used by a B^-LKH rekey manager.
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4.3.2 B -LKH Rekey Packet Construction

B"^-LKH algorithms use the same rekey packet constmction introduced in section

4.2.3 for S-LKH protocol. In addition, there are two remove related operations to uphold 

the second search tree constraint that all nodes are at least half full. The first operation 

is shift, in which one entry is shifted from a node to one of its neighboring nodes. The 

second operation is merge, in which all entries in an underflow node (its size becomes 

less than Min_d) are merged (moved) to one of its neighboring nodes and the empty node 

is deleted.

A new rekey packet constmction is needed for the merge operation and is called 

mrgRekey{A, isRight), where isRight is a boolean value if  “trwe” that means A is the right 

neighbor of the deleted node and if  “false"  that means A is the left neighbor of the 

deleted node. Similar to addRekey and rmvRekey packet constmction methods, mrgRekey 

is provided by the internal node N that contains the entry for its child node A.

The encrj^tion-based rekey packet for the new K ^  contains Min_d encrypted key

{{K\ ] K^ , {K\ ]K^ , l <i  < Min _d'\ where K. is a merged entry key, and isRight

determines which keys are merged. If  isRight equals to true, the first Min_d entries are 

merged from the left neigbor node, and if equals to false  the last Min_d entries are 

merged from the right neighbor node.

The XORBP rekey packets are constmcted the same way for all packet types 

{addRekey, rmvRekey and mrgRekey). I f  XORBP is used as a KDT technique the 

shifted/merged entries’ BP is subject to change due to the possible occupation o f the 

assigned bytes. When an entry is shifted/merged a new BP is allocated. The new bit 

represented BP has to be sent in the rekey packet XORed with its bit represented previous 

value as a xoredBP illustrated in section 4.3.1. The rekey packet contains one xoredBP if 

there is a shifted entry to node A, and contains {M injd  - 1) xoredBPs if  there are {Min_d - 

1) merged entries to node A.

4.3.3 B^-LKH Algorithm for New Group Member Addition

Adding a new group member leads to the insertion of a new entry in a leaf node, and 

might lead to insertions in one or more internal nodes. First we will present the different
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insert operations in a leaf node and in an internal node, followed by the member’s 

addition and RM construction algorithm (AddMember).

For a leaf node there exists two possible insert operations namely insert and 

splitlnsert. Fig. 27 is an example that illustrates a leaf node N in a LKH of degree <7 = 4 

(Min_d = 2) after the two insert operations. Every leaf entry represents a member 

individual key and his unique ID. Fig. 27(a) shows the original leaf node N that has 3 

entries. Fig. 27(b) shows the leaf node N after insert (Kd, 390) is performed (N contains 

maximum number of entries 4). Fig. 27(c) shows the leaf node N after splitlnsert (Kg, 

280) is performed. A new empty leaf node newNode is allocated and passed to this 

method call, and an ID is returned that will be inserted in an internal node in the upper 

level. Note that the entries are sorted by their IDs, and the last ID in N is returned after 

moving half of its entries to newNode. The two leaf nodes contain at least entries.

(K a , 340), (K b , 410), (K c , 470)

(a) Original leaf node N.

(K a, 340), (K d, 3 9 0 ) ,  (K b, 410), (Kc, 470)

(b) Leaf node N after insert (K d, 390)

N I 390 i newNode

(K e, 280), (K a, 340), (K^, 390) (K b, 410), (Kc, 470)

(c) Leaf nodes N and newNode, and the returned ID after splitlnsert (Ke, 280).

Fig. 27. An example of different leaf node insertions in a B^-LKH of degree <7 = 4.
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For an internal node, there are three possible insert operations namely firstln sert, 

insert, and splitlinsert. Fig. 28 is an example that illustrates the three insert operations in 

an internal node N in a LKH of degree d  = A. The internal node insert operations are 

passed a child node (A, B, C, D, or E) and a pointer to these nodes is created in the entry. 

In addition, a newly created KEK is generated for every child node. The firstlnsert 

operation, when the node is empty, is passed two child nodes. Fig. 28(a) shows the 

internal node N after firstInsert{A, 390, B) is performed. Fig. 28 (b) shows the intemal 

node N after the insert{500, C) is performed, then insert(200, D) is performed, that makes 

the node full (has 4 entries). Fig. 28(c) shows the intemal node N after splitInsert(AlO, E) 

is performed, where a new intemal node newNode is passed to this method call and an ID 

is retumed.

I (K a , P a) ,  3 9 0 , ( K b , P b) j

(a) Intemal node N after firstlnsert (A, 390, B).

(K a , Pa), 200, (K d , Pd), 390, (K b , ? b ) ,  500, (K c , Pc)

(b) Intemal node N after insert (500, C), then insert (200, D).

N i 410 I newNode

(K a, Pa), 200, (K d, P d), 390, (K b, ? b) (K e , P e ), 500, (K c , ? c )

(c) Intemal nodes N and newNode, and the retumed ID after splitlnsert (410, E).

Fig. 28. An example of different internal node insertions in a B^-LKH of degree d  = A.
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Fig. 29 is the B^-LKH member addition and RM construction algorithm, AddMember, 

that details how the B^-LKH rooted at node root is growing while adding new members 

entries as well as how the individual key message initMsg and RM rekeyMsg are 

eonstructed for different addition cases (RM type). There are three possible RM 

{rekeyMsg) types ADD, SPLIT, and INCREASE as will be explained next. The added 

member has a unique ID memberlD  and an individual key memberKey.

Initially, the B^-LKH rooted at node root is searched by memberlD for the 

appropriate position in a leaf node N for the new member entry. The first addition case 

occurs when the leaf node N has space for the new entry, a simple insertion is performed, 

and rekeyMsg type is set to ADD. The other two addition cases occur if  the leaf node is 

full. If  the leaf node is full a new leaf node newNode is allocated and the entries o f N are 

split between the two nodes (N and newNode). An intemal entry (KEK and pointer) has 

to be inserted for newNode at the parent of N and to its right. If  the parent of N is not full 

a simple intemal node insertion is performed. While if  the parent node is full a new 

intemal node is allocated and the entries of that parent are split between it and the new 

allocated node, and so on the split could propagate to upper levels. Note that, after 

splitlnsert method is called the parent of nodes prevN  and prevNew  (denoted prvNprnt 

and prvNwPrnt, respectively) could be either N  or newNode, and are assigned by that 

method call.

The second addition case occur when the split propagates until it reaches an internal 

node that has space for the new entry and the rekeyMsg type is set to SPLIT. The third 

addition case occurs when the split propagates to the root node leading to an increase of 

LKH height, and the rekeyMsg type is set to INCREASE. Please see appendix A for 

examples o f the different new group member addition cases.
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Method AddMember(memberID, memberKey)
Globals: root, h, d, GK;
Returns: intMsg, rekeyMsg;

if (h equals 0) then { root = AllocateNew LeafNode(); h = 1;}
(position, nodeStack) = root.lookup (memberlD); level = h -1 ; N = nodeStack.popO; 
initMsg ^  (memberlD, position, h, d); rekeyMsg <r (position, memberlD); 
if (N.sizeO < d) then { N.insert (memberKey, memberlD); rekeyMsg.type = A D D ;} 

else { done = false; newNode = AllocateNew LeafNode();
ID = N.splitInsert(memberKey, memberlD, newNode); 
while (level > 0)
{ decrement level; prevN = N; N = nodeStack.popO; 

if (N.sizeO ^  d) 
then { N.insert(ID, newNode); rekeyMsg.type = SPLIT;

rekeyMsg ^  (level, ID, N.rmvRekev(prevN), N.rmvRekev(newNode)); 
done = true; breakW hile;} 

else { prevNew = newNode; newNode = new IntemalNode(); 
rekeyMsg ^ (ID );
(ID, prevNpmt, prevNewPmt) = N.splitInsert(ID, prevNew, newNode); 

rekeyMsg ^  prevNpmt.rmvRekev(prevN); 
rekeyMsg prevNewPmt.rmvRekev(nrevNew); }

}
if (not done )

then { root = AllocateNew IntemalNode(); root.firstInsert(N, ID, newNode); 
rekeyMsg.type = INCREASE; increment h; 
rekeyMsg ^  (ID, root.rmvRekev(NL root.imvRekevrnewNodeE: }

}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO; 

rekeyMsg N.addRekev(prevN); } 
rekeyMsg ^  GK.addRekey(root); 
return initMsg, rekeyMsg;

Fig. 29. The B'^-LKH new group member addition and RM constmction algorithm.
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4.3.4 B^-LKH Algorithm for Group Member Removal

Removing a group member leads to the deletion o f his entry from a leaf node and 

possibly the deletion of one or more intemal node entries. The deletion o f an entry could 

be simple that does not lead to the violation of not being half full or it could need extra 

overhead to uphold the constraint that all nodes are at least half full. Keeping the B^- 

LKH balanced and keeping the nodes half full need two possible remove-related 

operations shift and merge, both operations apply to two neighboring siblings (of the 

same parent) nodes, N and its right or left neighbor Nghbr. The best neighbor for a node 

N (if the two exists) is the one with greater size (i.e. has more entries). I f  the two sibling 

neighbors have the same size, the right one is chosen. Note that, the first child of a node 

has only a right sibling, while the last child of a node has only a left sibling and the only 

neighbor is the best neighbor. The best neighbor is chosen from the two possible 

neighbors (if exists) o f a node N, that have the same anchor, such that it has enough 

entries to avoid the more expensive merge operation. The original B^ search tree 

algorithms impose no restriction on choosing a neighbor that has the same anchor and we 

avoided such choice because of its potential and complex change to the tree, and hence 

increased cost of the rekey operations [38]. For example if  the best neighbor to a node 

doesn’t have the same parent, two parent entries for the two nodes need to be rekeyed 

(regeneration of the key).

If  the deletion of an entry at node N causes an underflow, i.e. its size becomes {Min_d 

-1), a shift or merge operation is essential to keep it at least half full. The shift operation 

moves an entry from Nghbr to N, where Nghbfs  size is more than Min_d. The merge 

operation moves all entries of N to Nghbr and deletes node N, where Nghbr’s size is 

exactly Min_d.

Fig. 30 and Fig. 31 are examples that depict the possible shift operations from right 

and left neighbors, respectively, in a B^-LKH of degree d = A. The minimum number of 

entries in a node is 2. The examples illustrate the nodes before and after the operation in 

the two cases o f the nodes (N and Nghbr) being leaf or intemal nodes. In addition, the 

examples illustrate how the ID is adjusted in the anchor node. The shift method call is 

provided by the anchor node and retums an ID that will be sent in the RM.
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Anchor

•( Kn: Pn )> IDX) (KNghbr, PNghbr )

N

(Ka,Pa) i

Nghbr

i (Kb, Pb), IDb, (Kc, Pc), IDc, (Kd, Pd)

(Ka, IDa) (Kb, IDb), (Kc, IDc), (Kd, IDd)

(a) Node N before shift from right neighbor Nghbr.

Anchor

i • • ■ ( Kn, Pn ), IDb, (KNghbr, PNghbr ) • • •

N

(Ka,P a) ,I D x, ( K b,P b)

Nghbr 

I (Kc, Pc), IDc, (Kd, Pd)

(Ka, IDa), (Kb, IDb) (Kc,IDc),(Kd,IDd)

(b) Node N after shift from right neighbor Nghbr (IDb is returned).

Fig. 30. An example of B^-LKH internal/leaf node x i ^ i  shift operation.
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Anchor

i ... ( KNghbtj PNghbr ); IDx> (Kn, Pn) • ■ ■

Nghbr

I (K b, Pb), ID b, (K c, P c), ID c, (K d, P d)

N

I (K a, P a)

(K b, ID b), (K q, ID c), (K d, ID d) (K a, ID a)

(a) Node N before shift from left neighbor Nghbr.

Anchor

i ... ( KNghbr, PNghbr), ID c, (K n, Pn) ■ ■ •

Nglibr \  N

(K b, P b), ID b, (K c, P c) (K d , P d ), ID x , (K a, Pa)

(K b, ID b), (K c, ID c) (K d , ID d ), (K a, ID a)

(b) Node N after shift from left neighbor Nghbr (IDc is returned).

Fig. 31. An example ofB^-LKH internal/leaf node left .s’/zi/i operation.

Fig. 32, and Fig. 33 are examples that depict the possible merge operations from right 

and left neighbors respectively in a B”̂ -LKH of degree = 4. The minimum number o f 

entries in a node is 2. The examples illustrate the nodes before and after the operation in 

the two cases of the nodes (N and Nghbr) being leaf or intemal nodes. In addition, the 

examples illustrate how the anchor node is adjusted. The merge method call is provided 

by the anchor node and retums the deleted ID that will be sent in the RM.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



93

Anchor

i • • -(K-N, Pn )> IDx > (KNghbr> PNghbr)- • •

(K a, P a) I

Nghbr 

(K b, P b), ID b, (K c, P c)

(K a, ID a) (K b, ID b), (Kc , ID c)

(b) Node N before merge with right 

neighbor Nghbr.

Anchor 

I (KNghbn PNghbr)-•• I

Nghbr \

(K a , P a ) ,  ID x , (K b, P b), ID b, (Kc, Pc)

(K a , ID a ) , (Kb, ID b), (K c, ID c)

(a) Node N after merge with right 

neighbor Nghbr (IDx is returned).

Fig. 32. An example of B^-LKH intemal/leaf node right merge operation.

Anchor

i ... (KNghbr, PNghbr), ID x ,(K n, Pn ) - - -

Nghbr 

(Kb, Pb), IDb, (Kc, Pc) I

N

(K a, P a)

(K b, ID b), (K c, ID c) (K a, ID a)

(b) Node N before merge with left 

neighbor Nghbr.

Anchor

I ---(Kfvjghbr,PNghbr)---

Nghbr

(K b, Pb), ID b, (K c, P c), ID x , (K a , ? a )

(K b, ID b), (Kc, ID c), (K a , ID a )

(a) Node N after merge with right left 

Nghbr (IDx is returned).

Fig. 33. An example o f B'^-LKH intemal/leaf node left merge operation.
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Fig. 34. illustrates the B’̂ -LKH group member removal and RM construction 

algorithm, RemoveMember, that details how a B^-LKH is shrinking wile removing a 

group member entry. The removed member is identified by his unique ID memberlD. 

Initially, the B^-LKH rooted at node root is searched by memberlD for the position o f the 

deleted entry in the leaf node N. While searching for the entry the lookup method looks 

for the best neighbor o f each node and pushes it in nodeStack as well as a flag is pushed 

in isRghtStack that determines if it is the right or the left neighbor. The deletion of an 

entry form a leaf node could introduce further deletions in upper level nodes that could 

propagate up to root or stops at lower level. The deletion o f a member entry has four 

different cases, i.e. four different RM types, and those are REMOVE, MERGE, SHIFT, 

and DECREASE.

After the entry is deleted from leaf node N, node N is checked to see if  it is at least 

half full or not. If  node N contains at least Min_d entries rekeyMsg type is set to 

REMOVE. If  node N underflows the best neighbor Ngbgr (that is popped from the stack) 

is checked to see if  we could shift an entry from it (has more than Min_d entries) or a 

merge is essential (has exactly Min_d entries). If  shift is possible, an entry is shifted form 

Nghbr to N, the deletion propagation stops, and rekeyMsg type is set to SHIFT. I f  Nghbr 

has exactly Min_d entries then the entries of node N are merged (moved) to Nghbr node. 

In this case, the intemal node entry at the parent node {anchor) that was pointing to node 

N has to be deleted. If  the anchor (parent) didn’t underflow after that deletion the merge 

stops and rekeyMsg type is set to MERGE. If  the anchor underflows its neighbor is 

checked for shift or merge operation, and so the deletion could propagate to upper level 

nodes. If  the deletion propagates to root node and merged its only two children nodes, 

B'^-LKH height is reduced by 1 and rekeyMsg type is set to DECREASE. Please see 

appendix A for examples of the different group member removal cases.
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Method RemoveMember(memberlD)
Globals: root, h, d, Min_d, GK;
Returns: rekeyMsg;

(position, nodeStack, isRghtStack) = lookup (memberlD); 
rekeyMsg G  (position, memberlD); level = h -1 ; N = nodeStack.popO;
N. delete(memberlD);
if ((N.sizeO > Min_d) or ((N equals root) and (N.size() > 0))) 

then rekeyMsg.type = REMOVE; 
else
{ done = false; 

while (level > 0)
{ decrement level; anchor = nodeStack.popO; isRght = isRghtStack.popO;

Nghbr = anchor.getNghbr(N, isRght); 
if (Nghbr.sizeO > Min__d) 

then
{ ID = anchor.shift(N, Nghbr); rekeyMsg.type = SHIFT;
rekeyM sg^ (level, ID, isRght, anchor.rmvRekev(N), anchor.rmvRekev(Nghbr));

done = true; breakWhile; } 
else

{ ID = anchor.merge(N, Nghbr); N = anchor; 
rekeyMsg<-(ID, isRght, anchor.mrgRekev(Nghbr. isRght)); 
if ((N.sizeO > Min_d) or ((N equals root) and (N.size() > 1))) 

then { rekeyMsg.type = MERGE; rekeyMsgG (level); done = true; 
breakW hile;}

}
}

if (not done )
then { if (N equals root) then free root; else root = N.childAt(O); 

rekeyMsg.type = DECREASE; decrement h; }
}

for (i = 0 to (level-1))
{ prevN = N; N = nodeStack.popO; 

rekeyMsg G  N.rmvRekev(prevN): } 
if (rekeyMsg.typeO does-not-equal DECREASE) 
then rekeyMsg <r GK.rmvRekevfroot); 

return rekeyMsg;

Fig. 34. The B^-LKH group member removal and RM construction algorithm.
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4.3.5 Algorithms Analysis

Analyzing AddMember and RemoveMember algorithms for a B^-LKH of height h, 

TABLE IV illustrates RM ’s (shown in Fig. 26) different field sizes for all group member 

addition and removal cases (RM type), where RM level equals L. TABLE V illustrates 

the different rekey packet sizes when encryption-based or XORBP KDT is used, where 

Enc_K  is the encrypted key size in bytes, and S  is the XORBP rekey packet size. As 

previously mentioned, for a B^-LKH of degree d, Min_d is the minimum number o f non­

root node entries that is equal to Li/ / 2 j .

