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Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One
paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight
the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence
network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results
of a previous application of RN analysis to fBm (Liuet al.,Phys. Rev. E89, 032814 (2014)) are mainly due to
an inappropriate treatment disregarding the intrinsic non-stationarity of such processes. Complementarily, we
analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find
that the resulting network properties are well-defined and behave as one would expect from basic conceptual
considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary
stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to
fail to uniquely retrieve RN properties for non-stationarystochastic processes like fBm.

PACS numbers: 05.45.Ac, 05.45.Tp, 89.75.Fb

I. INTRODUCTION

Many tools of nonlinear time series analysis are based on
the theory of (deterministic) dynamical systems [1, 2], i.e.,
the time evolution of the system under study is considered
in some phase space spanned by the relevant dynamical vari-
ables. Among others, the recurrence of previous states in
phase space [3] is a particular fundamental property of dy-
namical systems with a finite phase space volume (e.g., at-
tractors of a dissipative system, Hamiltonian systems witha
bound phase space, or even stationary stochastic systems in
finite time). The concept of recurrence implies that the dy-
namics of a system returns to an arbitrarily small neighbor-
hood of any of its previously assumed states within a finite
(but possibly large) amount of time. For deterministic-chaotic
systems, this is guaranteed by the invariance of the set which
forms the support of the attractor [2, 4].

Recently, complex network representations have been pro-
posed to characterize statistical properties of the underlying
system associated with its geometry in phase space [5–7]. For
this purpose, a proper transformation from the set of state vec-
tors in phase space to a complex network representation is re-
quired. In this work, we focus on the recurrence network (RN)
approach, the vertices of the network are given by the indi-
vidual state vectors sampled from a given trajectory, whereas
network connectivity is established according to their mutual
closeness in phase space (i.e., whether or not their mutual dis-
tance is smaller than a pre-defined thresholdε). Mathemati-
cally, given two state vectorsxi andxj (wherei andj denote
time indices associated with two possibly different pointsti
andtj in time), the adjacency matrixAi,j of the RN is defined

as

Ai,j(ε) = Θ(ε− ‖xi − xj‖)− δi,j , (1)

whereΘ(·) is the Heaviside “function”,ε is the prescribed
maximum distance,‖ · ‖ a norm in phase space (e.g., Eu-
clidean, Manhattan, or maximum norm), andδi,j is the Kro-
necker delta. RN analysis originates from the recurrence plot
concept [8, 9] and its basic assumption is, as the term indi-
cates, the unambiguous presence of recurrence behavior.

Stationarity is a condition required by most tools of both
linear and nonlinear time series analysis [1], including the RN
approach. A signal is (strongly) stationary if all joint proba-
bilities of finding the system at some time in one state and at
some later time in another state are independent of time within
the observation period. The minimal requirement for most ap-
proaches is weak stationarity, that is, mean and variance ofthe
underlying process are constant and the auto-covariances de-
pend only on the time lag.

In turn, many real-world processes are non-stationary. For
instance, climate or hydrological data often show seasonal
variations. Economic and financial time series typically ex-
hibit (irregular) cycles of all orders of magnitude. Non-
stationary behaviors can be expressed in terms of trends, cy-
cles, random walks, or combinations of the latter three. Often,
long-range dependence and self-similarity are involved. One
classical example of a class of such non-stationary processes
is fractional Brownian motion (fBm), which has long-range
temporal correlations as its defining property [10]. Specifi-
cally, for an fBm process{Xt}, the variance scales asσ2

Xt
∝

t2H (i.e., non-stationarity in variance). The long range of the
process is characterized by the Hurst exponentH when pos-
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itively correlated (persistence) for1/2 < H < 1, while sup-
pressed (anti-persistence) for0 < H < 1/2. H = 1/2 corre-
sponds to the classical Brownian motion.

Non-stationarity provides a great challenge to both linear
and nonlinear time series analysis, including complex network
approaches to analyze time series data. There are some meth-
ods that are specifically tailored to cope with non-stationarity.
Among others, detrended fluctuation analysis (DFA) [11–13]
and related techniques have been widely used for estimating
the Hurst exponent from non-stationary model data as well as
real-world applications from various fields (e.g., [14, 15]). In
contrast, regarding the RN approach, non-stationarity dueto
time-dependent system parameters can cause a systematic loss
of recurrences. Anyway, RNs have been recently proposed to
characterize fBm [16]. Notably, the results of the latter study
have been obtained only numerically and not explained theo-
retically so far. However, as we will demonstrate in the course
of this work, they have rather limited physical interpretation.
More generally, we will discuss how spurious results and pit-
falls of RN analysis may be produced when this method is
inappropriately applied to study fBm or other non-stationary
stochastic processes, and that the results of [16] are mainly of
such spurious nature.

