2,651 research outputs found

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Part clamping and fixture geometric adaptability for reconfigurable assembly systems.

    Get PDF
    Masters of Science in Mechanical Engineering. University of KwaZulu-Natal. Durban, 2017.The Fourth Industrial Revolution is leading towards cyber-physical systems which justified research efforts in pursuing efficient production systems incorporating flexible grippers. Due to the complexity of assembly processes, reconfigurable assembly systems have received considerable attention in recent years. The demand for the intricate task and complicated operations, demands the need for efficient robotic manipulators that are required to manoeuvre and grasp objects effectively. Investigations were performed to understand the requirements of efficient gripping systems and existing gripping methods. A biologically inspired robotic gripper was investigated to establish conformity properties for the performance of a robotic gripper system. The Fin Ray Effect® was selected as a possible approach to improve effective gripping and reduce slippage of component handling with regards to pick and place procedures of assembly processes. As a result, the study established the optimization of self-adjusting end-effectors. The gripper system design was simulated and empirically tested. The impact of gripping surface compliance and geometric conformity was investigated. The gripper system design focused on the response of load applied to the conformity mechanism called the Fin Ray Effect®. The appendages were simulated to determine the deflection properties and stress distribution through a finite element analysis. The simulation proved that the configuration of rib structures of the appendages affected the conformity to an applied force representing an object in contact. The system was tested in real time operation and required a control system to produce an active performance of the system. A mass loading test was performed on the gripper system. The repeatability and mass handling range was determined. A dynamic operation was tested on the gripper to determine force versus time properties throughout the grasping movement for a pick and place procedure. The fluctuating forces generated through experimentation was related to the Lagrangian model describing forces experienced by a moving object. The research promoted scientific contribution to the investigation, analysis, and design of intelligent gripping systems that can potentially be implemented in the operational processes of on-demand production lines for reconfigurable assembly systems

    Automatic Romaine Heart Harvester

    Get PDF
    The Romaine Robotics Senior Design Team developed a romaine lettuce heart trimming system in partnership with a Salinas farm to address a growing labor shortage in the agricultural industry that is resulting in crops rotting in the field before they could be harvested. An automated trimmer can alleviate the most time consuming step in the cut-trim-bag harvesting process, increasing the yields of robotic cutters or the speed of existing laborer teams. Leveraging the Partner Farm’s existing trimmer architecture, which consists of a laborer loading lettuce into sprungloaded grippers that are rotated through vision and cutting systems by an indexer, the team redesigned geometry to improve the loading, gripping, and ejection stages of the system. Physical testing, hand calculations, and FEA were performed to understand acceptable grip strengths and cup design, and several wooden mockups were built to explore a new actuating linkage design for the indexer. The team manufactured, assembled, and performed verification testing on a full-size metal motorized prototype that can be incorporated with the Partner Farm’s existing cutting and vision systems. The prototype met all of the established requirements, and the farm has implemented the redesign onto their trimmer. Future work would include designing and implementing vision and cutting systems for the team’s metal prototype

    Design & Development of a Two-jaw parallel Pneumatic Gripper for Robotic Manipulation

    Get PDF
    The handling of abstract materials and mechanisms to pick and place are widely found in factory automation and industrial manufacturing. There are different mechanical grippers which are based on different motor technologies have been designed and employed in numerous applications. The designed robotic gripper in this paper is a two jaw actuated gripper which is different from the conventional cam and follower gripper in the way that controlled movement of the jaws is done with the help of pneumatic cylinders using air pressure. The force developed in the cylinder is very gentle and is directly delivered to the jaws in a compact way. The design, analysis and fabrication of the gripper model are explained in details along with the detailed list of all existing pneumatic grippers in market. The force and torque for the gripper have been calculated for different set of conditions. The working of the model is checked for and observation for pay load is recorded at various pressures. The highly dynamic and highly accelerated gripper model can be easily set at intermediate positions by regulating the pressure. Pneumatic grippers are very easy to handle and are generally cost-effective because air hoses, valves and other pneumatic devices are easy to maintain