TABLE IV

RM FIELD SIZE FOR B^-LKH OF HEIGHT h, AND RM ’S LEVEL L

RM type “ID”

length

“isRght”

length

Number o f  

addRekey 

packets (nA)

Number o f  

rmvRekey 

packets (nR)

Number o f  

mrgRekey 

packets (nM)

ADD 1 0 h 0 0

SPLIT k - L 0 L + \ 2 x ( h - L - \ ) 0

INCREASE h + \ 0 1 2 x h 0

REMOVE 1 0 0 h 0

MERGE h - L h - L - \ 0 L +  \ h - L - \

SHIFT h - L h - L - \ 0 L +  3 h - L - 2

DECREASE h h - \ 0 0 h - 1
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TABLE V

REKEY PACKET SIZE FOR ENCRYPTION-BASED AND XORBP KDTS

Encryption-based XORBP

addRekey packet size 2 X Ena _ K S

rmvRekey packet size e x E n c  _ K

w h ereM in _ d < e < d  ( e i s  the 

number o f  children for that key  

entry node)

S

mrgRekey packet size Min _ d  X E n c_ K S

Number o f  keys generated nA +  nR + nM nA +  nR +  nM

Number o f  encoded BPs (A  BP is 

K  numbers in the range [0:5 -1])

0 nA +  nR +  nM  - 1

Number o f  xored  BPs 0 nM  X { M in _ d - V )  for MERGE 

and DECREASE  

nM  X { M in _ d  - \ )  + I  for SHIFT 

0 otherwise

4.4 B'^-LKH Rekey Client Processing

The rekey client is the software component at every group member that receives RMs 

and updates the client maintained set of keys. The rekey client initially receives initMsg 

that initializes the variables ID, position, h, d, and Min_d (calculated from d). The 

position is represented as an array of size h, where position{Qi\ identifies the child node 

number of LKH root node. In addition, the rekey client maintains a list o f keys key List of 

size {h + 1), where its first element (entry number 0) is his individual key and its last 

element (entry number h) is GK. When the client receives initMsg he inserts his 

individual key in a newly created keyList. Then the client keeps receiving rekeyMsg to 

update his keys.

Updating keyList[\\ from a rekey packet depends on whether the KDT is encryption- 

based or XORBP. If  an encryption-based KDT is used, selecting the key encKey to be

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



98

decrypted depends on the rekey packet type {addRekey, rmvRekey, or mrgRekey) and 

positional). The selected encKey is decrypted either with its previous version, or with 

keyList\i-\). On the other hand if  XORJBP is used, updating keyList\i\ is symmetric for all 

packet types and uses keyListli-l) and its associated BP to get the new version o f the key. 

For every updated key, except GK, the associated BP is updated from the encodedBP in 

the same rekey packet. The individual BP that is associated to the individual key 

{keyList[G\) is sent in the initialization message initMsg.

When the rekey client receives rekeyMsg he compares his position with 

rekeyMsg.position to decide on the starting matching level {match) where he should start 

updating his keyList. For example, if the member individual is in the leaf node that has 

the inserted/deleted entry match will be 2. If the member individual entry is in a leaf node 

that has the same parent o f the directly affected leaf node match will be 3, and so on. If 

position has no intersection with rekeyMsg position then match is set to {h + \). The 

following code fragment illustrates how to adjust match. Note that, match equals 1 only 

at the new individual (i.e., his rekey client software component).

match = -1; 

for (i = 0 to (h-1))

if {position)}) equals rekeyMsg.position\\^ 

then match = i; 

else breakFor; 

match = h -  match', 

if {match equals 1) then match = 2;

After deciding on match, the update procedure is triggered by rekeyMsg.type and 

executed to update keyList. There are six different update procedures according to 

rekeyMsg type. The following is the Simple update procedure called when rekeyMsg.Type 

equals ADD or REMOVE. A group member whose match equals 2 and his ID is greater 

than the inserted/deleted ID experiences a change in his individual leaf node position. 

This individual leaf position is incremented by 1 if  a new individual entry is inserted and 

is decremented by 1 if an individual entry is deleted. In addition, a group member updates
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his keyList from the corresponding rekey packets according to his match. A group 

member whose match equals 2 updates all h keys, while a group member whose match 

equals (A + 1) updates only one key {GK). Please see Appendix B for detailed rekey 

client update procedures and an example.

if {{match equals 2) and {ID > rekeyMsg.ID\Oyj) 

then if {rekeyMsg.type equals ADD) 

then increm entposition{h-\\, 

else decrem entposition[h-l\, 

for (i = {match - 2) to (A -  1))

keyList.update(i + 1, rekeyMsg.packet[i])',

4.5 Experim ental Results

We have implemented the rekey manager and the rekey client in Java'^“[[62]. Both S- 

LKH and B^-LKH protocols are available for use with an encryption-based or XORBP 

KDT. In the following experiments, we compare the performance of an unbalanced LKH 

(S-LKH) versus a balanced LKH (B'^-LKH). First, an experiment is performed to study 

the frequency o f the different rekey message (RM) types in both add and remove 

rekeyings. Second, the simulated group dynamics in the experiments is explained. Third, 

an experiment is performed to compare S-LKH and B'^-LKH rekey costs. Fourth, an 

experiment is performed to study the effect o f LKH degree and group dynamics on S- 

LKH and B’* -̂LKH rekey costs and storage.

4.5.1 Frequency of Different Addition and Removal Cases

This experiment illustrates the frequency o f different RM types in the addition and 

the removal rekey cases for both S-LKH and B’̂ -LKH protocols. The LKH degree d  is 

increased from 2 to 10. For every LKH degree, the group size n increases from 32 to 

2048 in multiples of 2. For every d and «, 10 LKHs are constructed by a sequence o f n 

member additions then n member removals. A new unique random ID is generated for 

every new member. The removed member is randomly chosen from the existing
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members. For every constructed LKH, the frequency o f different RM types is recorded. 

We have noticed that the frequency o f each RM type depends on LKH degree and 

doesn’t depend on the group size.

Fig. 35 and Fig. 36 illustrate the frequency of different RM types for S-LKH protocol 

in the addition and removal rekey cases, respectively. We can observe that the frequency 

of the simplest rekey cases (ADD & REMOVE) increases with LKH degree increase, and 

are occurring more than 80% of the time for a LKH degree greater than 8.

Fig. 37 and Fig. 38 illustrate the frequency of different RM types for B^-LKH 

protocol in the addition and removal rekey cases, respectively. Similarly, we can observe 

that the simplest rekey cases are occurring more than 80% of the time for a LKH degree 

greater than 8. In addition, the most expensive rekey cases (INCREASE & DECREASE) 

are occurring less than 1% of the time for any LKH degree.
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Fig. 35. Frequency o f add RM type for the S-LKH protocol.
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Fig. 36. Frequency of remove RM type for the S-LKH protocol.
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Fig. 37. Frequency of add RM type for the B'^-LKH protocol.
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Fig. 38. Frequency o f remove RM for the B'^-LKH protocol.

4.5.2 G roup Dynamics

To simulate group dynamics, a LKH is constructed by a sequence of aN  member 

additions followed by a sequence of rN  member removal. The group size n = aN  - r N , 

and the group dynamic ratio gdr is defined to be gdr = rN / a N . If  the group is static 

(i.e., no member is removed) gdr = 0. For gdr = 0.4, the group size is 60% of the added 

members (i.e., n = 60% aN). To have a group of size n > 0, gdr value has to be in the 

range [0,1 [.

When an encryption-based KDT is used, the rekey message cost is measured as the 

total number o f encrypted keys in a RM (in all rekey packets). On the other hand, when 

XORBP KDT is used, the rekey message cost is measured as the number o f rekey packets 

in a RM.

In the following experiments, we compare the rekey performance of S-LKH versus 

B^-LKH for the same LKH degree, group size, and group dynamic ratio. For every 

protocol, and the parameters {d, n, gdr), we construct 100 LKHs. For every constructed 

LKH, its height and the number o f allocated nodes (LKH storage) are recorded. Then, 10
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readings for rekey message cost in both add and remove rekey cases (i.e., a remove 

member followed by add member 10 times) are recorded. The plotted number of 

allocated nodes is the average of 100 readings, and the plotted rekey message cost is the 

average of 1000 reading.

4.5.3 S-LKH and B^-LKH Rekey Cost

This experiment compares the behavior o f add and remove rekey costs for S-LKH 

versus B^-LKH protocols in terms o f number of rekey packets and number o f encrypted 

keys. The experiment is performed for LKH degree d = A, group size n = 8192, and gdr = 

0.4.

Fig. 39 and Fig. 40 illustrate, for both protocols, the frequency o f the different values 

obtained for the number o f rekey packets in a RM in add and remove rekeyings, 

respectively. We can observe the symmetry between the two figures (i.e., add and rekey 

symmetric cost in terms of the number o f rekey packets in a RM). In addition, we can 

observe that using the S-LKH protocol, the number o f rekey packets in a RM spans a 

wider range of values when compared to the B’̂ -LKH protocol.

-©—  add S-LKH - - -X- - - add B+-LKH

120

100 -
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Fig. 39. Frequency o f number o f rekey packets in add rekey message.
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Fig. 40. Frequency of number of rekey packets in remove rekey message.

Fig. 41 and Fig. 42 illustrate, for both protocols, the frequency o f the different values 

obtained for the number o f encrypted keys in a RM in add and remove rekeyings, 

respectively. We can observe the un-symmetry between the two figures. Similarly, the 

rekey cost in terms o f the number of encrypted keys spans a wider range o f values when 

used with the S-LKH protocol compared to B^-LKH. The S-LKjH wider range o f cost 

values is due to the un-balanced LKH that implies the existence of leaf nodes at different 

levels from the root node.
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Fig. 41. Frequency of number of encrypted keys in add rekey message.

- 6 — rm v  S-LKH - - -X- - - rm v  B+-LKH

25

20

15

10

5

0
0 10 20 4030 50

number o f  encrypted  keys

Fig. 42. Frequency of number of encrypted keys in remove rekey message.
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TABLE VI summarizes the different rekey cost metrics for S-LKH versus B'^-LKH 

protocols when d — 4,n=  8192, and gdr =0.4. TABLE VII summarizes the results when d 

= 4, smaller group size n = 512, and gdr = 0.4. TABLE VIII summarizes the results when 

LKH is having larger degree d = 8, large group size n = 8192, and gdr = 0.4.

From the previous results, we can conclude that the rekey cost maintains the same 

behavior for all group sizes and LKH degrees. The use o f B^-LKH protocol increases the 

average number o f rekey packets and the average number o f encrypted keys in a RM 

when compared to S-LKH protocol. On the other hand, the use o f B”̂ -LKH decreases the 

average LKH height, the number o f allocated nodes, and the maximum number of 

encrypted keys. The maximum number of encrypted keys (or the rekey packets) is used 

in estimating the minimum time that has to be elapsed between two consecutive 

rekeyings.

TABLE VI

S-LKH VERSUS B'^-LKH REKEY COST FOR (J  = 4; n =8192; gdr = 0.4)

S-LKH B^-LKH

Average LKH height. 11.09 9

Average LKH number o f  allocated nodes. 6485.72 5703.754

A ddM em ber average number o f  rekey packets. 8 9.028

AddM em ber maximum number o f  rekey packets. 12 12

Rem oveM em ber average number o f  rekey packets. 7.542 9.282

Rem oveM em ber maximum number o f  rekey packets. 11 10

AddM em ber average number o f  encrypted keys. 16,041 18.084

AddM em ber maximum number o f  encrypted keys. 25 27

Rem oveM em ber average number o f  encrypted keys. 26.81 25.835

Rem oveM em ber maximum number o f  encrypted keys. 40 32
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TABLE VII.

S-LKH VERSUS B+-LKH REKEY COST FOR (rf= 4; « =512; g d r ^ Q A )

S-LKH B'^-LKH

Average LKH height. l A 6.11

Average LKH number o f  allocated nodes. 404.007 353.559

A ddM em ber average number o f  rekey packets. 5.782 6.151

A ddM em ber maximum number o f  rekey packets. 9 8

Rem oveM em ber average number o f  rekey packets. 5.306 6.412

Rem oveM em ber maximum number o f  rekey packets. 8 8

A ddM em ber average number o f  encrypted keys. 11.637 12.343

A ddM em ber maximum number o f  encrypted keys. 19 18

R em oveM em ber average number o f  encrypted keys. 17.912 17.873

Rem oveM em ber maximum number o f  encrypted keys. 29 23

TABLE VIII.

S-LKH VERSUS B^-LKH REKEY COST FOR (J  = 8; « =8192; gdr  = 0.4)

S-LKH b l l k h

Average LKH height. 6.16 6

Average LKH number o f  allocated nodes. 3108.134 2168.812

A ddM em ber average number o f  rekey packets. 5.171 6.001

A ddM em ber maximum number o f  rekey packets. 7 7

Rem oveM em ber average number o f  rekey packets. 5.141 6.338

Rem oveM em ber maximum number o f  rekey packets. 7 7

A ddM em ber average number o f  encrypted keys. 10.352 12.007

A ddM em ber maximum number o f  encrypted keys. 19 19

Rem oveM em ber average number o f  encrypted keys. 32.986 30.488

Rem oveM em ber maximum number o f  encrypted keys. 45 39
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4.5.4 Effect of G roup Dynamics and LK H  Degree

If encryption-based KDT is used the optimal LKH degree is 4, and the total number 

of encrypted keys in a RM is the rekey cost metric. When XORBP KDT is used, the 

number o f rekey packets in a RM is used as a rekey cost metric. In this experiment, we 

study how the group dynamics and LKH degree affect the number of rekey packets (for 

XORBP KDT) in a RM and the number of allocated nodes in LKH (LKH storage). As we 

concluded from the previous experiment (section 4.5.3), add and remove rekey costs are 

symmetric in terms o f the number of rekey packets in a RM.

The group size n = 512, and LKH degree is increased from 4 to 32 in increments of 4 

(i.e. 4, 8, 12, ..., and 32). Fig. 43 illustrates, for S-LKH and B'^-LKH protocols, the 

average number o f rekey packets in a RM for static group {gdr = 0). Fig. 44 illustrates the 

results when gdr = 0.4. We can observe that the B^-LKH protocol introduces a slight 

increase in the average number of rekey packets in a RM over S-LKH protocol. 

Comparing Fig. 43 and Fig. 44, we can conclude that this increase is slightly affected by 

the group dynamics. Note that this increase is for individual rekeying (i.e. single add or 

remove rekey). In chapter V, we present batch rekeying for a sequence o f add and/or 

remove requests. For batch processing, the B"^-LKH protocol rekey cost outperforms the 

S-LKH protocol.

S-LXH B+-LKH
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0

0 10 20

LKH  degree

30 40

Fig. 43. Average number of rekey packets in a RM, where gdr = 0, and n = 512.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



109

^  S-LKH -X -B-K -LK H

7

6

5

0

20

LKH  degree

30 400 10

Fig. 44. Average number of rekey packets in a RM, where gdr = 0.4, and n = 512.

S-LKH increases the number of LKH allocated nodes when compared to B^-LKH 

(section 4.5.3). If  the number o f allocated nodes for S-LKH and B^-LKH are sLKHS and 

bLKHS, respectively. The S-LKH pereentile increase in the number of allocated nodes 

can be calculated as inc -  (sLKHS -  bLKHs)x 1001 bLK H S. Fig. 45 illustrates inc for 

group size n = 512, and gdr = 0, gdr = 0.2, and gdr -  0.4. We can observe that, the 

increase inc has a non-linear relation with the LKH degree. Howerver, inc increases with 

the increase of group dynamics. Fig. 46 illustrates inc when the group size « = 8192, and 

group dynamies ratio is 0, and 0.4. Similarly, the S-LKH percentile increase (inc) in 

allocated storage over B^-LKH increases with the increase of group dynamics and attains 

80% for gdr = 0.4. We have noticed that inc peaks when the group size (n) is near an 

exact power of d. For example when « = 512 me peaks at d = 8 (8'^B = 512), and d = 2A  

(24^2 = 576), and when « = 8192 inc peaks at d  =20 (20'^3 = 8000). In this case, the B"*̂- 

LKH maintenance algorithms keeps much less number o f nodes than the S-LKH ones.
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Fig. 45. S-LKH average number o f nodes increase over B'^-LKH, where n = 512.
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Fig. 46. S-LKH average number of nodes increase over B’̂ -LKH, where n = 8192.
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4.6 Conclusion

In this chapter, two novel techniques for LKH maintenance and their associated rekey 

protocols are presented. The new techniques are based on the rekey manager assigning a 

unique individual identification (ID) for each group member. In both techniques, the 

LKH plays a dual role as a key tree and as an easily searchable data structure for 

individual material (ID, key, IP address, name, ...etc) using individual IDs. The proposed 

techniques detail the LKH node structure, the rekey message format, the LKH insertion 

and deletion algorithms along with the rekey message constmction for different insertion 

and deletion scenarios. Moreover, the rekey client processing to different rekey message 

types is presented. The first technique, denoted S-LKH, maintains LKH as unbalanced 

search tree using individual IDs as search values. The traditional search tree insertion and 

deletion algorithms are adapted to the constraint that individual materials are always 

entries in leaf nodes. The second technique, denoted B’̂ -LKH, maintains LKH as a 

balanced search tree that has the same stmcture as S-LKH. In addition, a search tree 

has two additional constraints. The first constraint is, all leaf nodes are always at the 

same distance from the root (i.e. balanced). The second constraint is, all non-root node 

are always at least half full. These constraints introduce complexity and extra overhead in 

the rekey message and the rekey client processing.

We performed empirical experiments to study and compare the behavior of S-LKH 

and B’̂ -LKH protocols. The first experiment concludes that the frequency of the simplest 

RM tjqies (simple insertion and deletion scenarios) increases with LKH degree increase 

for both protocols. The frequency of the simplest RM types is more than 80% for LKH 

degree greater than 8. For B'^-LKH protocol, the frequency o f the most expensive RM 

type is less than 1% for any LKH degree. Other experiments illustrate that the use of B^- 

LKH protocol increases the average number of rekey packets and the average number of 

encrypted keys (if encryption-based KDT is used) in a RM over S-LKH. On the other 

hand, the use of B^-LKH decreases LKH height, the maximum number of encrypted keys 

in a RM, and the number of LKH allocated nodes (LKH storage). The S-LKH increase 

over B^-LKH in the number o f allocated nodes increases with increased group dynamics 

and attains more than 80% for highly dynamic groups (current group size = 60% number 

of added members).
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In chapter IV, the rekey is performed for one group member addition or removal. In 

chapter V, batch rekeying for more than one group member addition and/or removal is 

introduced. For batch rekeying, B^-LKH protocol rekey cost outperforms S-LKH 

protocol.
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CHAPTER V 

BATCH PROCESSING OF GROUP REKEYING

In chapter IV, we focused on individual rekeying, i.e. rekeying after each join and 

leave request. Individual rekeying is not a practical solution. For example, if  the inter­

arrival time (time between two join requests) o f group members at the start o f a session is 

very small; the inter-rekey time (time between two consecutive rekeyings) will be 

consequently very small and a new group key might be issued by the rekey manager 

before the previous key version has reached (or has been used by) the group members. 

