82,627 research outputs found

    Efficient state-space inference of periodic latent force models

    Get PDF
    Latent force models (LFM) are principled approaches to incorporating solutions to differen-tial equations within non-parametric inference methods. Unfortunately, the developmentand application of LFMs can be inhibited by their computational cost, especially whenclosed-form solutions for the LFM are unavailable, as is the case in many real world prob-lems where these latent forces exhibit periodic behaviour. Given this, we develop a newsparse representation of LFMs which considerably improves their computational efficiency,as well as broadening their applicability, in a principled way, to domains with periodic ornear periodic latent forces. Our approach uses a linear basis model to approximate onegenerative model for each periodic force. We assume that the latent forces are generatedfrom Gaussian process priors and develop a linear basis model which fully expresses thesepriors. We apply our approach to model the thermal dynamics of domestic buildings andshow that it is effective at predicting day-ahead temperatures within the homes. We alsoapply our approach within queueing theory in which quasi-periodic arrival rates are mod-elled as latent forces. In both cases, we demonstrate that our approach can be implemented efficiently using state-space methods which encode the linear dynamic systems via LFMs.Further, we show that state estimates obtained using periodic latent force models can re-duce the root mean squared error to 17% of that from non-periodic models and 27% of thenearest rival approach which is the resonator model (S ̈arkk ̈a et al., 2012; Hartikainen et al.,2012.

    Efficient State-Space Inference of Periodic Latent Force Models

    Get PDF
    Latent force models (LFM) are principled approaches to incorporating solutions to differential equations within non-parametric inference methods. Unfortunately, the development and application of LFMs can be inhibited by their computational cost, especially when closed-form solutions for the LFM are unavailable, as is the case in many real world problems where these latent forces exhibit periodic behaviour. Given this, we develop a new sparse representation of LFMs which considerably improves their computational efficiency, as well as broadening their applicability, in a principled way, to domains with periodic or near periodic latent forces. Our approach uses a linear basis model to approximate one generative model for each periodic force. We assume that the latent forces are generated from Gaussian process priors and develop a linear basis model which fully expresses these priors. We apply our approach to model the thermal dynamics of domestic buildings and show that it is effective at predicting day-ahead temperatures within the homes. We also apply our approach within queueing theory in which quasi-periodic arrival rates are modelled as latent forces. In both cases, we demonstrate that our approach can be implemented efficiently using state-space methods which encode the linear dynamic systems via LFMs. Further, we show that state estimates obtained using periodic latent force models can reduce the root mean squared error to 17% of that from non-periodic models and 27% of the nearest rival approach which is the resonator model.Comment: 61 pages, 13 figures, accepted for publication in JMLR. Updates from earlier version occur throughout article in response to JMLR review

    Non-stationary self-similar Gaussian processes as scaling limits of power law shot noise processes and generalizations of fractional Brownian motion

    Full text link
    We study shot noise processes with Poisson arrivals and non-stationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: 1) the conditional variance functions of the noises have a power law and 2) the conditional noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self-similar Gaussian processes with non-stationary increments, via the time-domain integral representation, which are natural generalizations of fractional Brownian motions.Published versio

    Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls

    Get PDF
    Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm (Liu \textit{et al.,} Phys. Rev. E \textbf{89}, 032814 (2014)) are mainly due to an inappropriate treatment disregarding the intrinsic non-stationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for non-stationary stochastic processes like fBm.Comment: 8 pages, 6 figure

    Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes

    Get PDF
    Brown-Resnick processes are max-stable processes that are associated to Gaussian processes. Their simulation is often based on the corresponding spectral representation which is not unique. We study to what extent simulation accuracy and efficiency can be improved by minimizing the maximal variance of the underlying Gaussian process. Such a minimization is a difficult mathematical problem that also depends on the geometry of the simulation domain. We extend Matheron's (1974) seminal contribution in two aspects: (i) making his description of a minimal maximal variance explicit for convex variograms on symmetric domains and (ii) proving that the same strategy reduces the maximal variance also for a huge class of non-convex variograms representable through a Bernstein function. A simulation study confirms that our non-costly modification can lead to substantial improvements among Gaussian representations. We also compare it with three other established algorithms.Comment: 19 pages, 3 figures, 4 tables; To appear with the Applied Probability Trus
    corecore