118,458 research outputs found

    Static analysis-based approaches for secure software development

    Get PDF
    Software security is a matter of major concern for software development enterprises that wish to deliver highly secure software products to their customers. Static analysis is considered one of the most effective mechanisms for adding security to software products. The multitude of static analysis tools that are available provide a large number of raw results that may contain security-relevant information, which may be useful for the production of secure software. Several mechanisms that can facilitate the production of both secure and reliable software applications have been proposed over the years. In this paper, two such mechanisms, particularly the vulnerability prediction models (VPMs) and the optimum checkpoint recommendation (OCR) mechanisms, are theoretically examined, while their potential improvement by using static analysis is also investigated. In particular, we review the most significant contributions regarding these mechanisms, identify their most important open issues, and propose directions for future research, emphasizing on the potential adoption of static analysis for addressing the identified open issues. Hence, this paper can act as a reference for researchers that wish to contribute in these subfields, in order to gain solid understanding of the existing solutions and their open issues that require further research

    Static analysis for facilitating secure and reliable software

    Get PDF
    Software security and reliability are aspects of major concern for software development enterprises that wish to deliver dependable software to their customers. Several static analysis-based approaches for facilitating the development of secure and reliable software have been proposed over the years. The purpose of the present thesis is to investigate these approaches and to extend their state of the art by addressing existing open issues that have not been sufficiently addressed yet. To this end, an empirical study was initially conducted with the purpose to investigate the ability of software metrics (e.g., complexity metrics) to discriminate between different types of vulnerabilities, and to examine whether potential interdependencies exist between different vulnerability types. The results of the analysis revealed that software metrics can be used only as weak indicators of specific security issues, while important interdependencies may exist between different types of vulnerabilities. The study also verified the capacity of software metrics (including previously uninvestigated metrics) to indicate the existence of vulnerabilities in general. Subsequently, a hierarchical security assessment model able to quantify the internal security level of software products, based on static analysis alerts and software metrics is proposed. The model is practical, since it is fully-automated and operationalized in the form of individual tools, while it is also sufficiently reliable since it was built based on data and well-accepted sources of information. An extensive evaluation of the model on a large volume of empirical data revealed that it is able to reliably assess software security both at product- and at class-level of granularity, with sufficient discretion power, while it may be also used for vulnerability prediction. The experimental results also provide further support regarding the ability of static analysis alerts and software metrics to indicate the existence of software vulnerabilities. Finally, a mathematical model for calculating the optimum checkpoint interval, i.e., the checkpoint interval that minimizes the execution time of software programs that adopt the application-level checkpoint and restart (ALCR) mechanism was proposed. The optimum checkpoint interval was found to depend on the failure rate of the application, the execution cost for establishing a checkpoint, and the execution cost for restarting a program after failure. Emphasis was given on programs with loops, while the results were illustrated through several numerical examples.Open Acces

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties
    • …
    corecore