Periodic rekeying has been suggested to alleviate this problem [45], [59], [69]. Periodic 

rekeying suggests rekeying after a fixed period o f time that is large enough to avoid the 

above problem. Periodic rekeying requires a rekeying for a batch o f requests, i.e., for 

accumulated join and leave requests during this period. Researchers suggested that the 

expiration o f a rekey period triggers the rekeying process. Such approach does not take 

into account the batch size or the join/leave request delay during the rekey period.

This chapter introduces a generalized rekey policy definition based on three main 

parameters that determine the triggering condition for the rekeying process. The three 

main parameters are batch size, maximum join or leave request delay (time between 

receiving the request and the start of the rekeying process), and the minimum inter-rekey 

period (a minimum period of time that has to be elapsed between two consecutive 

rekeyings). The defined rekey policy provides versatile configuration options to the rekey 

triggering condition. The rekey policy can be simply used to provide periodic rekeying as 

well as other complex rekeying conditions as configured by the application. In addition, a 

simplified view of the software objects that are used to provide secure group key 

management is presented. Moreover, the batch rekey message format and construction 

are presented. When LKH key management is used, individual rekeying requires 

generating and distributing a set of keys that fall in a LKH path from an inserted/deleted 

leaf node to the root. On the other hand, batch rekeying requires generating and 

distributing a set of keys that compose a sub-tree o f the original LKH. The rekey sub-tree
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is composed o f the individual LKH paths o f the inserted and/or deleted leaf nodes to the 

root. The batch rekey sub-tree construction for the B^-LKH protocol is detailed.

For individual rekeying, the use o f B^-LKH protocol introduces major LKH storage 

(number o f allocated nodes) savings and slightly more rekey processing than the use o f S- 

LKH protocol (see section 4.5.3). In this chapter, it will be demonstrated, through 

empirical experiments that using the B'^-LKH protocol for batch rekeying substantially 

reduces rekey processing overhead when compared to the S-LKH protocol with large 

batch sizes and/or high group dynamics. In addition, our experiments show that B”̂ -LKH 

rekey performance is stable (bounded) for highly dynamic groups while S-LKH rekey 

performance deteriorates as the group dynamics increases. Such S-LKH instability is due 

to the fact that the minimum number o f node entries is one, while for B^-LKH nodes 

have to be at least half full.

This chapter is organized as follows: Section 5.1 presents the motivation for 

introducing the rekey policy parameters. Section 5.2 details the proposed rekey policy 

definition. Section 5.3 presents a simplified view o f the secure group key management 

software objects. Section 5.4 illustrates the batch rekey message, and the general batch 

rekeying process performed by a rekey manager that maintains S-LKH or B^-LKH. 

Section 5.5 presents experimental results that compare S-LKH versus B’̂ -LKH protocols 

for batch rekeying. Finally, the chapter is concluded in section 5.6.

5.1 Motivation

Changing the group key is very expensive in terms o f processing time, and bandwidth 

consumption. According to the software model introduced in section 3.1, the rekeying 

process time has three major time components: 1) RM construction by the rekey 

manager; 2) RM transmission from the rekey manager to all group members through a 

reliable group rekey channel; 3) RM processing by a rekey client. The rekey cost (time 

and bandwidth) at the rekey manager depends mainly on the group size, the key 

management protocol, the rekey manager processing power, the network bandwidth and 

delay, and the rekey transport protocol. The existence of a central group key manager 

(and a rekey manager) allows heterogeneous members’ environments and the client 

processing is minimized. On the other hand, the group key manager is receiving the
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group members’ requests to join and leave the group, and is responsible for rekeying the 

group when it deems necessary. Periodic batch processing is introduced as a practical 

solution for frequent group rekeying [45], [59], [69]. For batch of requests, the rekey 

manager generates one RM that includes group keys’ updates due to a set o f group 

members joining and/or leaving the group. Almeroth and Ammar [1] demonstrate that for 

different group applications, the inter-arrival time and member joining duration are 

exponential in nature. Simple periodic rekeying does not take into account the possibility 

o f no join or leave requests accumulating during a rekey period. Consequently, the 

proposed batch rekey policy has three main parameters, minimum inter-rekey period, 

batch size, and maximum request delay.

The minimum time between two consecutive rekeyings, denoted inter-rekey period, 

has to be greater than the expected (maximum) time needed to rekey the group. 

Otherwise, a new group key will be issued before its previous version is ever used. The 

need for the group key manager to guarantee minimum time interval between two 

consecutive rekeyings makes it essential to process a batch of requests. Moreover, to 

avoid a group startup implosion it is required to delay the initial creation of the group key 

for a suitable time period. The initial creation o f the group (key) is processed as a batch 

processing for multiple new members addition.

LKH batch rekeying requires updating a set o f keys that compose a sub-tree of the 

original LKH. The rekey sub-tree is constmcted from all the added/removed leaf node 

paths to the root. Li et al. [45] show that, for a group o f size n and LKH of degree 4 

(optimal LKH degree for encryption-based KDT), if an all add requests batch size is 

greater than n il or an all remove requests batch size is greater than n!A the use o f LKH 

key management is worse than the use o f star key management (chapter III). In both 

cases, the number of encr)q)ted keys in a RM is equal to or greater than the group size n. 

That necessitates taking the batch size into consideration when designing a rekey policy.

The maximum request delay is defined to be the maximum time to be elapsed from 

the group key manager receiving the request and the start of the rekeying process. The 

maximum request delay is a major security concern. This delay determines the maximum 

period a group member will wait after he joins the group before being able to receive any 

group communication. Moreover, this delay determines the maximum period a group
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member will be able to keep receiving the group communication after he leaves the 

group.

We can observe that simple periodic rekeying only guarantees a fixed time interval 

between two rekeyings but doesn’t take into consideration the batch size and/or the 

maximum request delay. For some applications one o f the above parameters might be of 

more interest and easier to estimate while the others are irrelevant or hard to estimate. For 

example, a cable network application might require a maximum request delay o f 2 days 

that triggers the rekeying process, i.e. members wait at most 2 days to be added/removed 

to the network. Another example is a video conferencing application that requires a 

minimum inter-rekey period of 1 minute and a maximum request delay o f 3 minutes.

The rekey policy parameters can be estimated from the group characteristics (the 

above time components), and other resource constraints such as the allowed usage of 

processing power and/or bandwidth. For example, the rekeying process might be allowed 

only 10% of the machine processing power, and no more than 5 kbps of bandwidth 

usage.

The necessity of changing the group key because o f a new member joined the group 

(perfect backward secrecy/PBS), or a member left the group (perfect forward 

secrecy/FFS) depends on the application. For example, for a group o f students meeting in 

a virtual classroom there is no need to change the group key when a member joins the 

group late (he is allowed to join from the start). On the other hand, for members joining a 

video-on-demand provider it is essential to change the group key when a new member 

joins or leaves the group. Note that, if  the application only requires perfect backward 

secrecy, a simple non-LKH protocol can be used. The use o f an LKH protocol is essential 

when perfect forward secrecy is required, and that is our concern.

5.2 Rekey Policy Definition

The group key manager is configured by the group rekey policy as to when the group 

rekeying should be performed. The rekey policy determines the timing o f both the initial 

group key creation and the further rekeying condition. It is assumed that the rekey policy 

is static for simpler design and analysis. A dynamic adjustment to the policy parameters 

is left for future research.
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The group key manager accumulates the requests in a batch. As previously mentioned 

in chapter III, the requests are inserted in the batch as messages are received from the 

authentication manager to add, remove, or refresh group members, namely Add(M), 

Remove(M), and Refresh(M), respectively, where M is a member identification, e.g., his 

name. The member refresh request is introduced to allow an easy recovery o f a group 

member after short time o f failure (please see chapter VI for more details). Refreshing a 

group member, assumes the group member temporarily lost his set o f keys and requires 

sending him the same set of keys he was holding (as if he newly joined) without 

regenerating those keys. The accumulated requests are removed from the batch when a 

rekeying is initiated. The S-LKH and B'''-LKH protocols assume the rekey manager 

generates a unique ID for every group member that is used as a search value in 

constructing LKH. The request identification M is assumed to be different than ID (M 

might be used to generate the ID). The member identification M is required to be unique 

in the batch, while it can be replicated throughout LKH individual entries (each entry will 

have different ID).

The first policy parameter is the rekey condition (RC) that has one of four possible 

values: PBS for perfect backward secrecy, PFS for perfect forward secrecy, PBaFS for 

perfect backward and forward services, and NONE when no secrecy is required. Note 

that, if  RC equals PBS or NONE there is no need to use an LKH protocol, but we allow 

their use with an LKH protocol for dynamic policy changes (e.g., used only during part of 

a session). In addition, if  there is no change of keys due to a batch o f requests (e.g., RC is 

PFS and the batch contains only add requests), the rekey manager still needs to construct 

a rekey message RM that updates the group members o f changes about positions (due to 

the new individual entries insertions), newly created keys, and/or removed keys.

The second set of parameters determines the timing of the first group key creation, 

and has two components initASize and initMaxDelay. The third set o f parameters 

determines the timing o f the following rekeyings, and has three components 

rekeyBatchSize, rekeyMinWait, and rekeyMaxDelay.

The batchSize {initASize or rekeyBatchSize) determines the rekeying condition 

according to rekeyMinWait and maxDelay {initMaxDelay or rekeyMaxDelay) values as 

will be described in section 5.3, and its minimum value is one. We assume that a value of
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zero for minWait or maxDelay means this parameter is undetermined (not important to 

the application). The maxDelay (if greater than zero) is the maximum delay a request can 

be held in the batch before start o f rekeying. The minWait (if greater than is zero) is the 

minimum time that has to be elapsed between two consecutive rekeyings. Note that, 

maxDelay > minWait.

The batchSize parameter is compared to the current batch size, denoted BS. The batch 

size, BS, could simply be the total number o f requests inserted in the batch, or a weighted 

sum of every request type as in equation (1). Where AS, RS, and FS  are the number of 

entries in the batch (size) of Add, Remove, and Refresh requests respectively. And a, r, 

and /  are the different weights o f the different request types. The weights are policy 

parameters, e.g., if  RC equals PBS it might be o f interest to give more weight to member 

removal requests than any other requests.

BS = a x A S  + r x R S  + f x F S  (1)

In summary, the following are the rekey policy parameters;

• RC: the rekey condition that has four possible values: PBS, PFS, PBaFS, and NONE.

• a, r, &f .  weights used for batch size BS  computation.

• initASize, & initMaxDelay. initial batch size (all add requests) and initial maximum 

request delay that are used to specify the time o f the initial group key creation.

• rekeyBatchSize, rekeyMinWait, & rekeyMaxDelay: batch size, minimum inter-rekey

period, and maximum request delay that are used to specify the time o f further

rekeyings.

Where the minimum allowed value for initASize and rekeyBatchSize is one, and 

rekeyMaxDelay has to greater than or equal to rekeyMin Wait.

The application has the flexibility o f using all or some of the policy parameters as a 

deciding factor for triggering the rekey process. The type of the application determines 

what blend of parameters is taken into consideration. For example, an application that 

requires periodic rekeying every 3 minutes will have the following rekey policy:

• RC = PBaFS: backwards and forward secrecy are both required.
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• a = r  = / = l : all request types (add, remove and refresh) have the same weight.

• initASize — rekeyBatchSize -  1: there is at least one request in the batch for the group 

key creation or a rekeying to be initiated.

• initMaxDelay = 5 minutes: wait 5 minutes after the first group member joins before 

creating the group key.

• rekeyMinWait = rekeyMaxDelay = 3 minutes: guarantee minimum inter-rekey period 

of 3 minutes, and maximum request delay o f 3 minutes. In this case, if  the requests’ 

inter-arrival time is less than or equal to 3 minutes, a rekey will be periodically 

initiated every 3 minutes.

5.3 G roup Key M anagem ent Software Design

Fig. 47 illustrates a simplified view o f the software objects designed to provide secure 

group key management and their main interactions. A GroupKeyManager object is 

instantiated using instances of the RekeyPolicy (rekeyPolicy) and the RekeyManager 

(rekeyManager) as parameters. A RekeyManager object is instantiated with the rekey 

manager configuration such as use o f B'^-LKH or S-LKH rekey protocol, LKH degree, 

and use of XORRBP or encryption-based ICDT. A GroupKeyManager instantiates a 

Batch {batch). Timer {timer), and Scheduler {scheduler) objects. The different objects’ 

functionalities are as follows:

• The RekeyPolicy object provides methods for accessing (and setting) the policy 

parameters.

• The RekeyManager object maintains the group LKH and applies the rekey protocol. 

The RekeyManager provides the rekey{batch) method that takes the batch o f requests 

as a parameter and constructs the rekey message RM and sends it to all group 

members. Moreover, the rekey method sets the rekeyTime to the time when the 

rekeying is started, empties the batch, and sets minWaitFlag to false, where 

rekeyTime and min WaitFlag are variables maintained by the scheduler.

• The Batch object provides methods for adding, removing, and accessing request 

messages, in addition to methods for configuring the batch size computation and a 

method to get the current batch size size{).
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The Timer object provides a timed call to the RekeyManager'5 method rekey{batch), 

where a thread is initialized when timer's method start{TS, PRD) is called to wait for 

certain {sleepTime - T S  -  PRD  -  currentTimeQ) before calling the rekey method, 

where TS is a time stamp o f an action, and PRD  is a period that has to be elapsed 

before initiating the rekey starting from TS. In addition, timer provides a method for 

interrupting and canceling the current waiting thread (stopQ), if  such thread is 

running. Moreover, timer provides a method that gets the current time-stamp 

timeStampQ.

The Scheduler object provides checkRekeyQ method that uses the rekeyPolicy to 

decide on the rekey triggering condition

Application

RekeyPolicy RekeyManager

ekey(l^t^h)

->  instantiats 
. ̂  method call

Instantiated using 
a rekeyPolicy  and 
a rekeyM anager

GroupKeyManager

rekeyPolicy, 
rekeyManager, 
batch, timer, 
scheduler

Batch

firstEntryO

. Timer Scheduler

\TS, PRD, rekeyTime,
slpepTime minWaitFlag

start(TS, PRD) checkRekeyO
stopO
timeStampO

Fig. 47. Simplified view o f the main group key management software objects.
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When a groupKeyManager receives a request message (through a method call), it 

inserts the request in the batch after it is stamped with the current time-stamp, followed 

by a call to the scheduler’s checkRekeyO method. If  the received request is Remove(M) 

and the batch contains Add(M) or Refresh(M) request, the old request is deleted and the 

new request is not inserted (e.g., when a member is removed a short time after he joined 

the group and before a rekey is initiated). If  the received request is Add(M) and the batch 

contains Remove(M) request, the Remove(M) request is deleted and a Refresh(M) is 

inserted (e.g., when a group member recovers after short time o f failure). The member 

identification M identifies a unique request in the batch. It is assumed that the group key 

manager will not receive a re-add request o f an existing group member, or a remove 

request o f a nonexistent member.

The scheduler that uses the rekeyPolicy to trigger a batch rekeying process has three 

different states as follows:

• min Wait = maxDelay = 0. In this case, the batch rekeying is initialized as soon as the 

batch size reaches the batchSize determined by the rekey policy.

• maxDelay > 0 and m inW ait = 0. In this case, if  the arrival rate o f requests 

accumulates batchSize requests in the batch before maxDelay expires for the first 

batch request (the oldest), then the batch rekeying is initiated immediately. 

Otherwise, batch rekeying is initiated as soon as maxDelay expires for the oldest 

batch entry.

• maxDelay > minW ait > 0. In this case, if  there is a slow arrival rate (accumulation) of 

requests in the batch, then maxDelay controls when the rekeying is initiated (batch 

size never reaches batchSize). On the other hand, if  there is a fast arrival rate of 

requests in the batch, then minWait controls the minimum inter-rekey period by 

holding the rekeying process for a while when the batch size quickly reaches 

batchSize.
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5.4 Rekey Sub-Tree Construction

In LKH group key management protocols, batch rekeying requires updating 

(generating and distributing) a set of LKH keys that compose a LKH sub-tree (denoted 

rekey sub-tree). The rekey sub-tree is composed of all LKH keys that fall on the paths of 

the inserted/deleted leaf nodes to the root. The rekey sub-tree size is the number o f LKH 

keys that needs to be updated and therefore it represents the rekey cost.

Assuming the batch rekeying is initiated for a batch o f requests, where the number of 

Add requests is AS, the number of Remove requests is RS, and the number of Refresh 

requests is FS. To reduce the rekey cost, the rekey sub-tree constmction should minimize 

the rekey sub-tree size. There are three batch LKH update cases for such minimization as 

follows:

• A S  = RS. Every new individual leaf entry replaces a removed individual leaf entry in 

the LKH. In this case, every new group member will be assigned the same individual 

ID o f a removed group member.

• A S  > RS. The RS  removed individual entries are replaced by RS  new individual 

entries, then the rest o f the new individual entries are inserted into LKH. In this case, 

the number o f newly added individual entries to LKH is nA, where nA = AS - R S .

• A S  <  RS. The AS  new individual entries replace A S  removed individual entries, then 

the rest o f the removed individual entries are deleted from LKH. In this case, the 

number of deleted individual entries from LKH is nR, where nR = RS -  A S .

The LKH rekey sub-tree, denoted rekeyTree, is constructed to contain the keys that 

are affected by the replacement, the insertion, or the deletion o f the updated leaf entries. 

In addition, rekeyTree contains the keys to be sent to the refreshed members {PR requests 

in the batch). An inserted, deleted or refreshed leaf entry LKH position determines the set 

of keys that are inserted in the rekey sub-tree. For example. Fig. 48 illustrates a B'^-LKH 

and batch of 4 add requests, 2 remove requests, and 2 refresh requests. The two remove 

requests positions are marked “Rplc” for replacing by 2 add requests, the other 2 add 

requests positions are marked “Add”, and the 2 refresh requests positions are marked 

“Rfrsh”. The key nodes that are inserted in the rekey sub-tree for such batch of updates 

are grayed. Note that, a new key node “ K 3 . 3 ”  is inserted to the original LKH to
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accommodate the new entries. Please consult appendix C for the detailed B'^-LKH 

rekeyTree construction example.

