2,244 research outputs found

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Comparison of Simple Graphical Process Models

    Get PDF
    Comparing the structure of graphical process models can reveal a number of process variations. Since most contemporary norms for process modelling rely on directed connectivity of objects in the model, connections between objects form sequences which can be translated into performing scenarios. Whereas sequences can be tested for completeness in performing process activities using simulation methods, the similarity or difference in static characteristics of sequences in different model variants are difficult to explore. The goal of the paper is to test the application of a method for comparison of graphical models by analyzing and comparing static characteristics of process models. Consequently, a metamodel for process models is developed followed by a comparison procedure conducted using a graphical model comparison algorithm

    Towards Consistency Management for a Business-Driven Development of SOA

    Get PDF
    The usage of the Service Oriented Architecture (SOA) along with the Business Process Management has emerged as a valuable solution for the complex (business process driven) system engineering. With a Model Driven Engineering where the business process models drive the supporting service component architectures, less effort is gone into the Business/IT alignment during the initial development activities, and the IT developers can rapidly proceed with the SOA implementation. However, the difference between the design principles of the emerging domainspecific languages imposes serious challenges in the following re-design phases. Moreover, enabling evolutions on the business process models while keeping them synchronized with the underlying software architecture models is of high relevance to the key elements of any Business Driven Development (BDD). Given a business process update, this paper introduces an incremental model transformation approach that propagates this update to the related service component configurations. It, therefore, supports the change propagation among heterogenous domainspecific languages, e.g., the BPMN and the SCA. As a major contribution, our approach makes model transformation more tractable to reconfigure system architecture without disrupting its structural consistency. We propose a synchronizer that provides the BPMN-to-SCA model synchronization with the help of the conditional graph rewriting

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Customizing BPMN Diagrams Using Timelines

    Get PDF
    BPMN (Business Process Model and Notation) is widely used standard modeling technique for representing Business Processes by using diagrams, but lacks in some aspects. Representing execution-dependent and time-dependent decisions in BPMN Diagrams may be a daunting challenge [Carlo Combi et al., 2017]. In many cases such constraints are omitted in order to preserve the simplicity and the readability of the process model. However, for purposes such as compliance checking, process mining, and verification, formalizing such constraints could be very useful. In this paper, we propose a novel approach for annotating BPMN Diagrams with Temporal Synchronization Rules borrowed from the timeline-based planning field. We discuss the expressivity of the proposed approach and show that it is able to capture a lot of complex temporally-related constraints without affecting the structure of BPMN diagrams. Finally, we provide a mapping from annotated BPMN diagrams to timeline-based planning problems that allows one to take advantage of the last twenty years of theoretical and practical developments in the field
    corecore