432 research outputs found

    Reducing the computational cost for artificial intelligence-based battery state-of-health estimation in charging events

    Get PDF
    Powertrain electrification is bound to pave the way for the decarbonization process and pollutant emission reduction of the automotive sector, and strong attention should hence be devoted to the electrical energy storage system. Within such a framework, the lithium-ion battery plays a key role in the energy scenario, and the reduction of lifetime due to the cell degradation during its usage is bound to be a topical challenge. The aim of this work is to estimate the state of health (SOH) of lithium-ion battery cells with satisfactory accuracy and low computational cost. This would allow the battery management system (BMS) to guarantee optimal operation and extended cell lifetime. Artificial intelligence (AI) algorithms proved to be a promising data-driven modelling technique for the cell SOH prediction due to their great suitability and low computational demand. An accurate on-board SOH estimation is achieved through the identification of an optimal SOC window within the cell charging process. Several Bi-LSTM networks have been trained through a random-search algorithm exploiting constant current constant voltage (CCCV) test protocol data. Different analyses have been performed and evaluated as a trade-off between prediction performance (in terms of RMSE and customized accuracy) and computational burden (in terms of memory usage and elapsing time). Results reveal that the battery state of health can be predicted by a single-layer Bi-LSTM network with an error of 0.4% while just monitoring 40% of the entire charging process related to 60–100% SOC window, corresponding to the constant-voltage (CV) phase. Finally, results show that the amount of memory used for data logging and processing time has been cut by a factor of approximately 2.3

    Hybrid Neural Networks for Enhanced Predictions of Remaining Useful Life in Lithium-Ion Batteries

    Get PDF
    With the proliferation of electric vehicles (EVs) and the consequential increase in EV battery circulation, the need for accurate assessments of battery health and remaining useful life (RUL) is paramount, driven by environmentally friendly and sustainable goals. This study addresses this pressing concern by employing data-driven methods, specifically harnessing deep learning techniques to enhance RUL estimation for lithium-ion batteries (LIB). Leveraging the Toyota Research Institute Dataset, consisting of 124 lithium-ion batteries cycled to failure and encompassing key metrics such as capacity, temperature, resistance, and discharge time, our analysis substantially improves RUL prediction accuracy. Notably, the convolutional long short-term memory deep neural network (CLDNN) model and the transformer LSTM (temporal transformer) model have emerged as standout remaining useful life (RUL) predictors. The CLDNN model, in particular, achieved a remarkable mean absolute error (MAE) of 84.012 and a mean absolute percentage error (MAPE) of 25.676. Similarly, the temporal transformer model exhibited a notable performance, with an MAE of 85.134 and a MAPE of 28.7932. These impressive results were achieved by applying Bayesian hyperparameter optimization, further enhancing the accuracy of predictive methods. These models were bench-marked against existing approaches, demonstrating superior results with an improvement in MAPE ranging from 4.01% to 7.12%

    Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview

    Get PDF
    In recent years, there has been a noticeable shift towards electric mobility and an increasing emphasis on integrating renewable energy sources. Consequently, batteries and their management have been prominent in this context. A vital aspect of the BMS revolves around accurately determining the battery pack’s SOC. Notably, the advent of advanced microcontrollers and the availability of extensive datasets have contributed to the growing popularity and practicality of data-driven methodologies. This study examines the developments in SOC estimation over the past half-decade, explicitly focusing on data-driven estimation techniques. It comprehensively assesses the performance of each algorithm, considering the type of battery and various operational conditions. Additionally, intricate details concerning the models’ hyperparameters, including the number of layers, type of optimiser, and neuron, are provided for thorough examination. Most of the models analysed in the paper demonstrate strong performance, with both the MAE and RMSE for the estimation of SOC hovering around 2% or even lower

    Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction

    Get PDF
    Lithium-ion batteries play an indispensable role, from portable electronic devices to electric vehicles and home storage systems. Even though they are characterized by superior performance than most other storage technologies, their lifetime is not unlimited and has to be predicted to ensure the economic viability of the battery application. Furthermore, to ensure the optimal battery system operation, the remaining useful lifetime (RUL) prediction has become an essential feature of modern battery management systems (BMSs). Thus, the prediction of RUL of Lithium-ion batteries has become a hot topic for both industry and academia. The purpose of this work is to review, classify, and compare different machine learning (ML)-based methods for the prediction of the RUL of Lithium-ion batteries. First, this article summarizes and classifies various Lithium-ion battery RUL estimation methods that have been proposed in recent years. Secondly, an innovative method was selected for evaluation and compared in terms of accuracy and complexity. DNN is more suitable for RUL prediction due to its strong independent learning ability and generalization ability. In addition, the challenges and prospects of BMS and RUL prediction research are also put forward. Finally, the development of various methods is summarized

    Critical review on improved electrochemical impedance spectroscopy-cuckoo search-elman neural network modeling methods for whole-life-cycle health state estimation of lithium-ion battery energy storage systems.

    Get PDF
    Efficient and accurate health state estimation is crucial for lithium-ion battery (LIB) performance monitoring and economic evaluation. Effectively estimating the health state of LIBs online is the key but is also the most difficult task for energy storage systems. With high adaptability and applicability advantages, battery health state estimation based on data-driven techniques has attracted extensive attention from researchers around the world. Artificial neural network (ANN)-based methods are often used for state estimations of LIBs. As one of the ANN methods, the Elman neural network (ENN) model has been improved to estimate the battery state more efficiently and accurately. In this paper, an improved ENN estimation method based on electrochemical impedance spectroscopy (EIS) and cuckoo search (CS) is established as the EIS-CS-ENN model to estimate the health state of LIBs. Also, the paper conducts a critical review of various ANN models against the EIS-CS-ENN model. This demonstrates that the EIS-CS-ENN model outperforms other models. The review also proves that, under the same conditions, selecting appropriate health indicators (HIs) according to the mathematical modeling ability and state requirements are the keys in estimating the health state efficiently. In the calculation process, several evaluation indicators are adopted to analyze and compare the modeling accuracy with other existing methods. Through the analysis of the evaluation results and the selection of HIs, conclusions and suggestions are put forward. Also, the robustness of the EIS-CS-ENN model for the health state estimation of LIBs is verified

    Data driven techniques for on-board performance estimation and prediction in vehicular applications.

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Self-attention Knowledge Domain Adaptation Network for Commercial Lithium-ion Batteries State-of-health Estimation under Shallow Cycles

    Full text link
    Accurate state-of-health (SOH) estimation is critical to guarantee the safety, efficiency and reliability of battery-powered applications. Most SOH estimation methods focus on the 0-100\% full state-of-charge (SOC) range that has similar distributions. However, the batteries in real-world applications usually work in the partial SOC range under shallow-cycle conditions and follow different degradation profiles with no labeled data available, thus making SOH estimation challenging. To estimate shallow-cycle battery SOH, a novel unsupervised deep transfer learning method is proposed to bridge different domains using self-attention distillation module and multi-kernel maximum mean discrepancy technique. The proposed method automatically extracts domain-variant features from charge curves to transfer knowledge from the large-scale labeled full cycles to the unlabeled shallow cycles. The CALCE and SNL battery datasets are employed to verify the effectiveness of the proposed method to estimate the battery SOH for different SOC ranges, temperatures, and discharge rates. The proposed method achieves a root-mean-square error within 2\% and outperforms other transfer learning methods for different SOC ranges. When applied to batteries with different operating conditions and from different manufacturers, the proposed method still exhibits superior SOH estimation performance. The proposed method is the first attempt at accurately estimating battery SOH under shallow-cycle conditions without needing a full-cycle characteristic test
    • …
    corecore