®  S ...

t
Add

Rfrsh Rfrsh Rplc t
Add

Rplc

The gray connected key nodes compose the rekey sub-tree.

Fig. 48. An Example of a B^-LKFI, a batch of requests, and a rekey sub-tree.

There are four possible values of the rekey condition RC in a rekey policy that require 

LKH key changes as follows:

• PBS: a new member shouldn’t be able to recover previous group keys (before he 

joins).

• PFS: a removed member shouldn’t be able to recover new group keys (after he 

leaves).

• PBaFS: both above conditions should be satisfied

• NONE: no secrecy is required but LKH maintenance is necessary.
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The rekeyTree is a LKH sub-tree that contains all LKH keys that need to he updated 

(i.e., regenerated and distributed to group member) for a batch of requests and the rekey 

condition RC determined from the rekey policy should always be satisfied. According to 

RC value, a rekeyTree key node is either unlabeled or labeled by one of three labels “A”, 

“GA”, and “GR”. If  XORBP KDT is used, the rekey packet is constructed the same way 

for all labeled keys as described in section 3.4.1. If  encryption-based KDT is used, the 

key label determines how a rekey packet for distributing that key is constructed. If 

encryption-based KDT is used, the rekey packet is constructed for a rekeyTree key node, 

according to its label, as follows;

• No label: no rekey packet is constructed for that key.

• “A”: construct a rekey packet that contains the key encrypted with every child key 

inserted in the rekeyTree.

• “GA”: regenerate the key then construct a rekey packet that contains the newly 

generated key encrypted with its previous version, and with every child key inserted 

in the rekeyTree.

• “GR”: generate the key then construct a rekey packet that contains the newly

generated key encrypted with every child key in the original LKH.

Leaf key nodes inserted in the rekeyTree are always not labeled, (no packets are 

constructed for them) but they are used if their immediate parent is labeled “A” or “GA” 

as described above. When inserting a key in rekeyTree that already exists its label could 

be upgraded. The possible labels have the following precedence from lower to higher 

(“no label” < “A” < “GA” < “GR”). If the inserted key node (that already exists) is 

marked with a lower precedence label then it is upgraded, otherwise it is kept unchanged.

5.4.1 Rekey Message for a Batch of Requests

The format of the batch rekey message (RM) is illustrated in Fig. 49, where Addsize, 

RemoveSize, and RefreshSize is the number o f Add, Remove, and Refresh requests in the 

batch, respectively. Other message fields are explained next.
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SEO Add size Rem ove size Refresh size

ReplacedPositioni, ReplacedPosition2, . ..

RefreshedPositioni, RefreshedPosition2

Add/RemoveHeaderi, Add/RemoveHeader2, . ..

RekeyPacketi, RekeyPacket2,.

Fig. 49. The batch rekey message (RM) format.

The following is the general procedure for constructing the rekey sub-tree {rekeyTree)

and batch RM for batch o f requests (for both S-LKH and B"^-LKH rekey protocols).

1. The rekeyTree root is initialized to contain the group key GK with no label.

2. Find the position o f every replaced entry (added leaf entry in place of a removed leaf 

entry), replace the leaf entry in the original LKH and insert all the LKH keys in the 

path o f that position in the rekeyTree. The leaf key node has no label, while the label 

of all internal key nodes (including the root that contains GK) depends on the policy 

rekey condition, RC as follows.

if (RC equals PBS) then label = “GA”;

else if (RC equals NONE) then label =“A”; 

else label = “GR”;

In addition, an initial key message initMsg is constructed for every new member that 

contains his ID, position, LKH height, and LKH degree. Every replaced entry 

position is appended to the batch RM in the ReplacedPosition filed shown in Fig. 49.

3. Find the position o f every refreshed entry, refresh the entry in the original LKH 

(update the individual entry changed data) and insert all the keys in the path o f that 

position in the rekeyTree with the internal key node labeled “A”. In addition, an 

initial key message initMsg is constructed for every refreshed member that contains
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his ID, position, LKH height, and LKH degree. Every refreshed entry position is 

appended to batch RM in RefreshedPosition field shown in Fig. 49.

4. If  the number o f added entries nA is greater than zero (i.e., nR =0). For every added 

individual entry, add the individual leaf entry to the original LKH without any key 

generation and rekey packets construction. The S-LKH or B^-LKH AddMember 

method is called without new keys generation or rekey packets construction 

(underlined code in Fig. 24 and Fig. 29). In batch rekeying, the AddMember method 

retums the initMsg and the header of the rekeyMsg (all fields except the rekey 

packets) that is appended to RM shown in Fig. 49. Insert all keys corresponding to 

such leaf entry insertion to the rekeyTree according to the rekey condition RC, and 

position, type, and level from the header o f the rekeyMsg. Please consult appendix C 

for B^-LKH rekeyTree labeled insertion o f key nodes.

5. If the number of removed entries nR is greater than zero {nA =0). For every removed 

individual entry, remove the individual leaf entry from the original LBCH without any 

keys generation or rekey packets construction. The S-LKH or B^-LKH 

RemoveMember method is called without keys generation or rekey packets 

construction (underlined code in Fig. 25 and Fig. 34). In batch rekeying, the 

RemoveMember method retums the header of the rekeyMsg that is appended to RM 

shown in Fig. 49. Insert all keys corresponding to such leaf entry deletion to the 

rekeyTree according to the rekey condition RC, and position, type, level, and isRight 

array (only in B^-LKH) from the header o f the rekeyMsg Please consult appendix C 

for B^-LKH rekeyTree labeled insertion of key nodes.

6. Send the above constmcted initMsgs to all newly added members, and refreshed 

members. Constmct the batch RM (shown in Fig. 49) that will be sent to all group 

members. The batch RM contains the positions o f the replaced and refreshed entries, 

and the headers o f the added/removed leaf entries. In addition, a rekey packet is 

constmcted for every key node in the rekeyTree according to its label. The rekeyTree 

is parsed in post-order when constmcting the rekey packets where the children of a 

node are visited before their parent.
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5.5 Experim ental Results

The following experiments are performed to compare the performance o f S-LKH and 

B^-LKH batch rekey costs with change o f group djmamics (section 5.5.1), and change of 

LKH degree (section 5.5.2) for the same group size and hatch size. A batch rekey cost is 

represented as the number o f rekey packets in that batch rekey message (RM). If  XORBP 

KDT is used, the number o f rekey packets in a RM is a good rekey cost metric (all 

packets constructed the same way). If  encryption-based KDT is used, each rekey packet 

contains a varying number o f encrypted keys. The minimum number of encrypted keys in 

such rekey packet is 2, and the maximum is the LKH degree d.

The group dynamics is as defined in chapter IV. For a specified LKH degree d, group 

size n, and group dynamic ratio gdr, the LKH is constructed by adding aN  members then 

removing rN  members such that n = aN -  rN  and rN  / aN -  g d r . In the following 

experiments, the hatch size represents the number o f replaced and/or refreshed leaf 

entries, while we assume the number of added and removed entries are zeros. For a 

constructed LKH, a hatch rekeying is initialized with the specified batch size where the 

replaced and/or refreshed entries positions are randomly chosen. The following figures 

plot the average of 10 readings o f the number of rekey packets in a RM (very small 

variance is noticed).

5.5.1 Effect of G roup Dynamics

This experiment illustrates the effect of increasing the group dynamics on batch 

rekeying performance for both S-LKH and B'^-LKH protocols. The following figures 

show three horizontal lines n il, nid and average {nil, nid). Such lines help in analyzing 

the rekey cost for encryption-based KDT. The line n il marks the number o f rekey 

packets in the best scenario for which the performance of LKH is the same as the 

performance of a star key management {n encrypted keys) described in chapter III, where 

each rekey packet contains exactly 2 encrypted keys. The performance o f an LKH key 

management protocol with encryption-based KDT is worse than the star key management 

for all points above this line. The line nid marks the number o f rekey packets in the 

worst-case scenario (i.e., each rekey packet contains exactly d  encrypted keys). The 

average line marks the average case scenario. The performance o f an LKH key
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management with encryption-based KDT is better than a star key management for all 

points under the nid  line.

This experiment illustrates the rekey cost o f B'^-LKH versus S-LKH, where LKH 

degree is 4 and group size n = 8192, for different batch sizes and group dynamics. The 

batch sizes are 10%n, 20%n, ..., and 100%n. Fig. 50 illustrates the rekey cost for B"̂ - 

LKH (denoted B+) versus S-LKH (denoted S) when the group is static {gdr = 0). We can 

observe that for a degree 4 LKH and static group, the use of B^-LKH introduces an 

increase in the rekey cost when compared to S-LKH rekey cost. In addition, we can 

observe that the average rekey performance of a LKH with encryption-based KDT and 

large batch size (more than 30% n) is worse than the use o f star key management. Fig. 51 

illustrates the rekey cost for the same LKH degree and same group size when the group 

dynamics is increased to gdr = 0.5. We can observe that B’̂ -LKH exhibits almost the 

same rekey performance of S-LKH for small batch sizes, and outperforms S-LKH when 

the batch size increases. Moreover, we can observe that for higher group dynamics, the 

average rekey performance o f a degree 4 LKH and encryption-based KDT is better than 

star key management for smaller batch sizes (less than 20% «).
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Fig. 50. B"^-LKH versus S-LKH rekey cost for J  = 4, « = 8192, and gdr = 0.
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Fig. 51. B'^-LKH versus S-LKH rekey cost fox d = A, n = 8192, andgrfr = 0.5.
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Fig. 52 illustrates the performance of a degree 4 S-LKH rekey cost with the group 

dynamics increase, where gdr = 0, 0.2, 0.4, and 0.5, for different batch sizes and group 

size n = 8192. We can observe that S-LKH rekey cost increases with the group dynamics 

increase. Fig. 53 illustrates the performance of a degree 4 B^-LKH rekey cost with the 

group dynamics increase for different batch sizes. We can observe that with the group 

dynamics increases, there is a smaller increase in B'^-LKH rekey cost compared to S- 

LKH rekey cost increase.

Performing the same experiment for degree 8 S-LKH and B^-LKH. Fig. 54 illustrates 

the S-LKH rekey performance for the different group dynamics, and Fig. 55 illustrates 

the B^-LKH rekey performance for the different group dynamics. We can observe that, 

for larger LKH degrees (more than 4), B^-LKH rekey cost outperforms S-LKH rekey cost 

in all cases of batch sizes and group dynamics. In addition, from Fig. 54, we can observe 

that the average rekey cost o f a degree 8 S-LKH with encryption-based KDT outperforms 

star key management for only small group dynamics {gdr = 0, 0.2) or small batch sizes 

(less than 30% n). On the other hand, from Fig. 55, we can observe that the average rekey 

cost o f a degree 8 B"^-LKH with encryption-based KDT outperforms star key 

management for all batch sizes (up to 100% n) and all group dynamics. Moreover, we 

can observe that increasing the group dynamics for B'^-LKH protocol leads to a bounded 

increase in the rekey cost, while for S-LKH protocol the increase in the rekey cost 

steadily increases with the group dynamics.
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Fig. 52. Degree 4 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).
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Fig. 53. Degree 4 B'^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).
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Fig. 54. Degree 8 S-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).
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Fig. 55.Degree 8 B'^-LKH rekey cost {gdr = 0, 0.2, 0.4, 0.5).
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5.5.2 Increasing LKH degree

In the previous experiment, we eoneluded that B''^-LKH rekey cost outperforms S- 

LKH rekey cost (for all batch sizes and group dynamics) for LKH degrees greater than 4. 

In this experiment, we study the effect o f increasing LKH degree on the rekey cost 

represented as the average number of rekey packets in a RM. The LKH degree is 

increased from 4 to 32 in increments o f 4.

First, the experiment is performed for group size n = 1024 and batch size 102 (10%n). 

Fig. 56 illustrates the change o f S-LKH rekey cost with change of LKH degree for 

different group dynamics, where gdr = 0, 0.2, 0.4, and 0.5. We can observe that, the 

rekey cost is decreasing with LKH degree increase, while increasing with the group 

dynamics increase. Similarly, Fig. 57 illustrates the change o f B^-LKH rekey cost with 

change o f LKH degree for different group dynamics. We can observe that, the rekey cost 

increase due to increased group dynamics is more bounded compared to S-LKH rekey 

cost increase (Fig. 56).

Assuming for the same parameters {d, n, gdr, and batch size} the S-LKH rekey cost 

is cS and the B’̂ -LKH rekey cost is cB. The S-LKH rekey cost percentile increase over 

B^-LKH rekey cost (denoted rci) is calculated as rci = {cS-cB)x \QQI  c B . Fig. 58 

illustrates the rekey cost percentile increase {rci) with change o f LKH degree and 

different group dynamics. We can observe that the S-LKH rekey cost is greater than the 

B'^-LKH rekey cost for all LKH degrees greater than 4 {rci is greater than zero). The S- 

LKH rekey cost percentile increase {rci) peaks at certain LKH degrees, and usually 

increases with LKH degree increase and group dynamics increase {rci attains more than 

50% when d = \ 2  and gdr = 0.5).
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Fig. 56. A S-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5).
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Fig. 57. A B^-LKH rekey cost for different group dynamics {gdr = 0, 0.2, 0.4, 0.5).
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Fig. 58. A S-LKH rekey cost percentile increase {rci) over B’̂ -LKH, where n = 1024 and 

batch size = 102.

Next, the same experiment is performed with larger group size n = 8192 and the batch 

size is 819 (10% n). Fig. 59 illustrates the S-LKH rekey cost percentile increase over B"̂ - 

LKH rekey cost {rci) with change of LKH degree for four different group dynamics. 

Similarly, we can observe that the use o f S-LKH introduces extra rekey cost over B”̂- 

LKH for all LKH degrees greater than 4. This rekey-cost increase {inc) increases with the 

group dynamics increase. In addition, we can observe that this increase peaks at certain 

LKH degrees depending on the group size and batch size (peaks at different LKH degrees 

than what is shown in Fig. 58). The LKH degree that has a peak increase o f S-LKH rekey 

cost over B^-LKH rekey cost is the same for all group dynamics (for the same group size 

and batch size).
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Fig. 59. A S-LKH rekey cost percentile increase {rci) over B'^-LKH, where « = 8192 and 

batch size = 819.

5.6 Conclusion

Researchers have suggested periodic rekeying to alleviate the problem of having very 

small inter-rekey period. A very small time between two consecutive rekeys does not 

allow a group key to be established and used by all group members. Periodic rekeying 

makes it essential to process a batch of requests. While periodic rekeying with a period 

greater than the rekey time solves the problem, it does not take into consideration the 

batch size, or the maximum request delay. In addition, simple periodic rekeying doesn’t 

take into account the possibility of no requests being accumulated during an inter-rekey 

period.

In this chapter, a general and flexible rekey policy is presented. The defined rekey 

policy takes into account three parameters: minimum inter-rekey period, batch size, and 

maximum request delay. The policy has the flexibility of triggering the batch rekeying
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process using all or a combination of these parameters. A simplified view of the software 

objects designed to provide secure group key management is presented. In addition, the 

batch rekey message (RM) and its construction in both S-LKH and B'^-LKH protocols is 

illustrated. Finally, experiments are performed to demonstrate that the B^-LKH protocol 

introduces major rekey cost savings (less number o f rekey packets) for a batch o f requests 

compared to the S-LKH protocol. The B^-LKH batch rekey savings compared to S-LKH 

increase with the increase o f batch size or the group dynamics. In addition, we concluded 

that maintaining a balanced LKH (as a B’̂ -LKH) guarantees a bounded behavior with the 

increase of the group dynamics, while the performance o f an unbalanced LKH (S-LKH) 

deteriorates with the increase o f group dynamics.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



138

CHAPTER VI 

DISTRIBUTED GROUP REKEYING AND RECOVERY

In chapter III, we introduced a software model for secure group key management. We 

focused on the case o f a central rekey manager that maintains the group key and performs 

group rekeying, when it deems necessary, according to a defined rekey policy. It is 

assumed that the rekey manager maintains a logical key hierarchy (LKH) for scalable 

rekeying. The existence o f one rekey manager makes it a central point for both 

congestion and failure. Deploying a distributed set of rekey agents that equally share the 

load of group rekeying provides a more reliable and scalable solution. In addition, in 

applications which exhibit short failure time or disconnection times, e.g., mobile ad-hoc 

networks, a recovery mechanism is crucial to refresh the state o f the group key 

management process. In this chapter, we discuss two enhancements to our group key 

management framework: distributed group rekeying and the recovery of a group key 

manager and a group member.

The chapter is organized as follows. Section 6.1 presents the distributed group 

rekeying protocols. Section 6.2 presents the proposed recovery mechanism for a group 

key manager/agent and discusses a group member recovery. Finally, section 6.3 

concludes the chapter.

6.1 D istributed G roup Rekeying

In this section, we present four cooperation protocols for distributed group rekeying 

between peer rekey agents. It is assumed that each rekey agent is capable of managing a 

subset of group members, and participating in the group rekeying process. We show that 

the rekey protocol with minimal overhead is that one rekey agent at a time generates and 

distributes a new group key to all group members. In addition, we detail the logical key 

hierarchy (LKH) maintained at a rekey agent for the different cooperation scenarios. If 

any rekey agent is required to distribute a group key to all group members, a naive key 

management approach is that every rekey agent maintains (replicates) the group LKH. 

Instead, we propose the creation of agents’ LKH (denoted A-LKH) that reduces the
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replicated LKH size (compared to the naive approach), and the number o f maintained 

keys at a group member. Moreover, we discuss two different approaches for maintaining 

A-LKH namely dynamic A-LKH and static A-LKH. The dynamic A-LKH approach has 

a drawback of (sometimes) updating (some) group members for a rekey agent join or 

leave. On the other hand, the static A-LKH approach allows a transparent rekey agent 

join or leave for all group members, although the maximum number of rekey agents has 

to be known before starting a session.

The rest o f this section is organized as follows. Section 6.1.1 is an overview of the 

distributed group rekeying approach between a group o f rekey agents. Section 6.1.2 

defines four different cooperation protocols between the rekey agents. Section 6.1.3 

details the LKH maintained at a rekey gent for the different cooperation scenarios. 

Section 6.1.4 discusses the two different approaches for maintaining A-LKH.

