22 research outputs found

    Abstraction and Learning for Infinite-State Compositional Verification

    Full text link
    Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Improving dynamic code analysis by code abstraction

    Get PDF
    In this paper, our aim is to propose a model for code abstraction, based on abstract interpretation, allowing us to improve the precision of a recently proposed static analysis by abstract interpretation of dynamic languages. The problem we tackle here is that the analysis may add some spurious code to the string-to-execute abstract value and this code may need some abstract representations in order to make it analyzable. This is precisely what we propose here, where we drive the code abstraction by the analysis we have to perform

    Invariant Generation for Multi-Path Loops with Polynomial Assignments

    Full text link
    Program analysis requires the generation of program properties expressing conditions to hold at intermediate program locations. When it comes to programs with loops, these properties are typically expressed as loop invariants. In this paper we study a class of multi-path program loops with numeric variables, in particular nested loops with conditionals, where assignments to program variables are polynomial expressions over program variables. We call this class of loops extended P-solvable and introduce an algorithm for generating all polynomial invariants of such loops. By an iterative procedure employing Gr\"obner basis computation, our approach computes the polynomial ideal of the polynomial invariants of each program path and combines these ideals sequentially until a fixed point is reached. This fixed point represents the polynomial ideal of all polynomial invariants of the given extended P-solvable loop. We prove termination of our method and show that the maximal number of iterations for reaching the fixed point depends linearly on the number of program variables and the number of inner loops. In particular, for a loop with m program variables and r conditional branches we prove an upper bound of m*r iterations. We implemented our approach in the Aligator software package. Furthermore, we evaluated it on 18 programs with polynomial arithmetic and compared it to existing methods in invariant generation. The results show the efficiency of our approach

    Synthesizing Specifications

    Full text link
    Every program should always be accompanied by a specification that describes important aspects of the code's behavior, but writing good specifications is often harder that writing the code itself. This paper addresses the problem of synthesizing specifications automatically. Our method takes as input (i) a set of function definitions, and (ii) a domain-specific language L in which the extracted properties are to be expressed. It outputs a set of properties--expressed in L--that describe the behavior of functions. Each of the produced property is a best L-property for signature: there is no other L-property for signature that is strictly more precise. Furthermore, the set is exhaustive: no more L-properties can be added to it to make the conjunction more precise. We implemented our method in a tool, spyro. When given the reference implementation for a variety of SyGuS and Synquid synthesis benchmarks, spyro often synthesized properties that that matched the original specification provided in the synthesis benchmark

    An SMT-based verification framework for software systems handling arrays

    Get PDF
    Recent advances in the areas of automated reasoning and first-order theorem proving paved the way to the developing of effective tools for the rigorous formal analysis of computer systems. Nowadays many formal verification frameworks are built over highly engineered tools (SMT-solvers) implementing decision procedures for quantifier- free fragments of theories of interest for (dis)proving properties of software or hardware products. The goal of this thesis is to go beyond the quantifier-free case and enable sound and effective solutions for the analysis of software systems requiring the usage of quantifiers. This is the case, for example, of software systems handling array variables, since meaningful properties about arrays (e.g., "the array is sorted") can be expressed only by exploiting quantification. The first contribution of this thesis is the definition of a new Lazy Abstraction with Interpolants framework in which arrays can be handled in a natural manner. We identify a fragment of the theory of arrays admitting quantifier-free interpolation and provide an effective quantifier-free interpolation algorithm. The combination of this result with an important preprocessing technique allows the generation of the required quantified formulae. Second, we prove that accelerations, i.e., transitive closures, of an interesting class of relations over arrays are definable in the theory of arrays via Exists-Forall-first order formulae. We further show that the theoretical importance of this result has a practical relevance: Once the (problematic) nested quantifiers are suitably handled, acceleration offers a precise (not over-approximated) alternative to abstraction solutions. Third, we present new decision procedures for quantified fragments of the theories of arrays. Our decision procedures are fully declarative, parametric in the theories describing the structure of the indexes and the elements of the arrays and orthogonal with respect to known results. Fourth, by leveraging our new results on acceleration and decision procedures, we show that the problem of checking the safety of an important class of programs with arrays is fully decidable. The thesis presents along with theoretical results practical engineering strategies for the effective implementation of a framework combining the aforementioned results: The declarative nature of our contributions allows for the definition of an integrated framework able to effectively check the safety of programs handling array variables while overcoming the individual limitations of the presented techniques

    Maximal incompleteness as obfuscation potency

    Get PDF
    Obfuscation is the art of making code hard to reverse engineer and understand. In this paper, we propose aformal model for specifying and understanding the strength of obfuscating transformations with respect toa given attack model. The idea is to consider the attacker as an abstract interpreter willing to extractinformation about the program\u2019s semantics. In this scenario, we show that obfuscating code is making theanalysis imprecise, namely making the corresponding abstract domain incomplete. It is known thatcompleteness is a property of the abstract domain and the program to analyse. We introduce a frameworkfor transforming abstract domains, i.e., analyses, towards incompleteness. The family of incompleteabstractions for a given program provides a characterisation of the potency of obfuscation employed in thatprogram, i.e., its strength against the attack specified by those abstractions. We show this characterisationfor known obfuscating transformations used to inhibit program slicing and automated disassembly

    Analyzing Dynamic Code: A Sound Abstract Interpreter for Evil Eval

    Get PDF
    Dynamic languages, such as JavaScript, employ string-to-code primitives to turn dynamically generated text into executable code at run-time. These features make standard static analysis extremely hard if not impossible, because its essential data structures, i.e., the control-flow graph and the system of recursive equations associated with the program to analyze, are themselves dynamically mutating objects. Nevertheless, assembling code at run-time by manipulating strings, such as by eval in JavaScript, has been always strongly discouraged, since it is often recognized that "eval is evil,"leading static analyzers to not consider such statements or ignoring their effects. Unfortunately, the lack of formal approaches to analyze string-to-code statements pose a perfect habitat for malicious code, that is surely evil and do not respect good practice rules, allowing them to hide malicious intents as strings to be converted to code and making static analyses blind to the real malicious aim of the code. Hence, the need to handle string-to-code statements approximating what they can execute, and therefore allowing the analysis to continue (even in the presence of dynamically generated program statements) with an acceptable degree of precision, should be clear. To reach this goal, we propose a static analysis allowing us to collect string values and to soundly over-approximate and analyze the code potentially executed by a string-to-code statement
    corecore