    Implementation of a robotic flexible assembly system

    Get PDF
    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning

    Vision Guided Robot Gripping Systems

    Get PDF

    Advancement in robot programming with specific reference to graphical methods

    Get PDF
    This research study is concerned with the derivation of advanced robot programming methods. The methods include the use of proprietary simulation modelling and design software tools for the off-line programming of industrial robots. The study has involved the generation of integration software to facilitate the co-operative operation of these software tools. The three major researcli'themes7of "ease of usage", calibration and the integration of product design data have been followed to advance robot programming. The "ease of usage" is concerned with enhancements in the man-machine interface for robo t simulation systems in terms of computer assisted solid modelling and computer assisted task generation. Robot simulation models represent an idealised situation, and any off-line robot programs generated from'them may contain'discrepancies which could seriously effect thq programs' performance; Calibration techniques have therefore been investigated as 'a method of overcoming discrepancies between the simulation model and the real world. At the present time, most computer aided design systems operate as isolated islands of computer technology, whereas their product databases should be used to support decision making processes and ultimately facilitate the generation of machine programs. Thus the integration of product design data has been studied as an important step towards truly computer integrated manufacturing. The functionality of the three areas of study have been generalised and form the basis for recommended enhancements to future robot programming systems

    Toray End-board Loading Station

    Get PDF
    As part of the University of Rhode Island’s senior capstone design program, Toray Plastics (America) Inc. has proposed a design challenge which involves creating an end-board loading station to be used in conjunction with their new automated packaging facility. This report details the design challenges, objectives, and processes which were used to arrive at final design for the end-board loading mechanism for Toray Plastics (America) Inc. This report also analyzes and proves the validity of the solution from all perspectives. Toray Plastics located in North Kingstown, RI, is a producer of plastics prominently used in the food industry for packaging. The plastic packing materials are shipped out on large rolls and recently Toray has been building a fully automated packaging facility to expedite the shipping process. Toray ships these rolls of material on a large coil with end-boards on the sides to support the coil. The new packaging facility has robots which will remove the end-boards from a designated cart and place them onto the ends of the rolls. The challenge which Toray has presented is to design something to assist operators remove the end-boards from the shipping pallets and place them onto the designated carts in the correct orientation. The solution that has been developed by Team 1 is device which will help an operator move 15 of the end-boards at once. The proposed solution uses an internal gripping mechanism which will be lowered into the center of the end-boards and expand outwards gripping the inner diameter. The device will be lifted by an electric hoist and attached to a trolley system to lift and maneuver the end-boards. The internal gripping mechanism will require no external force and it relies on gravity and the weight of the end-boards to secure and grip the end-boards. Only when the end-boards are placed on the ground and no longer being lifted is it possible for the gripping device to be detached. The proposed solution satisfies all design requirements and removes the lifting requirements from the operators which dramatically improves ergonomics and safety. This solution also has the potential to significantly increase the rate of production by allowing for the handling of many end-boards instead of one end-board at a time. This solution was the final result of months of discussion and deliberation and this report details the process taken to arrive at this final design. With guidance from Toray Plastics the design team has arrived at this solution and proved the concept’s strength through thorough cost, safety, ergonomic, and engineering analysis

    Towards a universal end effector : the design and development of production technology's intelligent robot hand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Engineering and Automation at Massey University

    Get PDF
    Research into robot hands for industrial use began in the early 1980s and there are now many examples of robot hands in existence. The reason for research into robot hands is that standard robot end effectors have to be designed for each application and are therefore costly. A universal end effector is needed that will be able to perform any parts handling operation or use other tools for other industrial operations. Existing robot hand research would therefore benefit from new concepts, designs and control systems. The Department of Production Technology is developing an intelligent robot hand of a novel configuration, with the ultimate aim of producing a universal end effector. The concept of PTIRH (Production Technology's Intelligent Robot Hand) is that it is a multi-fingered manipulator with a configuration of two thumbs and two fingers. Research by the author for this thesis concentrated on five major areas. First, the background research into the state of the art in robot hand research. Second, the initiation, development and analysis of the novel configuration concept of PTIRH. Third, specification, testing and analysis of air muscle actuation, including design, development and testing of a servo pneumatic control valve for the air muscles. Fourth, choice of sensors for the robot hand, including testing and analysis of two custom made air pressure sensors. Fifth, definition, design, construction, development, testing and analysis of the mechanical structure for an early prototype of PTIRH. Development of an intelligent controller for PTIRH was outside the scope of the author's research. The results of the analysis on the air muscles showed that they could be a suitable direct drive actuator for an intelligent robotic hand. The force, pressure and position sensor results indicate that the sensors could form the basis of the feedback loop for an intelligent controller. The configuration of PTIRH enables it to grasp objects with little reliance on friction. This was demonstrated with an early prototype of the robot hand, which had one finger with actuation and three other static digits, by successfully manually arranging the digits into stable grasps of various objects
    corecore