6.1.1 Distributed Group Rekeying Overview

A distributed set of cooperating rekey agents provides a more scalable and reliable 

group rekeying than a central rekey manager. If an agent fails during a group session, 

other agents can assume its role and update the failed agent’s subgroup members about 

group key changes (if allowed). In addition, a new agent can recover the state o f a failed 

agent (recovery is discussed in section 6.2).

Consider a set o f peer rekey agents, i.e., all agents have the same authority and 

capability of accessing, generating, and distributing the group key as well as any LKH 

key. Since all rekey agents have a full group rekey authority, there is no need to rekey the 

group (change GK) when an agent joins or leaves the rekey agents’ group. A leaving 

agent is voluntarily relinquishes its responsibility (due to network discormection or 

failure), but is still allowed access to further agents’ communication. On the other hand, 

an evicted agent is not allowed any access to future agents or group communication. In 

this model, evicting a rekey agent is very expensive and would require recreating the 

group without that agent.

A rekey agent is responsible of managing a subset o f the group members. Fig. 60 

illustrates a rekey agents’ group that manages a group o f members, where every agent 

manages a different subset of the group members. At any point o f time, there is one agent
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who acts as the leader of the rekey agents’ group, denoted LA. The LA is a rekey agent 

that is responsible for coordinating many group actions, such as the initiation o f the group 

rekeying process. In addition, the group rekeying is performed for the LA’s subgroup 

membership changes (i.e., members join and/or leave). An agent that exhibits a change in 

its subgroup membership has to nominate itself to be the leader to perform a rekeying. If 

there is only one rekey agent (in the rekey agents’ group), it is assumed to be the LA until 

other agents join. Being a LA should be circulated fairly among all rekey agents. 

Choosing a leader among a group and guaranteeing there is only one leader at a time is 

the classical distributed systems mutual exclusion problem [17].

rekey agents

f (A) : (T)'\ )
s / ' I » '

□
□ □

Fig. 60. Rekey agents and group members.

□

A rekey agent can join the rekey agents’ group at any time (usually before the start of 

a group session). Initially, a rekey agent broadcasts its desire to join the agents’ group to 

an agent-group channel prompting a response from the LA. The LA provides the initial 

status and (LKH) information. In addition, the LA informs other rekey agents o f the new 

agent joining. A rekey agent is assumed to be active before any member joins its 

subgroup.
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When a group member joins, he is assigned one rekey agent to be under its 

supervision (each member is supervised by only one rekey agent). There are several 

approaches for a client to select one sever among a distributed set of servers as follows:

• The client contacts a directory server (could be the authentication manager) who 

directs him to his server according to a load balancing or a route optimization 

technique.

• All servers addresses are published and the client chooses the nearest to his location 

(in the network sense), at random, or any other selection criteria.

• The servers are inserted in subnets, and the clients contact their subnet server.

• A client can send his request to a servers’ channel, all servers receive the request but 

only one will respond according to a specified policy decision (for example, the 

leader or the nearest to the member’s network location).

In the following cooperation models, if  all agents are required to participate in 

generating a key (group key or other), a key agreement protocol (KAP) is needed. The 

existing technique known as group Deffie-Hellman [61] defines different protocols for 

such key agreement. The Deffie-Hellman protocol for two members requires two 

messages to be exchanged between the two parties, whereas group Deffie-Hellman 

protocols require several rounds and exchanges between all parties.

6.1.2 Rekey Agents Cooperation Protocols

The main function o f a central rekey manager is to generate the group key (GK) then 

distribute it to all group members (G). In distributed rekey management between a group 

o f m rekey agents, every agent Aj is responsible o f managing a subgroup SGi, such that 

= G . The group rekeying is performed for the elected LA’s subgroup

membership changes. Other agents’ subgroup membership changes are not incorporated 

is such rekeying. There are four group rekeying cooperation protocols between a group of 

rekey agents in terms of key generation and distribution, namely, all generate and all 

distribute; all generate and one distributes; one generates and all distributes; one 

generates and one distributes. The following are the four possible rekey agents’ 

cooperation scenarios.
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6.1.2.1 All Generate and All Distribute

All agents participate in generating a new GK through a key agreement protocol 

(KAP) and participate in distributing it to the group members. The following is the all- 

generate-and-all-distribute rekey protocol. First, the LA sends StartRekey message 

(command) to all other agents to start the KAP. Second, the KAP proceeds until all 

agents agree on the new GK. The KAP might require several rounds and message 

exchanges. Finally, every agent (including the leader) distributes the new GK to its 

subgroup members. It is essential that, a rekey agent signs the GK distribution message 

so that the group members are able to authenticate its source.

LA ^  Ai: StartRekey 

Ai -> Aj: KAP messages 

Ai ^  SG;: GK

6.1.2.2 All Generate and One Distributes

All agents participate in generating a new GK then the LA distributes it to all group 

members. The following is the all-generate-and-one-distribute rekey protocol^. The first 

two steps generate new GK through KAP. Then, the LA distributes it to all group 

members. This protocol eliminates the signature overhead performed by each rekey agent 

to GK distribution message in the all-generate-and-all-distribute rekey protocol. Only the 

LA signs the GK distribution message sent to all group members.

LA -> Ai: StartRekey 

Ai -> Aj: KAP messages 

LA -> G: GK

' X A  Y ; M, denotes X sends Y  a message M.
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6.1.2.3 One Generates and All Distribute

The LA generates a new GK, and all agents participate in distributing it. The 

following is the one-generate-and-all-distribute rekey protocol in two steps. First, the LA 

sends a StartRekey message to every agent along with the newly generated GK. Second, 

every agent (including the LA) distributes the new GK to its subgroup members. This 

protocol eliminates the KAP phase.

LA Ail StartRekey, GK

Ai SGi! GK

6.1.2.4 One Generates and One Distributes

The LA generates and distributes a new GK to all agents and to all group members. 

This is the minimal overhead rekey protocol that reduces the overhead incurred in both 

the KAP phase and the GK distribution message signature required if  all agents are 

participating in the rekeying process. Note that, the rekey agents are taking turns in being 

the LA.

LA Ai & G: GK

6.1.2.5 Comparison of Distributed Group Rekeying Protocols

We can observe that the first rekey protocol that allows all rekey agents to participate 

in generating and distributing the group key in every rekeying requires the maximum 

overhead of both the key agreement protocol phase and the signature o f GK distribution 

message performed by every rekey agent. The second rekey protocol that allows all rekey 

agents to participate in generating the group key, but the LA distributes it to all group 

members eliminates the signature of GK distribution message for all other agents. The 

third rekey protocol that allows the LA to generate a new GK, then every rekey agent 

distributes it to a subset o f group members reduces the overhead incurred in the key 

agreement protocol phase that requires exchange of several messages. The fourth rekey 

protocol that suggests the LA generates and distributes a new GK to other rekey agents 

and all group members provides a minimal overhead rekey protocol for faster rekeying
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process. The fairness in participating in the rekeying process between all rekey agents can 

be guaranteed through the leader selection mechanism.

In all cooperation scenarios, it is assumed that all rekey agents are communicating 

through an agent secure group channel (A-Chnl). In addition, all rekey agents and all 

group members are communicating through a secure rekey channel, G-Chnl, as illustrated 

in Fig. 61(a). In all-agents-distribute rekey protocols, every rekey agent instead can have 

its own independent subgroup rekey channel, SG-Chnl, as illustrated in Fig. 61(b).

A-Chnl

G-ChnI

□
(a) All members join the same group rekey channel (G-Chnl).

A-Chnl

s

SG rC hnl

\

SGj-Chnl

(b) Each subgroup members join different subgroup rekey channel (SG-Chnl). 

Fig. 61. Communication channels between the rekey agents and the group members.
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6.1.3 Distributed Group LKH Maintenance

For a group of n members managed by m rekey agents, the subgroup managed by a 

rekey agent is assumed to be of size (n/m). A logical key hierarchy (LKH) is used to 

provide scalable GK distribution. The rekey agents’ cooperation model determines the 

LKH maintained at every agent. We will illustrate the LKH maintained at a rekey agent 

and the keys maintained by its subgroup members for the two different GK distribution 

cases: 1) all agents participate in distributing a new GK each to its subgroup members; 2) 

one agent at a time (the LA) distributes a new GK to all group members and to other 

rekey agents.

We will illustrate different LKHs o f degree d = 2, where the group size n = 32, 

managed by 4 rekey agents (i.e., m = 4), and a rekey agent subgroup size is 8 members.

6.1.3.1 All Agents Distribute

In all-agents-distribute rekey protocols, every rekey agent participates in distributing 

a new GK to its subgroup members. It is sufficient for an agent Aj to maintain a LKH for 

its subgroup SGi. There is no need for the rekey agents to share (replicate) any key 

information other than GK. In this case, every group member maintains his individual 

key and in the average log^(n/m ) keys, where n is the group size, m is the rekey agents’ 

group size, and d  is the LKH degree.

When n = 32 and m = 4, Fig. 62 illustrates the LKH (of height h = 3) maintained at a 

rekey agent for 8 members, where GK is the only replicated key at every rekey agent. A 

group member maintains 4 keys including his individual key and GK.

GK

6 h
Fig. 62. A subgroup LKH of degree 2 for 8 members.
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6.1.3.2 One Agent Distributes

In one-agent-at-a-time-distributes rekey protocols, the LA distributes a new GK to all 

other agents and to all group members. The naive key management solution is every 

rekey agent maintains a fully replicated LKH for all group members. In this case, a group 

member maintains his individual key and in the average log^(n) keys, where n is the

group size, and d  is the LKH degree.

When n = 32 and m = 4, Fig. 63 illustrates the group LKH (of height h = 5) for 32 

members that is replicated at every rekey agent. A group member maintains 6 keys 

including his individual key and the group key.

The naive solution requires a full replication o f the group LKH rooted at GK. 

Alternatively, we suggest a more replication conservative solution. In the new approach, 

a rekey agent Ai maintains its subgroup LKH rooted at a rekey agent individual key AKi. 

In addition, all agents replicate an agents’ LKH (denoted A-LKH) rooted at GK. The leaf 

nodes of A-LKH are the agent keys AKs. The A-LKH and the subgroup LKHs are either 

having the same degree or having different degrees. Note that, A-LKH keys are 

replicated and known to all rekey agents including the agents’ (individual) keys AKs. In 

this approach, a group member maintains an extra set o f A-LKH keys starting from his 

agent individual key to GK. A group member maintains his individual key and in the 

average log^^(n/m) subgroup LKH keys and log^2 ("^) A-LKH keys, where n is the

group size, m is the rekey agents’ group size, d l  is the subgroup LKH degree, and d2 is 

the A-LKH degree. This approach allows any rekey agent to distribute a new GK to all 

group members but reduces the replicated LKH size at a rekey agent and the number of 

keys maintained at a group member when compared to the naive solution.

When n = 32 and m = 4, Fig. 64 shows the A-LKH (of height 2) and the subgroup 

LKH (of height 3) maintained at agent Ai, where d l = d2 = 2. A  group member maintains 

6 keys: his individual key, 2 subgroup-LKH KEKs, an agent key AKi, 1 A-LKH KEK, 

and GK.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



147
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Fig. 63. A group LKH of degree 2 for 32 members.

A-LKH

AK,

GK

— -y Agent key

Fig. 64. An A-LKH and subgroup LKH maintained at rekey agent Ai for 32 members.

6.1.4 Agents’ LKH (A-LKH) Maintenance

The agents’ LKH (A-LKH) is fully replicated at all rekey agents. There are two 

approaches for A-LBCH maintenance: dynamic or static. In the dynamic approach, the A-
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LKH is dynamically built up as the rekey agents join the agents group. In the static 

approach, the A-LKH is initiated to be of fixed static size that could accommodate the 

maximum number of rekey agents as they join. A newly joined agent contacts the LA to 

get the latest version of A-LKH. The A-LKH replica should be consistently updated at all 

agents through the agents’ group communication channel. In the following sections, the 

two A-LKH maintenance approaches will be presented in detail, in addition to how an A- 

LKH key can be generated.

6.1.4.1 Dynamic A-LKH

In the dynamic A-LKH maintenance approach, the first rekey agent to start creates 

GK and its subgroup LKH. The A-LKH contains only GK, and it is considered the first 

agent individual key. The A-LKH dynamically grows as other rekey agents join the 

agents’ group. There is no need to regenerate an existing A-LKH key (including GK) as 

agents join (the whole A-LKH is known to all agents). When an agent joins the agents’ 

group, A-LKH keys are created to accommodate the new agent individual key (leaf A- 

LKH node). The LA notifies other rekey agents to update their replicated A-LKH. The 

new agent creates and maintains its subgroup LKH rooted at its newly created agent key.

In the dynamic A-LKH approach, creating a new A-LKH key requires updating 

(some) group members. As previously mentioned, evicting an agent is not valid (section 

6.1.1). When an agent leaves, its individual key is deleted from A-LKH (that might lead 

to the deletion of other A-LKH keys). Similarly, when a rekey agent leaves, there is no 

need to regenerate an existing A-LKH key. The deletion o f an A-LKH key requires 

updating (some) group members. This model has the drawback o f sometimes affecting 

some group members as A-LKH keys are created or deleted.

Fig. 65 is an example that demonstrates the sequence of A - L K H  key creation for 4 

rekey agents, where A - L K H  degree is 2 .  In Fig. 65(a), the first agent A i  creates A - L K H  

that contains GK. In Fig. 65(b), the second agent A 2  joins, A K ]  and A K 2  are created. In 

this case, A K ]  should be sent to the subgroup members managed by A] (assuming no 

members have joined A 2  yet). In Fig. 65(c), the third agent A 3  joins, and K], K 2 ,  and A K 3  

are created. In this case, K] should be sent to the subgroup members managed by A] and
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A 2 . In Fig. 65(d), the fourth agent A4  joins, and AK 4  is created. In this case, none o f the 

group members is updated for such join.

GK

(a)

GK

AK AK2

(b)

GK

AK3AK, AK;

GK

AK AKj

(d)(c)

Fig. 65. Sequence o f a dynamic A-LKH, key creation for 4 rekey agents.

6.1.4.2 Static A-LKH

The static A-LKH maintenance approach provides a transparent rekey agent join and 

leave for all group members, i.e., no members are updated for an agent join or leave. The 

first agent to start creates an empty (no keys) A-LKH that can accommodate a specified 

maximum number of agents (leaf nodes). It generates its own agent key AK (in a A-LKH 

leaf node), GK (A-LKH root node), and all the keys in the path between its AK and GK. 

When other agent joins, a newly generated AK is inserted into an empty A-LKH leaf 

node, and other A-LKH keys are generated as needed. When an agent leaves, only its AK 

is deleted (A-LKH leaf node is marked empty) allowing other agent keys to be inserted.
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There is no need to regenerate an existing A-LKH keys as agents join or leave. The static 

A-LKH maintenance approach has a drawback that the maximum number o f rekey agents 

has to be known before starting a session.

Fig. 66 is an example that shows the sequence o f A-LKH key generation for 4 agents, 

where A-LKH degree is 2 and the maximum number of rekey agents is 4. In Fig. 66(a), 

the first agent to join generates AKi, Ki, and GK. In Fig. 66(b), the second agent joins 

and A K 2  is generated. In Fig. 66(c), the third agent joins, and A K 3  and K 2  are generated. 

In Fig. 66(d), the fourth agent joins and A K 4  is generated.

GK

AK,

(a)

GK

AKz

(b)

GK

AK3AK, AK;

(C)

GK

AK3AK, AK2

(d)

Fig. 66. Sequence of a static A-LKH key generation for 4 rekey agents.
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6.1.4.3 A-LKH Key Generation

An A-LKH key to be used the first time by an agent is created by one of the following 

methods;

1) Creation hy the leader agent (LA)

2) Creation by the new agent (NA) itself

3) Creation by both the LA and the NA through KAP

4) Creation hy all agents through KAP

The following are the protocols for the four aforementioned cases.

Creation by the LA

The LA sends the NA the updated A-LKH after creating/generating the required keys. 

At the same time, the LA sends an update A-LKH message to all other agents.

LA ^  NA: A-LKH; LA ^  Ai: Update A-LKH 

Creation by the NA

The LA sends the NA the A-LKH before the creation o f any new key. The NA

updates A-LKH and sends the update to all agents including the LA. This protocol

requires two messages to be sent in sequence.

LA ^  NA: A-LKH 

NA ^ A i: Update A-LKH 

Creation by both the LA and the NA

The LA sends the NA the A-LKH along with its share in the newly generated keys. 

Then, the NA sends back its share in the newly generated keys to the LA. Both the LA 

and the NA update A-LKH with the new keys. Then, the LA sends an update A-LKH to 

all other agents. This protocol requires three messages to be sent in sequence.

LA NA: A-LKH, new-keys-share 

NA LA : new-keys-share 

LA -> A i: Update A-LKH

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



152

Creation by all agents

The LA sends the NA the A-LKH, and sends to all other agents a StartRekey message 

for the required A-LKH keys (at least one). All agents (including the LA and the NA) 

exchange messages for the new keys generation. After the KAP proceeds all agents will 

be able to establish the same updates to A-LKH.

LA NA; A-LKH; LA ^  A: StartRekey

Ai ^  Aj: KAP messages

We can observe that the first protocol is the simplest (fastest) since updating an A- 

LKH requires the LA to send two messages at the same time, one to the NA and one to 

the other rekey agents. However, choosing a protocol for A-LKH key creation/generation 

can be a group policy decided by the application.

6.2 Group Key Manager Recovery

In this section, the recovery o f a group key manager and a rekey manager after short 

failure time is discussed. It is assumed that, the rekey manager is a software entity 

maintained by the group key manager, i.e., the rekey manager fails and recovers as a 

component of the group key manager. Such recovery process is concerned with the 

recovery of the last state o f the rekey policy, the rekey scheduler, and the LKH. One 

approach to recover the state a failed group key manager is to have an independent full 

replica(s) of its state that assumes responsibility upon its failure. The drawback o f this 

approach is the extra overhead needed to keep all replicas consistent all the time. Instead, 

we assume that the group key manager state is not replicated. We are concerned with the 

state recovery of a central group key manager that maintains group LKH as well as a 

group key agent that maintains a subgroup LKH and possibly an agents’ LKH (A-LKH) 

after a short failure time, e.g., due to a server restart. Although the recovery o f a LKH 

could be performed using the state stored at group members, we introduce the use o f a 

log file that facilitates such recovery in case of members’ failure or inconsistencies. The 

proposed logging and recovery mechanism is secure and easy to implement. The logging 

system avoids writing any key or revealing random number generator information. Group
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members participate in the recovery of their key manager/agent by sending at least one 

encrypted recovery message. The recovery message sent by a group member contains his 

maintained list o f keys. We introduce a key selection technique for a group member to 

reduce the number of keys sent in the recovery message while allowing the group key 

manager to retrieve all LKH keys. To the best o f our knowledge, this topic has not been 

previously investigated in the research community.

