8,343 research outputs found

    Simultaneous use of Individual and Joint Regularization Terms in Compressive Sensing: Joint Reconstruction of Multi-Channel Multi-Contrast MRI Acquisitions

    Get PDF
    Purpose: A time-efficient strategy to acquire high-quality multi-contrast images is to reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause leakage of uncommon features among contrasts, compromising diagnostic utility. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Theory: Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. Methods: The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. Results: The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms. Conclusion: The proposed compressive sensing method performs fast reconstruction of multi-channel multi-contrast MRI data with improved image quality. It offers reliability against feature leakage in joint reconstructions, thereby holding great promise for clinical use.Comment: 13 pages, 13 figures. Submitted for possible publicatio

    Non-parametric statistical thresholding for sparse magnetoencephalography source reconstructions.

    Get PDF
    Uncovering brain activity from magnetoencephalography (MEG) data requires solving an ill-posed inverse problem, greatly confounded by noise, interference, and correlated sources. Sparse reconstruction algorithms, such as Champagne, show great promise in that they provide focal brain activations robust to these confounds. In this paper, we address the technical considerations of statistically thresholding brain images obtained from sparse reconstruction algorithms. The source power distribution of sparse algorithms makes this class of algorithms ill-suited to "conventional" techniques. We propose two non-parametric resampling methods hypothesized to be compatible with sparse algorithms. The first adapts the maximal statistic procedure to sparse reconstruction results and the second departs from the maximal statistic, putting forth a less stringent procedure that protects against spurious peaks. Simulated MEG data and three real data sets are utilized to demonstrate the efficacy of the proposed methods. Two sparse algorithms, Champagne and generalized minimum-current estimation (G-MCE), are compared to two non-sparse algorithms, a variant of minimum-norm estimation, sLORETA, and an adaptive beamformer. The results, in general, demonstrate that the already sparse images obtained from Champagne and G-MCE are further thresholded by both proposed statistical thresholding procedures. While non-sparse algorithms are thresholded by the maximal statistic procedure, they are not made sparse. The work presented here is one of the first attempts to address the problem of statistically thresholding sparse reconstructions, and aims to improve upon this already advantageous and powerful class of algorithm

    Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images

    Full text link
    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure.Comment: 15 pages, 12 figure
    • 

    corecore