research

Efficient state-space inference of periodic latent force models

Abstract

Latent force models (LFM) are principled approaches to incorporating solutions to differen-tial equations within non-parametric inference methods. Unfortunately, the developmentand application of LFMs can be inhibited by their computational cost, especially whenclosed-form solutions for the LFM are unavailable, as is the case in many real world prob-lems where these latent forces exhibit periodic behaviour. Given this, we develop a newsparse representation of LFMs which considerably improves their computational efficiency,as well as broadening their applicability, in a principled way, to domains with periodic ornear periodic latent forces. Our approach uses a linear basis model to approximate onegenerative model for each periodic force. We assume that the latent forces are generatedfrom Gaussian process priors and develop a linear basis model which fully expresses thesepriors. We apply our approach to model the thermal dynamics of domestic buildings andshow that it is effective at predicting day-ahead temperatures within the homes. We alsoapply our approach within queueing theory in which quasi-periodic arrival rates are mod-elled as latent forces. In both cases, we demonstrate that our approach can be implemented efficiently using state-space methods which encode the linear dynamic systems via LFMs.Further, we show that state estimates obtained using periodic latent force models can re-duce the root mean squared error to 17% of that from non-periodic models and 27% of thenearest rival approach which is the resonator model (S ̈arkk ̈a et al., 2012; Hartikainen et al.,2012.

    Similar works