The rest o f this section is organized as follows. Section 6.2.1 is an overview o f the 

proposed recovery system. Section 6.2.2 illustrates the proposed group key manager 

logging system. Section 6.2.3 introduces the recovery key used by the group members in 

the recovery of their manager. Section 6.2.4 details the group key manager recovery 

procedure. Section 6.2.5 demonstrates the group member recovery message and 

introduces a key selection technique that reduces the overhead in constmcting the 

recovery message.

6.2.1 Recovery Overview

The authentication manager that maintains the group policy is assumed to be 

implementing an independent fault tolerance mechanism. In addition, the authentication 

manager is assumed to store the group requests (add, remove, and refresh) sent to the 

group key manager until a rekeying is successfully ended (i.e., committed). Moreover, 

the authentication manger either keeps the group requests or denies all or some types of 

those requests during the group key manager failure.

The recovery of a group member after failure could be treated as him leaving the 

group and joining at a later time. If  the group member failure is for a very short time and 

the leave request is not processed (waiting in a batch of requests), when the join request 

is received, the group member state is refreshed instead. As previously mentioned in 

chapter IV, refreshing a group member state assumes the member lost his maintained set 

of keys, and requires sending him the same keys as if  he newly joined. However, the 

rekey manager doesn’t change LKH keys for refreshing a group member. Such refreshing 

optimizes the rekeying process by reducing the number of the newly generated LKH 

keys. The mobile computing paradigm is an example where frequent short disconnection 

times may occur, due to frequent handoffs.
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In distributed group rekeying, if the distributed agents’ cooperation protocol allows 

any agent to distribute a new GK to all group members, the failed agent subgroup 

members will be notified by the changes o f GK during their agent failure period. On the 

other hand, if  the distributed agents’ eooperation protocol allows every agent to distribute 

a new GK to its subgroup members only, the failed agent subgroup members could store 

the un-interpreted group messages (due to lack of GK updates) during their agent failure 

and proceed interactively after its recovery. In this case, if  the agent failure is for a very 

short time, its subgroup members might be able restore communication appropriately. 

Otherwise, a failed agent subgroup members might loose interactivity with the session.

As previously mentioned in chapter III, the group rekey channel provides a reliable 

group communication (multicast) protocol that assures a group member has received the 

rekey message (RM). A RM send method call (through the rekey channel) is assumed to 

return successfully even if  RM didn’t reach some (or all) group members due to their 

failures. The new GK is guaranteed to reach the group member by the rekey channel.

The rekey scheduler and the leader selection mechanism guarantee that there are no 

nested rekeyings (i.e., no start-rekey is issued before the previous rekeying is committed).

6.2.2 Group Key Manager Logging

The group key manager is configured through the rekey policy to schedule the group 

rekeying events while reeeiving requests (from the authentication manager) to add, 

remove, and refresh group members. When group rekeying deems necessary, the rekey 

manager is notified to issue a rekey message (RM) and send it to the group members. The 

proposed recovery mechanism assumes the group key manager is maintaining a log file. 

The log file is written to permanent storage (disk) periodically and forcefully at certain 

checkpoints, so that any type o f failure does not affect it. Note that, we are not 

considering disk or catastrophie failures.

Writing a LKH key to the log file is crucial and requires encryption that is time (and 

processing) consuming. In addition, the keys are subject to change in a rekeying process, 

and the most recent version of a key is the only needed version after the recovery. The 

recovery meehanism avoids writing keys to the log file. Moreover, the randomly 

generated numbers (such as keys, IDs, or byte patterns (BPs); see chapter IV) could be
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regenerated if the used pseudo random number generator and its initialization are 

revealed to an intruder. It is crucial to store the initial pseudo random generator state 

(e.g., its seed) that would allow the generation o f the exact sequence o f random numbers. 

The recovery mechanism avoids storing such random number generators state 

information.

In summary, a group key manager/agent writes a time stamped entry to the log file in 

the following cases;

• Initialization entry that is used to restore the employed protocols, implementations, 

and policies,

• Receiving a message to add, remove, or refresh a group member,

• Before initiating a rekeying process (i.e., the leader agent (LA) in a distributed group 

rekeying model) a Start-Rekey entry is written,

• After committing an initiated (by itself) rekeying process, a Commit-Rekey entry is 

written,

• When committing a rekying process (i.e., not the LA in a distributed group rekeying 

model), a Rekey entry is written,

• Change of rekey policy, and

• A LKH signature at specified checkpoints.

The log file is forcefully written to the permanent storage in the following cases:

• Initialization,

• Committing an initiated rekeying process, and

• A LKH signature written at specified checkpoints.

A checkpoint is introduced to facilitate the recovery process. The checkpoint could be 

scheduled periodically or after certain number o f committed rekeyings. At a checkpoint, 

the rekey manager (governed by the group key manager) writes the LKH signature to the 

log file, and forcefully writes the log file to the permanent storage. The LKH should be 

checked to have updates since the previous checkpoint. In a distributed group rekeying, 

the agents’ LKH (A-LKH) is not written to the log file since it is fully replicated at all 

agents and could be easily recovered. In the group key manager recovery, the LKH
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signature determines the shape o f the LKH, the number o f entries at each node, and the 

guiding IDs. The following is the LKH signature of the LKH illustrated in Fig. 67. The 

LKH is parsed in pre-order and the IDs are written in order with the symbol “(“ used to 

group a single node’s entries.

T: LKH-Signature [((120, 205), 400, (900)), 900, ((1120, 1205))]

K.,;

K,, K,.2 K2 .1

K i .1.2 K,,

(a) The S-LKH key view.

900

400

7
120 205 900 1120 1205

(b) The S-LKH search view. 

Fig. 67. A group LKH at a checkpoint time.
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6.2.3 Recovery Key

A group member participates in the group key manager/agent recovery by sending 

some of his maintained keys as will be explained in section 6.2.5. For privacy purpose, a 

group member sends to the group key manager the recovery messages encrypted by a 

recovery key. The group key manager should be able to decrypt such messages, while no 

other group member should possess such capability. Using the group key, GK, as a 

recovery key, is not suitable, since the group members are aware o f it. Instead, a group 

member either uses his individual key or a group key manager public key.

If  the authentication manager stores the group members’ individual keys, the group 

key manager contacts it at the beginning o f a recovery process to obtain such keys 

(among other information). The group key manager recovers the group members’ 

individual keys before receiving any recovery message from them. In this case, every 

group member uses his individual keys as a recovery key (to encrypt the recovery 

messages).

On the other hand, if  the authentication manager doesn’t store the group members’ 

individual keys, a recovery key is needed. The recovery key has to be in the form of 

private key and public key pair. The recovery key could be a long-term key or a session 

recovery key. The private key is kept securely at the authentication manager or at the 

group key manager system. The public key is handed to every group member right after 

he joins the group to use as a recovery key.

6.2.4 Group Key Manager Recovery

The recovery of a group key manager/agent implies the restoration o f the latest 

group/subgroup LKH, policy, scheduler state, and agents’ LKH (if applicable). It is 

assumed that contact information to the authentication manager and other group key 

agents are recoverable (one could be through the other). The group key manager recovery 

process proceeds as follows:

1. Inspect the following log file entries: Initialization entry to reinitialize itself and the 

rekey manager; last Rekey-Policy entry to restore the rekey policy and adjust the 

scheduler; last LKH-Signarure entry to reestablish the group LKH structure.
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2. Apply all committed rekeyings’ changes to the LKH, i.e., insert and delete LKH 

nodes that took effect after last signature. Note that, without writing LKH-Signature 

the LKH could be restored by redoing all insertions and deletions form the beginning 

of the log file.

3. Contact the authentication manager for changes in the rekey policy (if allowed). In 

addition, the group key manager retrieves the stored requests at the authentication 

manager. If  the last Start-Rekey entry in the log file is not followed by a Commit- 

Rekey, it is implied that the group key manager crashed during a rekeying. Although 

the exact scheduler state can’t  be recovered, the group key manager schedules a 

rekeying as soon as possible after LKH full recovery.

4. Contact the agents’ group for latest agents’ LKH (A-LKH), and the committed 

rekeyings during the failure period to adjust the sequential number SEQ. If  all agents 

are not available during this recovery (e.g., all failed) and some rekeyings have been 

performed, the recovering agent subgroup members will provide partial construction 

of A-LKH and that will allow the recovering agent to proceed normally.

5. Send a recovery request to group members to send back their maintained list of keys 

to fully restore LKH keys (see section 6.2.5).

6.2.5 Group Member Recovery Message

A group member sends to his group key manager/agent one recovery message upon 

receiving a recovery request. The recovery message contains his individual LKH leaf 

entry position, his individual ID, last SEQ, and the maintained list o f keys. In addition, 

the recovery message is encrypted using the recovery key as explained in section 6.2.3.

As previously illustrated for LKH keys, an individual key is maintained by one group 

member, GK is maintained by all group member, a KEK is maintained by a subset o f the 

group members. I f  every group member sends all his maintained list of keys in the 

recovery message to the group key manager, GK and KEKs will be sent several times 

(e.g., GK will be sent by all group member). Instead, we propose an enhancement to the 

above protocol that allows group members to send a partial list o f their maintained keys. 

Allowing only one group member only to send a recovered key is crucial if that member
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fails. On the other hand, if  all the members that maintain a key have failed, the group key 

manager will not be able to recover such key but will be able to proceed without it.

The proposed LKH keys recovery protocol provides a fair group member key 

selection that allows a group member to choose a partial list o f his maintained keys to 

send to a recovering group key manager. In addition, it allows the group key manager to 

retrieve all keys in one round if no member fails. If  some members fail during their group 

key manger recovery, LKiH keys recovery might take two rounds as follows: 

round

• The group key manager sends a recovery request to all group members.

• A group member sends an encrypted recovery message that contains his individual 

key (if not recovered from the authentication manager), his individual ID, and his 

LKH leaf entry position. Note that, if a group member didn’t send a recovery message 

in the first recovery round, he is detected as failed by the group key manager.

• If the group member’s individual entry falls on the path of the first child o f a key 

node (determined from his LKH leaf entry position that equals to I), send that key in 

the first round recovery message. The maximum number o f keys a group member can 

send in a recovery message is half the LKH height, starting from the key on the 2"*̂  

LKH level (i.e., without his individual key).

2“'' round

• If  the group key manager didn’t recover a LKH key (KEK) at the first round due to 

members’ failure, a recovery request message is sent specifying the missing set of 

keys and the next existing neighbors (to the failed members) to send it.

• The specified group members send the specified keys.

We suggest that the above key selection algorithm is fair since an individual entry 

LKH position is determined from his randomly assigned individual ID. The probability of 

a group member sending a certain key is independent from any other key, and is equal to 

the probability o f holding a key that exists in a first entry of a node that is equal to ltd, 

where d  is the LKH degree.

For example, in the group key manager recovery process of the LKH of height 3 

illustrated in Fig. 67, a group member will send a first round recovery message that
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includes his ID, LKH leaf entry position, and at most 3 keys (assuming half 3 is 2) 

including his individual key. The five recovery messages sent by the five group members 

to the group key manager in the format (ID, LKH position, keys) are as follows: (120,

1.1.1, K i .m , K u , K i), (205, 1.1.2, Ki.1 .2 , Ki, GK), (900, 1.2.1, Ki.2 .1 , K 1 .2 , GK), (1120,

2.1.1, K2 .1 .1 , K 2 .1 , K2 ), and (900, 2.1.2, K 2 .1 .2 , K2 ).

6.3 Conclusion

Distributed group rekeying between a set o f peer rekey agents provides a more 

scalable and reliable secure group key management compared to the central rekey 

manager approach. In this chapter, four group rekeying cooperation protocols between a 

distributed set of rekey agents, in terms o f group key generation and distribution 

mechanism, are proposed. It is demonstrated that, the minimal overhead rekey protocol is 

when one rekey agent at a time generates and distributes a new group key to all agents 

and group members. In addition, the LKH maintained at a rekey agent in the two cases of 

new group key distribution are discussed. The first case is that each agent distributes the 

new group key to its subgroup members. The second case is that one rekey agent at a 

time distributes a new group key to all group members. The naiVe solution in the latter 

case is that every rekey agent fully replicates the group LKH. Altematively, we proposed 

the construction and replication o f smaller size agents’ LKH (A-LKH). The proposed 

approach reduces the replicated LKH size at each rekey agent and the number of keys 

maintained by a group member. Furthermore, we identified two approaches o f such 

agents’ LKH maintenance namely dynamic A-LKH and static A-LKH. The dynamic A- 

LKH approach has the drawback of affecting group members (by inserting or deleting 

keys) as agents join or leave the agents’ group. The static A-LKH approach guarantees a 

transparent rekey agent join and leave but requires the specification o f the maximum 

number o f rekey agents before starting a session.

Moreover, a logging mechanism for the recovery of a group key manager/agent state 

after short failure time is presented. The logging includes all events that change the group 

key manager state but avoid writing any security revealing information such as keys. 

Group members participate in the recovery o f their manager by sending an encrypted 

recovery message that includes a sub-list of their maintained keys. A fair group member
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key selection technique is proposed to reduce the number of sent keys in a recovery 

message.
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CHAPTER VII 

CONCLUSION AND FUTURE EXTENSIONS

In this chapter, we conclude the dissertation by summarizing our motivation, 

objectives, contributions, and the performance of our proposed framework for secure 

group key management. Furthermore, we discuss a list o f possible future extensions to 

our work in the context of secure group communication, and secure group key 

management.

7.1 Conclusion

Secure group communication is quickly becoming the adopted standard in many 

applications spanning diverse areas. Throughout the dissertation, we focused on secure 

group key management, which deals with group key {GK) issues such as establishing, 

distributing, and maintaining that key over the period of the group existence. To provide 

perfect secrecy, group rekeying (change o f GK) has to be performed for every group 

member joining or leaving the group. Group rekeying is a challenging problem especially 

for large group sizes or highly dynamic groups.

The simplest group rekeying protocol is performed with the help of a trusted and 

secure group key manager. The group key manager maintains GK, and performs a group 

rekeying when it deems necessary according to a defined rekey policy. In a group 

rekeying process, a new GK  is generated and distributed to group members such that a 

joining (leaving) member is not allowed access to previous (future) group 

communication. A very fast rekeying is crucial to the performance o f an application that 

has large group size, experiences frequent joins and leaves, or the group key management 

is hosted by a group member because o f the required computation effort. Traditionally, 

newly generated keys are encrypted for secure distribution to group members. Such 

technique is denoted encryption-based key distribution technique (KDT). There are two 

approaches for group key management, the star key management and the logical key 

hierarchy (LKH) approach. In the star key management, the group key manager performs 

2 keys encryptions for join rekeying and n keys encryptions for leave rekeying, where n
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is the group size. This approach is not scalable since leave rekeying scales linearly with 

the group size. In the LKH approach, if  the LKH degree is d, the group key manager 

performs on the average 2xlog^ n keys encryptions for join rekeying, and d  xlog^ n

keys encryptions for leave rekeying. The LKH provids a scalable group rekeying, and is 

becoming the standard approach for group key management. However, when encryption- 

based KDT is used with LKH, there are two un-symmetric rekey protocols for join and 

leave rekeying. Such unsymmetric property makes increasing the LKH degree result in a 

deerease of the join rekey cost and an increase o f the leave rekey cost. In this case, the 

optimal LKH degree is estimated to be 4.

Traditionally, group rekeying is performed periodically for the accumulated join and 

leave requests (i.e., batch o f updates) during an inter-rekey period. In the star key 

management approach, the group key manager is required to regenerate one key and to 

perform 0{n) key encryptions for a rekeying, where n is the group size. If  the group key 

manager maintains a LKH of degree d and height h, such that n<  d ’’, and the bateh size 

is R requests, a rekeying requires the group key manager to regenerate O ( R x h )  keys and 

to perform 0 ( d x R x h )  keys encryptions. The encryption-based LKH approach provided 

a rekeying cost that scales to the logarithm o f the group size, however, the number of 

encryptions performed by a GKM increases with increased LKH degree, LKH height, or 

the batch size, and can be more than the star approach’s number of eneryptions.

The objective of our work is to provide a framework for secure group key 

management that outperforms the original encryption-based LKH for all application 

scenarios. The framework has to be secure, efficient, scalable, reliable, and independent 

of the application. The group key management framework addresses the following issues: 

secure group communication software model, key distribution technique, rekey protocols, 

batch rekeying, distributed group rekeying, and recovery. We briefly present our 

approach to resolve the aforementioned issues highlighting our contributions.

Secure group communication software model. We presented a generic software 

model for providing secure group communication. The model identifies five main 

components as follows: authentication manager, group key manager, rekey manager and 

the corresponding rekey client, rekey channel, and cryptographic utility manager. The 

model is designed to isolate the group key management components and illustrate the
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functionalities and interactions of other components. We have extended Java‘̂“ security 

with an application-programming interface (API) that can be used to provide group key 

manager, rekey manager, and rekey client functionalities as designed in our model.

Key distribution technique. We focused on the rekey manager that uses a LKH for 

scalable rekeying. We proposed a novel XOR-based KDT, namely XORBF. The 

proposed approach performs an XOR operation between keys to reduce the computation 

effort, and uses a random byte patterns (BP) to distribute the key material in a fixed size 

rekey packet (for every new key). The use o f LKH and XOKBP KDT provides 

symmetric rekey protocols in both cases of join and leave rekeyings.

We derived analytical cost estimates of XORBP and performed empirical 

experiments to compare its performance with the encryption-based KDT for the same 

degree LKH. The use o f XORBP doubles the required LKH storage, the required member 

storage, and the number of randomly generated bits per a rekeying. The XORBP rekey 

message size is comparable to the eneryption-based leave rekeying message size. On the 

other hand, the use o f XORBP substantially reduces the rekey message construction time. 

Our experiments have shown that XORBP achieves up to 90% reduction in the rekey 

message construction time. In addition, contrary to the encryption-based KDT, increasing 

the LKH degree, when XORBP is used, reduces both join and leave rekeying cost. Such 

property allows the use o f a larger degree LKH, which reduces the LKH storage, the 

member storage, and the rekey message size when compared to a smaller LKH degree. 

The anal34ical cost estimates assume that the LKH is balaneed, while the experiments are 

performed using an un-balanced LKH. Such experiments show that there is a slight 

increase in the measured member storage and the rekey message size over the analytical 

values, but the measured LKH storage has a 60% increase over the analytical value.

Rekey Protocols. As group members join or leave the group, LKH nodes (keys) will 

be inserted or deleted. While, many researchers assume a balanced LKH when estimating 

the group rekeying cost, the literature lacks practical LKH protocols that maintain a 

balanced LKH of any degree all the time. We proposed two novel protocols for 

establishing and maintaining a LKH of any degree. One protocol adopts an unbalanced 

LKH while the other adopts a balaneed LKH. The protocols assume that the rekey 

manager assigns a unique individual identification (ID) to every group member. For both
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protocols, we detailed the LKH structure, the rekey message format, and the rekey 

processing at a rekey manager and at a rekey client for different scenarios o f LKH keys 

insertion and deletions.

The first protocol, denoted S-LKH, maintains LKH as a search tree using the 

individual IDs. The second protocol, denoted B'^-LKH, maintains LKH as a balanced 

search tree that has the same structure as S-LKH. B^ search tree insertion and deletion 

algorithms guarantee that the LKH is balanced after each node (key) insertion or deletion. 

In addition, B"̂  search trees have an extra constraint that all allocated nodes have to be at 

least half full to reduce the allocated LKH storage (memory). On the other hand, B”̂ -LKH 

maintenance introduces complexity and extra overhead to the rekey process.

We have performed empirical experiments to compare the performance o f S-LKH 

and B^-LKH rekey protocols. The experiments show that, for both protocols, the 

frequency o f the simple insertion and deletion scenarios increases with LKH degree 

increase. In addition, for B^-LKH the frequency o f the most expensive operation is less 

than 1% for any LKH degree. For individual rekeying (i.e., a rekeying after one group 

member joins or leaves), the use of B^-LKH results in an increase in the average number 

of rekey packets (i.e., newly generated keys) and the average number o f encrypted keys 

(measured when encryption-based KDT is used) when compared to S-LKH. On the other 

hand, a B^-LKH has a smaller height and introduces a decrease in the expected maximum 

rekey time. The expected maximum rekey time identifies a minimum time period that has 

to be elapsed between two consecutive rekeyings. Furthermore, a B'^-LKH requires much 

less allocated nodes. The reduction o f the number o f allocated nodes using B^-LKH 

reaches 50% of the same degree S-LKH for a highly dynamic group.

Batch Rekeying. Individual rekeying for a single join or leave request is not a 

practical solution. Instead, researchers suggested periodic rekeying to be performed for a 

batch o f requests accumulated during an elapsed period. We have extended S-LKH and 

B'^-LKH protocols to support batch rekeying.

We introduced a generalized rekey policy definition that has three main parameters: 

minimum inter-rekey period, maximum request delay, and batch size. The defined policy 

can be used to provide simple periodic rekeying as well as other complex rekeying 

conditions as configured by the application. A simplified design o f the software objects
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used to provide secure group key management is presented. For batch rekeying, the 

newly generated keys compose a sub-tree o f the original LBCH. We illustrated how the 

rekey manager constructs the rekey sub-tree in both rekeying protocols and how the 

rekey tree is used in constructing the rekey message sent to group members for such keys 

updates.

We performed experiments to compare the batch rekeying performance of S-LKH 

and B^-LKH protocols. Our experiments show that, the batch rekeying performance of a 

rekey protocol that uses LKH of degree 4 and encryption-based KDT is better than star 

key management only for small batch sizes (less than 20% n). In addition, our 

experiments show that using B^-LKH for large batch sizes or highly dynamic groups 

substantially reduces the rekey cost when compared to S-LKH. In addition, B^-LKH 

performance is shown to be stable (bounded) for highly dynamic groups while S-LKH 

performance deteriorates as the group dynamics increase.

Distributed group rekeying. To extend the scalability and the reliability of our 

model, we introduced four cooperation group rekeying protocols between a group o f peer 

rekey agents. We illustrated that the protocol with the minimal overhead is that one rekey 

agent, at a time, generates and distributes a new group key to all group members. 

Detailed LKH maintenance in the different cooperation protocols are presented. In 

addition, the use o f an agents’ LKH (denoted A-LKH) is introduced to facilitate a new 

GK distribution by a rekey agent to all group members. The use o f A-LKH minimizes the 

replicated LKH size at every rekey agent as well as the number o f maintained keys at a 

group member. Finally, two approaches for A-LKH establishment are presented. The first 

is the dynamic A-LKH approach that is flexible but (some) group members might be 

updated for a rekey agent joining or leaving the agents’ group. The second is the static A- 

LKH approach that requires the specification of the maximum number o f rekey agents 

before starting a group session but provides transparent agents join and leave for group 

members.

Recovery. Finally, we proposed a logging and recovery mechanism for the group key 

manager/agent and the rekey manager/agent. The logging system is secure and easy to 

implement. Group members participate in the recovery o f their manager by sending an 

encrypted recovery message when requested. The group member recovery message
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contains his individual material and his maintained set of keys. We proposed a key 

selection technique to reduce the number of keys sent in the recovery message. In 

addition, we discussed the recovery o f a group member after a short failure time.

In conclusion, the designed software model provides group key management 

components that are independent of the application, the security mechanism, and the 

communication protocol. The proposed XORBP KDT if used with the LKH approach 

achieves further reduction to the group rekeying computation cost and provides a more 

efficient and scalable solution than the encryption-based KDT. The proposed unbalanced 

LKH rekey protocol (S-LKH) can be used for any LKH degree. While, the proposed 

balanced LKH rekey protocol (B^-LKH) is practical for a LKH of degree greater than 3. 

A B"^-LKH requires much less storage than S-LKH. In addition, the use o f a B^-LKH 

when compared to a S-LKH substantially reduces the batch rekeying cost for large batch 

sizes or highly dynamic groups and exhibits a bounded performance with increased group 

dynamics. Moreover, the proposed rekey policy offers versatile triggering conditions for 

the batch rekeying process including simple periodic batch rekeying. Furthermore, 

distributed group rekeying enhanees the scalability o f the group key management 

framework. Finally, the group key manager and the group member’s recovery mechanism 

add reliability to the framework.

7.2 Future Extensions

The secure group key management framework can be extended as follows:

1) Adapting the proposed LKH rekey protocols to constrained LKH key generation 

mechanisms such as the use o f a hash function. In our work, it is always assumed 

LKH keys are freshly randomly generated. Such constrained key regeneration 

techniques are used to reduce the group rekeying cost (i.e., number o f randomly 

generated bits, rekey message size, etc...). Unfortunately, constrained key generation 

could be less secure.

2) Providing a dynamic rekey policy. Such dynamic rekey policy would require 

investigating the possibility of having conflicting policy decisions applied to the 

(short) time, interval between two consecutive rekey policies.
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3) Investigating distributed group rekeying where more than one rekey agent is 

experiencing a change in its subgroup membership. In this case, performing a group 

rekeying is similar to performing a distributed nested transaction that requires 

distributed concurrency control.

4) Experimenting with batch group rekeying for real application scenarios and different 

group sizes. The experiments would compare the batch group rekeying performance 

of S-LKH and B^-LKH rekey protocols. Group applications have two benchmark 

scenarios. First, one sender and large group of receivers such as video broadcasting. 

Second, small group o f peer group members such as a conferencing application where 

any member can be a sender.

5) Experimenting with the distributed group rekeying protocols for real application 

scenarios. The experiments would compare the different protocols overhead, and 

compare the proposed distributed architecture with other distributed secure group 

management architectures such as lolus [49].

6) Implementing the proposed group key manager recovery technique and performing 

experiments to study its charaeteristics. The experiments will compare the time and 

overhead required for a group key manager recovery using the proposed selective 

logging technique and a full logging technique. A full logging technique would allow 

logging the LKH keys.

7) Experimenting with group member recovery in applications exhibiting short failure 

time such as mobile clients.

8) Perform an analytical study o f the proposed key selection technique used by a group 

member in the construction of his group key manager recovery message.

9) Refining the implementation of the group key manager/agent, the rekey manager, and 

the rekey client as designed in the proposed framework. The finished product is a set 

o f packages that extend Java' '̂  ̂ security and can be used by secure group 

communication applications. The packages design will revolve around two Java''''^ 

security design principles: implementation independence and interoperability, and 

independenee and extensibility.

10) Integrating the proposed XORBP key distribution technique and the S-LKH and B”̂- 

LKH rekey protocols with the work of the IETF secure multicast group.
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11) Investigating other secure group communication issues such as a group policy 

definition and implementation for the authentication manager, and a reliable group 

rekeying transport protocol for implementing the rekey channel.
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APPENDIX A 

EXAMPLES OF S-LKH AND B^-LKH REKEY PROTOCOLS

This appendix contains two examples for S-LKH and B^-LKH rekey protocols. The 

examples illustrate the rekey message sent in different group member addition and 

removal scenarios. The initial key message (initMsg) format is {ID, position, height, 

degree}. The rekey message (rekeyMsg) format for S-LKH rekey protocol is {SEQ, type, 

position, level, ID, RekeyPacketi, RekeyPacket2  , ...}. The rekey message format 

(rekeyMsg) for B'^-LKH rekey protocol is {SEQ, type, position, level, (IDi, ID 2 , ...), 

(isRighti, isRight2 , ...), RekeyPacketi, RekeyPacket2 , ...} where isRight values are T for 

true and F for false. Note that maintaining SEQ is not shown in the algorithms (trivial). 

Note also that, the rekey message level filed is not assigned in all cases.

A LKH key is identified by its LKH position and that position is changing due to 

insertion/deletion of node entries. An addRekey packet is identified by a key and the 

directly/indirectly inserted entry number in the associated child node. If  encryption-based 

KJDT is used, such addRekey packet contains the new version o f the key encrypted by its 

previous version and by that specified child node key entry. For example addRekey(K.2.u 

2) packet is [{-Kj J K j [ ,{ ^ 2 1 ) ^ 2 1 2 ]• A rmvRekey packet is identified by a key. If

encryption-based KDT is used, such rmvRekey packet contains the new key encrypted by 

every key in the associated child nod. For example rmvRekey(K2 .\) packet is 

[ {K\ 1 }K,, K. e node(P2 1 )], where node(P2 1 ) is the node pointed to by the pointer P2 ,1 .

S-LKH Examples

Fig. 68(a) illustrates the initial nodes o f a S-LKH of degree 4 that is used to 

demonstrate the three member addition and the two member removal scenarios. The S- 

LKH is constructed using S-LKH AddMember (Fig. 24) and RemoveMember (Fig. 25) 

algorithms. The S-LKH height h > 3 (part o f the tree is not expanded). For all other 

figures the S-LKH search view is used to illustrate the changes to the initial S-LKH.
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Fig. 68(b) is the S-LKH search view after AddMember(240, ) is performed. The 

returned initMsg is {240, 2.1.2, h, 4} and the returned rekeyMsg is {SEQ, ADD, 2.1.2, 2, 

240, addRekey(K2A, 2), addRekey(K.2, 1), addRekey(GK, 2)}.

Fig. 68(c) is the S-LKH search view after AddMember(420, K y)  is performed. The 

returned initMsg is {420, 2.2.4, h, 4} and the returned rekeyMsg is {SEQ, SPLIT, 2.2.4, 

2, 420, rmvRekey{K2.2), rmvRekey(K2.z), addRekey(K2 , 3), addRekey{GK, 2)}.

Fig. 68(d) is the S-LKH search view after AddMember(609, K ^)  is performed. The 

returned iniMsg is {609, 3.3, h, 4} and the returned rekeyMsg is {SEQ, INCREASE, 3.3, 

1, 609, rmvRekey{K-i.\), rmvRekeyiK^ i), addRekeyQL^, 1), addRekey{GK, 3)}.

Fig. 68(e) is the S-LKH search view after RemoveMember(666) is performed. The 

returned rekeyMsg is {SEQ, REMOVE, 3.2.1, 2, 666, rmvRekey{)L-i.2), rmvRekeyiK^), 

rmvRekey{GK)}.

Fig. 68(f) The following figure is the S-LKH after RemoveMember(790) is 

performed. The returned rekeyMsg is {SEQ, DECREASE, 3.2.1, 1, 666, rmvRekey(JL{), 

rmvRekey(GK)}.

GK

root

(Ki, P,), 170, (Kj, P2), 490, (K3, P3), 900, (K4, P4) I

N, N2 N3

(K 2 ,,P2 ,) ,2 5 5 ,(K 2 .2 ,P 2 .2 )  1
N4

(K3,„ 575), (K.3.2, 589), (K.3.3, 666), (K,3,4, 790)

N2 N2

(K2.1.,, 230), (K2.,.2, 255) (K2.2.,, 290), (K,2.2.2, 300)), (K2.2.3, 388), (K.2,2.4, 490)

(a) The S-LKH initial nodes.

Fig. 68. A S-LKH member addition and removal examples.
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170 490 900

255

230 240 255

575 589 666 790

290 300 388 490

(b) The S-LKH search view after AddMember(240, ) is performed.

170 490 900

255 388

290 300 388 420 490

(c) The S-LKH search view after AddMember(420, Ky ) is performed.

170 490 900

609

575 589 609 666 790

(d) The S-LKH search view after AddMember(609, ) is performed.

170 490 900

609

575 589 609 790

(e) The S-LKH search view after RemoveMember(666) is performed. 

Fig. 68. (Continued)
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170 490 900

575 589 609

(f) The S-LKH search view after RemoveMember(790) is performed. 

Fig. 68. (Continued)

B^-LKH Example

Fig. 69(a) illustrates a B'^-LKH of degree d = A and height A = 3 constructed using the 

B’̂ -LKH AddMember (Fig. 29) and RemoveMember (Fig. 34) algorithms. Note that, 

parts of the tree are not expanded but the maintenance algorithms guarantees that all 

nodes are at the same level, so the height h of that B^-LKH is 3. The B^-LICH is used in 

demonstrating the different B'^-LKH member addition and removal scenarios.

Fig. 69(b) is the B^-LKH search view after performing AddMember(600, ) 

followed by AddMembr (790, Ky) .  The first returned initMsg is {600, 3.1.2, 3, 4} and 

the first retumed rekeyMsg is (SEQ, ADD, 3.1.2, -, (600), -, addRekey{K3,i, 2), 

addRekey(K-i, 1), addRekey{GK, 3)}. Then the second retumed initMsg is (790, 3.2.3, 3, 

4} and the second retumed rekeyMsg is (SEQ, ADD, 3.2.3, -, (790), -, addRekey(K3 2 , 3), 

addRekey(KT„ 2), addRekey{GK, 3)}.

Fig. 69(c) is the B'^-LKH search view after AddMember(770, K ^)  is performed. The 

retumed intiMsg is {770, 3.2.2, 3, 4} and the retumed rekeyMsg is {SEQ, SPLIT, 3.2.2, 

1, (770, 786), -, rmvRekey(K3 2 ), rmvRekeyQLz^), addRekey(K.3 , 2), addRekey{GK, 3)}.

Fig. 69(d) is the B"^-LKH search view after AddMember(590, ) is performed. The 

retumed initMsg is {590, 3.1.2, 3, 4} and the retumed rekeyMsg is {SEQ, INCREASE,

3.1.2, -, (590, 600, 786, 786), -, rmvRekey{K\2 ,\), rmvRekeyOLi^.i), rmvRekey{K\3 ),
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rmvRekeyQL.2.\), rmvRekeyQLx), rmvRekeyQL.7), addRekey{GK, 1)}. The B"^-LKH height h 

becomes 4.

Fig. 69(e) is the B'^-LKH search view after RemoveMember(990) is performed (an 

expansion o f extra part o f the tree is shown). The retumed rekeyMsg is {SEQ, REMOVE, 

2.1.2.3, (990), rmvRekey{]L2 .\.2), rmvRekey{K2.\), rmvRekeyiJLj), rmvRekey{GK)}.

Fig. 69(f) is the B^-LKH search view after RemoveMember(817) is performed. The 

retumed rekeyMsg is (SEQ, SHIFT, 2.1.2.1, 0, (817, 810, 990), (F, T, F), 

mrgRekey(lL2 2 .\, F), mrgRekey(K2 .2 , T), rmvRekey{K.2), rmvRekey(K\), rmvRekey{GK}}.

Fig. 69(g) illustrates an expansion o f Pi sub-tree. Fig. 69(h) is the B^-LKH search 

view after RemoveMember(380) is performed. The retumed rekeyMsg is {SEQ, 

MERGE, 1.2.3.1, 2, (380, 230), (F), mrgRekey(]L\2 .2 , F), rmvekey{K\2 ), rmvRekey(Ki), 

rmvRekey{GK)}.

Fig. 69(i) is is the B'^-LKH search view after RemoveMember(lOO) is called. The 

retumed rekeyMsg is {SEQ, DECREASE, 1.1.1.2, -, (100, 100, 170, 490), (T, T, T), 

mrgRekey(}L\,\, T), mrgRekeyQLu T), mrgRekey(GK, T)}.

GK

root

\ (K,, P,), 170, (K2, P2), 490, (K3, P3), 990, (K4, P4)

N, N2 N3 
■ ■

N s.i

I (K3,,, P3,,), 675, (K3.2, P3.2), 810, (K3.3, P3.3) 

N 3.2

N4
■

N3

(Kj.,,, 530), (K3.,.2, 655), (Kj.z.,., 675) (K 3.2.2, 749), (K.3.2.3,786), (K.3.2.4, 810)

(a) The B^-LKH initial nodes.

Fig. 69. A B'^-LKH member addition and removal examples.
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D
170 490 990

C
675 810

A
530 600 655 675 749 786 790 810

B

(b) The B"^-LKH search view after AddMember(600, ) and (790, K y ) are performed.

170 990490

675 810786

B1
786 790 810749 770

B2

(c) The B’̂ -LKH search view after AddMember(770, K ^)  is performed.

786

D1

170

C l

490

7 .

D2

990

600 675

C2

810

A1 A2

530 590 600 655 675

(d) The B"^-LKH search view after AddMember(590, ) is performed. 

Fig. 69. (Continued)
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D2D1

990170 490

C2

999600 675 810

B2

790 810 950817

(e) The B'*'-LKH search view after RemoveMember(990) is performed.
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D1 ..... : a D2
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C l
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790

/
950 999

810 950

(f) The B^-LKH search view after RemoveMember(817) is performed.

100

H / I

59 100 166 170 198 210 270 330

(g) The B’̂ -LKH expansion o f P] sub-tree.

Fig. 69. (Continued)

380 490
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490

m .
786170

100
210

270170 198 210 330100 166 490

(h) The B'''-LKH search view after RemoveMember(380) is performed.

D2

786490

170 210

198 210 270 330 490166 170

(i) The B”̂ -LKH search view after RemoveMember(lOO) is performed. 

Fig. 69. (Continued)
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Method Rekey(rekeyMsg)
Globals: h, d, Min d, ID, position, keyList, KDT,

rekeyPos, level, match, isRight, isRNghbr, isLNghbr, S;

{ rekeyPos = rekeyMsg.position; level = rekeyMsg.level; match = -1; 
for (I = 0 to (b-1)) if (position[I] equals rekeyPos[I]) then match = I; else breakFor; 
match = h -  match; if (match equals 1) then match = 2;
X = h + 1-match; isRght = rekeyMsg.isRght[match-3]; 
isRNghbr = isRght and (position[X] equals (rekeyPos[X]+l)); 
isLNgbr = (not isRght) and (position[X] equals (rekeyPos [X]-l)); 
if (match < (h-level+2)) then S = h-level; else S = match-1;
IF (rekeyMsg.type)
{ equals ADD or REMOVE: Simple();
equals SPLIT: Split();equals INCREASE: Increase();
equals MERGE: MergeQ; equals SHIFT: Shift(); equals DECREASE: Decrease();} 

Method Loopl(startI, endl, adjust)
{ for (I = starti to endl) keyList.update(I + adjust, rekeyMsg.packet[I]);
^j'k-k'kj

Method Loop2(startI, endl, adjust)
{ for (I = starti to endl)

{ if (ID > rekeyMsg.ID[I]) then increment position[h-l-I]; 
packetNo = 2* I; 
if (position[h-l-I] > Min_d)

then { increment position[h-l-I] by (Min_d+1); packetNo = packetNo+l; } 
keyList.update(I + adjust, rekeyMsg.packet[packetNo]);}

Method Loop3 (starti, endl, adjust)
{ for (I = starti to endl)

{ if (ID > rekeyMsg.ID[I]) then decrement position[h-l-I]; 
if (KDT equals XORBP)

then keyList.updateBP(I, rekeyMsg.xoredBP[I, position[h -l-I]]); 
if (not rekeyMsg.isRght[I]) then increment position[h-l-I] by Min_d; 

keyList.update(I -f- adjust, rekeyMsg.packet[I]);}
}

Fig. 70. The B^-LKH rekey client Rekey(), Loopl(), Loop2(), and Loop3() methods.
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Method SimpleQ
{ if ((match equals 2) and (ID > rekeyMsg.ID[0]))

then if (rekeyMsg.type equals ADD) then increment position[h-l]; 
else decrement position[h-l];

Loop 1 (match-2, h-1, 1);
j/***/
Method Split()
{ Y = h-leveI-2;

Loop2(match-2, Y, 1);
if (((match-2) < (h-level)) and (ID >rekeyMsg.ID[Y+l])) 

then increment position[level];
LoopI(Y+S, Y+h, -Y);

J/***/
Method IncreaseO
{ increment h; Loop2(match-2, h-1, 1);
y-k-k-kj

Method Decrease()
{ if ( match > 3)

then { if (isRNghbr) then increment position[X+l] by (Min_d -1); 
if (isRNgbr or isLNghbr) then Loop 1 (match-3, match-3, 1);} 

Loop3(match-2, h-2, 1);
decrement h ; free position[0]; keyList.free(h+l);

}

Fig. 71. The B’̂ -LKN rekey client Simple(), Split(), Increase(), and Decrease() methods.
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Method MergeQ 
{ if ( 3 < match < (h-level+2)) 

then { if  (isRNghbr ) then increment position[X+l] by (Min_d-1);
if (isRNghbr or isLNghbr ) then Loop 1 (match-3, match-3, 1);}

Loop3(match-2, h-L-2, 1);
if (((match-2) < (h-level)) and (ID >rekeyMsg.ID[h-level-l])) 

then decrement position[level];
Loopl(S-l, h-1, 1);

Method ShiftQ 
{ if ( 3 < match < (h-level+1))

then { if (isRNghbr) then increment position[X+l] by (Min_d-1); 
if (isRNghbr or isLNghbr) then Loop 1 (match-3, match-3, 1);} 

if (match equals (h-level+1)) 
then if ( isRNghbr or isLNghbr) 

then { if (isRght and (position[level] equals (rekeyPos [Ievel]+1))) 
then decrement position[level+l]; 

if ((isRght and (position[level+l]<l)) or
(not isRght and (ID > rekepMsg.ID[match-2]))) 

then { if (isRght)
then { decrement position[level];

increment position[level+l] by Min_d; } 
else { increment position[level]; position[level+l]==l;} 

if (KDT equals XORBP) 
then keyList.updateBP(match-3, rekeyMsg.xoredBP(match-3, 1)); 

Loop 1 (match-3, match-3, 1);
} else Loop 1 (match-2, match-2, 0);

}
Loop3(match-2, h-level-3, 1); 
if (match < (h-level-1))

then { if (rekeyMsg.isRght[h-level-2] and (ID > rekeyMsg.ID[h-level-2])) 
then decrement position[level+1];

Loopl(h-level-2, h-level-2, 1);}
LoopI(S, h, 0)

}

Fig. 72. The B"^-LKH rekey client MergeQ, and ShiftQ methods.
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Example

This example illustrates B"^-LKH rekey client processing for the retumed rekeyMsg 

{SEQ, DECREASE, 1.1.1.2, -, (100, 100, 170, 490), (T, T, T), mrgRekey{K^A, T), 

mrgRekey{K\, T), mrgRekey(GK, T)} in the last step in the B'* -̂LKH example in appendix 

A. Initially, all rekey clients maintains h = 4, and when rekeyMsg is received they will 

execute the Decrease() method. All rekey clients will adjust h to be equal to 3 and keyList 

size will be 4 after the method is executed.

Note that keyList.update{key_number, rekeyMsg.packet[packet_number]) will be 

shortened to KLU{key_number, packe_ number). We will trace the rekey client position 

and the updated keys for four members with match = 2, 3, 4, and 5.

The group member whose ID = 50 has match = 2 and position = l . I . l . l .  The rekey 

client executes Loop3(0, 2, 1) {(KLU(1, 0); KLU(2, 1), KLU(3, 2)} and position 

becomes 1.1.1.

The group member whose ID = 166 has match = 3 and position = 1.1.2.1. The rekey 

client executes the condition with X =  2 and isRight = T {position =1.1.2.2, KLU(1, 0)} 

and then executes Loop3(l, 2, \){position  =1.1.1.2, KLU(2, 1); KLU(3, 2)} and position 

becomes 1.1.2.

The group member whose ID = 198 has match = 4 and position =1.2.1.1. The rekey 

client executes the condition w ith X =  1 and isRight =T {position =1.2.2.1, KLU(2, 1)}, 

then executes Loop3(2, 2, 1) {position =1.1.2.1, KUL(3, 1)}, finally position becomes 

1.2 .1.

The group member whose ID = 530 has match = 5 and position = 2.1.1.1. The rekey 

client executes the condition with X =  0 and isRght =T {position = 2.2.1.1, KLU(3, 2)} 

and position becomes 2.1.1.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



188

APPENDIX C

B^-LKH REKEY SUB TREE LABELED INSERTION

This appendix details the B^-LKH rekey sub-tree (rekeyTree) labeled insertion of key 

nodes. A key node is inserted into rekeyTree in one of four ways namely, insert, 

insertSplit, insertMerge, and insertShift. The simple insertion insert(H, RC, type) inserts 

the key node N labeled according to the policy determined rekey condition RC and the 

rekey message type that is either ADD or REMOVE as shown in TABLE IX. Another 

form of simple insertion is insertQsi, label) that inserts the key node N with the specified 

label, and InsertQtT) that inserts the key node N with no label.

TABLE IX

LABEL OF KEY NODE N FOR SIMPLE RM TYPES: ADD & REMOVE

RC\type ADD REMOVE

NO N E “A ” -

PBS “GA” -

PFS “A ” “GR”

PBaFS “GA” “GR”

The insertSplit(H, RC) o f a key node N inserts two key nodes N1 and N2 to the 

rekeyTree for two nodes that result o f node N spliting. Every internal key, GK or KEK, 

has an LKH internal entry that contains a pointer to its child node, where the child node 

for GK is root node. A split key node N means the child node pointed to by that key 

internal entry is split. Let N be the node specified to be split to two nodes N1 and N2, 

where N1 is chosen from the two nodes such that it contains the newly inserted entry and 

N2 is its neighbor that share entries previously inserted in N. Initially, the key for both
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nodes N1 and N2 entries will contain the key that was in N and at least N1 key will be 

regenerated. The label of the two key nodes when inserted in the rekeyTree is specified 

according to RC as shown in TABLE X. Note that if  N exists in the rekeyTree, N1 and 

N2 both will start with N label that could be upgraded. Also note that if RC is NONE, N1 

will be labeled “GA” to guarantee the generation (creation) of that key (which initially 

contained the same key as N2) although “A” would be suitable otherwise.

TABLE X

LABELS OF KEY NODES N1 AND N2 FOR A SPLIT KEY NODE

RC N l N2

NONE “GA” -

PBS “GA” -

PFS “GR” “GR”

PBaFS “GR” “GR”

The insertMerge(N, isRight, RC) of key node N inserts the key node N1 in the 

rekeyTree that is merged with N. The key node N1 is determined from isRight value 

(right or left neighbor). If  N already exists in the rekeyTree, it is deleted first then N1 is 

inserted. Inserting N I implies inserting all merged children entries with no label or with 

their label if  any existed in the rekeyTree. The key node N l will be labeled according to 

RC as shown in TABLE XI.
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TABLE XI

LABEL OF MERGED KEY NODE N TO N l

RC N l

NONE “A ”

PBS “GA”

PFS “A ”

PBaFS “GA”

The insertShiftQ^, isRight, RC) of key node N inserts two key nodes N and N l in the 

rekeyTree. The node N l is the N neighbor determined from isRight value where an entry 

is shifted from N l to N. Both N and N l nodes are labeled according to RC as shown in 

TABLE XII.

TABLE XII

LABEL OF SHIFTED KEY NODES FROM N l TO N

RC N N l

NONE - -

PBS “GA” -

PFS “GR” “GR”

PbaFS “GR” “GR”

A leaf entry position in a B^-LKH is represented by an array o f size LKH height h, 

where each array entry specifies a child position in the path that leads to the leaf entry. 

There are (h + I) keys specified from the position PiP2 ---Ph follows; the group key 

GK, {h-l) KEKsK^_, ..., andX^_^^ ^, and a leaf (individual) key

Assuming the keys specified by certain position are the keys of key array of size {h + 1).
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The rekeyTree insertion o f such key array depends on the parameters RC, type, level, and 

isRight array. Fig. 73 illustrates the insertion of the key array to rekeyTree, for all possible 

rekey message types and policy-determined rekey condition (RC).

if  ((type equals ADD) or (type equals REMOVE)) 
then { for (I = 1 to h) rekeyTree.insert(key [I], RC, type);

if (type equals ADD) then rekeyTree.insert(key[h+l]); }

if (type equals SPLIT) 
then { for (I = 1 to (level +1)) rekeyTree.insert(key[I], RC, ADD); 

for (I = (level+2) to h) rekeyTree.insertSplit(key[I], RC); 
rekeyTree.insert(key[h+l ]);}

if (type equals INCREASE) 
then { rekeyTree.insert(key[l], RC, ADD); 

rekeyTree.insert(K], “GR”); 
rekeyTree.insert(K 2 , “GR”); 
for (I =2 to h) rekeyTree.insertSplit(key[I], RC); 
rekeyTree.insert(key[h+l]);}

if (type equals MERGE) 
then { for (I = 1 to (level+1)) rekeyTree.insert(key[I], RC, REMOVE); 

for (I = (level+2) to h)
rekeyTree.insertMerge(key[I], isRight[h+l-I], R C );}

if (type equals SHIFT)
then { for (I = 1 to (level+1)) rekeyTree.insert(key[I], RC, REMOVE); 

rekeyTree.insertShift(key[level+2], isRight[h-level-l], RC); 
for (I = (level+3) to h)

rekeyTree.insertMerge(key[I], isRight[h+l-I], R C );}

if (type equals DECREASE) 
then { rekeyTree.delete(GK);

for (I = 1 to (h -1)) rekeyTree.insertMerge(key[I], isRight[h-I], RC); }

Fig. 73. Labeled insertion o f key array to a B^-LKH rekey sub-tree.
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Example

For the B''^-LKH key view shown in Fig. 74, where degree <i = 4, height h = 3, and 

group size n = 29. I f  RC is PBaFS, and a rekeying has been initiated for batch o f requests 

that contains 4 Add requests, 2 Remove requests, and 2 Refresh requests as shown in the 

figure. The 2 removed entries’ positions are marked “Rplc” for replacement by 2 added 

entries, the other 2 added entries’ positions are marked “Add”, and the 2 refreshed 

entries’ positions are marked “Rfrsh”.

GK

•2.2 -2.3 -3.2-1.2

Rfrsh Rplc RplcRfrsh
AddAdd

Fig. 74. A B'^-LKH key view and a batch of requests.

A LKH leaf entry position is determined by a path that starts from the root node and 

specifies the child node number in all nodes in the path that leads to that leaf node. The 

positions of the two refreshed individuals’ entries are 1.2.3, and 2.2.1 (Rfrsh marked 

nodes). The two removed individuals’ leaf entries will be replaced by two new 

individuals’ leaf entries (i.e., a new member will be assigned the same ID of a removed 

member). The two replaced entries are at positions 2.3.3 and 4.2.2 (Rplc marked nodes).
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The other two new individuals’ leaf entries are assigned two newly generated IDs and 

inserted into the original LKH. From a new individual ID the position o f his individual 

leaf entry is determined (Add marked positions). The rekeyTree, shown in Fig. 75, is 

constructed for the replaced, refreshed, and added entries as follows:

1. Replacing the leaf entry at position 2.3.3 leads to rekeyTree insertion o f the key 

nodes GK, K 2 ,  and K 2 . 3  labeled “GR”, and the leaf key K 2 . 3 . 3  with no label.

2. Replacing the leaf entry at position 4.2.2 leads to rekeyTree insertion of the key 

nodes GK, K 4 ,  and K 4 . 2  labeled “GR”, and the leaf key node K 4 , 2 , 2  with no label. Note 

that GK is inserted before with the same label.

3. Refreshing the entry at position 1.2.3 leads to rekeyTree insertion o f the key nodes 

GK, Ki, and Ki , 2  labeled “A”, and the leaf key node Ki.2 . 3  with no label. Note that GK 

is inserted before with higher ranked label.

4. Refreshing the entry at position 2.2.1 leads to rekeyTree insertion of the key nodes 

GK, K 2 , and K2 . 2  labeled “A”, and the leaf key node K2 ,2 .i with no label. Note that 

GK, and K 2  are inserted before with higher ranked labels.

5. The randomly generated IDa for the first added individual positions his entry at

1.1.2, where RM type for such insertion is ADD. Inserting that leaf entry leads to 

rekeyTree insertion of the key nodes GK, Ki, and Kj i labeled “GA” and the leaf key 

node K i , ] . 2  with no label. Note that GK is already inserted before with higher ranked 

label and Ki is already inserted before with “A” label that is upgraded to “GA”.

6. The randomly generated IDb for the second added individual positions his entry at

3.2.2, where RM type of such insertion is SPLIT and level is 1. Inserting that leaf 

node leads to rekeyTree insertion of the key nodes GK, and K 3  labeled “GA”. For the 

split node K 3 . 2  where N l (that has the new entry) is K 3 . 2  and N 2  is Ksj^ both N l and 

N2 will be inserted labeled “GR”. The leaf key node 1C3 .2 . 2  is inserted with no label.
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i “ G A

1 i K2 1 ! K3 1 1 K4 1
I I “GR” ! 1 “G A ” i i “GR” i

f Ki.i 1 K1.2 1 i K2.2 1 I  K2.3 i K3.2 i 1 K3.3 1 K4.2
1 “G A ” i “A ” 1 I “A ” I i “G R” i “GR” i i “GR” I “G R” i

K,.,.2 K i .2.3 K 2.2.I K 2.3.3 K 3.2.2 K 4 .2.2

Fig. 75.The B^-LKH rekey sub-tree constructed for batch of 8 requests.

The batch RM for such batch o f requests contains: 

o Two replaced positions 2.2.3, and 4.2.2

o Two refreshed positions 1.2.3, and 2.2.1

o Two individual RM headers {type = ADD, position = 1.1.2, IDa} and (type = SPLIT,

position = 3.2.2, level = 1, (IDb, IDc)} 

o The rekey packets constructed for all labeled keys in the rekeyTree each according to 

its label. The rekeyTree is parsed in post-order generating the rekey packets for the 

keys in the following order: K u , K 1 . 2 ,  K], K 2 . 2 ,  K 2 . 3 ,  K 2 ,  K 3 . 2 ,  K 3 . 3 ,  K 3 ,  K 4 , 2 ,  K 4 ,  GK.

If encryption-based KDT is used, the rekey packets are as follows: 

o For the two “A” labeled keys are: [{Ki.2 }Ki.2 .3 ] and [{K2 .2 }K2 .2 .i]

o For the three “GA” labeled keys are: [{K,', }Ki.i, {Kj j }Ki.i,2 ], [{K,' }Ki, {K[ }Ki.j,

(K;}K,.2Land[{K;}K3, {K',}K,.2, {K',}K,.,]
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o For the “GR” labeled key K 2 . 3  is [{ <̂̂2 , 3  }K-2 .3 ,i, {-^2 . 3  } ^ 2 .3 ,2 , {-̂ 2̂ . 3  } ^ 2 .3 .3 ]- All other 

“GR” labeled key (K2 , K 3 .2 , K jj, K4 .2 , K4 , GK) are constructed the same way: a new 

key version is generated and encrypted with all its children keys (at the original 

LKH).
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APPENDIX D 

ACRONYMS

BP Byte Pattern

DBS Data Encryption Standard

GK Group Key

GKM Group Key Manager

KAP Key Agreement Protocol

KDT Key Distribution Technique

KEK Key Encrypting Key

LKH Logical Key Hierarchy

PBS Perfect Backward Secrecy

PFS Perfect Forward Secrecy

PBaFS Perfect Backward and Forward Secrecy

RM Rekey Message
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