This paper is organized as follows: In Section II, we dis-
cuss the construction of RNs from non-stationary fBm data.
We demonstrate that it is not possible to define generally ap-
plicable embedding parameters as required for a systematic
investigation of the potential effect ofH on the RN prop-
erties. Specifically, we provide numerical evidence that the
latter properties (for given embedding parameters) dependex-
plicitly on the system size, which generally does not apply
to stationary systems provided that the sample size is large
enough and sampling artifacts as well as transient behaviorare
avoided. Subsequently, in Section III, we turn to the RN prop-
erties of the closely related fractional Gaussian noise (fGn),
the incremental process associated with fBm, which is station-
ary. For the latter, the dependence of the network character-
istics onH is – in contrast to fBm – well-behaved. However,
the considered embedding dimension still plays an important
role when characterizing the RN structures. All results are
summarized and further discussed in Section IV.

II. RN ANALYSIS OF FBM PROCESSES

The application of RNs to the analysis of nonlinear time
series implicitly assumes the validity of two fundamental as-
sumptions: (i) the intrinsic model parameters and statistical
characteristics of the system remain constant over time and
(ii) the system under study is sufficiently sampled (i.e., time
resolution and time series length are sufficient to approxi-
mate the system). The first assumption is equivalent to the
condition of stationarity, while the second one mainly re-
quires a proper coverage of phase space by a suitably em-
bedded time series. Both requirements are consequences of
the fact that we approach the system’s dynamics by a single
finite time series, which is common to time series analysis
problems. Note that there have been attempts to characterize

non-stationary systems by means of RN analysis using slid-
ing windows approaches, which have provided interesting re-
sults regarding the presence of bifurcation or other qualitative
changes in the dynamical regime [17, 18]. However, these
considerations have been related to systems with supposed
time-varying parameters rather than non-stationary stochas-
tic systems where the parameters are constant. Therefore, this
approach might not be helpful in the present context dealing
with non-stationary variance.

In the following, we will focus on two important algorith-
mic parameters of the RN approach, embedding dimension
and delay. The impact of other parameters such as recurrence
thresholdε, sampling rate, or even the selection of variables
in multi-dimensional systems has been extensively discussed
elsewhere [19, 20] for deterministic systems, but not yet for
stochastic ones. For the sake of brevity, we present only a
brief corresponding discussion here. Specifically, since we
consider discrete-time univariate stochastic processes,only ε
is relevant, but can be treated mostly alongside the theoretical
considerations presented in [21].

By means of conceptual considerations as well as numerical
experiments, in the remainder of this section, we will address
the following three questions: (i) Can we use embedding tech-
niques for fBm (or, more generally, non-stationary stochastic
processes)? (ii) What are the intrinsic limitations of thisap-
proach? (iii) Which implications do these limitations havefor
RN analysis?

A. Time-delay embedding: Theoretical considerations

As the most prominent subject of recent studies involving
RN analysis [6, 7, 22–24], chaotic attractors exhibit some
complex geometric structure in their respective phase space,
motivating the term “strange attractors”. Typically, thisstruc-
ture is associated with self-similar (fractal) characteristics.
(Notably, there are examples for strange non-chaotic attractors
as well [25, 26].) Strange attractors emerge in deterministic
dynamical systems, and the resulting asymptotic set of state
vectors approached by the system forms some finite object
in phase space. The dynamical properties of the system and
the geometric characteristics of the attractor are commonly
closely interrelated [2, 27].

Taking this idea further, it is a natural approach to describe
dynamical systems of whatever kind by a geometric object in
some appropriately defined phase space. This is the basis of
RN analysis, which takes the existence of such a phase space
(at least in an abstract sense) as a fundamental requirement.
Given this fact, RN analysis may be applied if the available
data series provides enough information to describe (or ap-
proximate) the geometric structure of the sampled trajectory
sufficiently. Specifically, transient dynamics has to be ex-
cluded, data length and sampling frequency need to be appro-
priate, and the data object in phase space needs to be dynami-
cally invariant or at least bound in phase space with stationary
properties.

Given a scalar time series{xi} (i = 1, . . . , N ), in or-
der to apply RN analysis we first have to convert the data



3

into state vectors in some appropriately reconstructed phase
space. A common method from dynamical systems theory to
define such a phase space is time-delay embedding [28]. In
fact, the concept of a phase space representation rather than
a “simple” time or frequency domain approach is the hall-
mark of many methods of nonlinear time series analysis, re-
quiring embedding as the first step. Here, we definexi =
(xi, xi−τ , · · · , xi−(m−1)τ ) to obtain anm-dimensional time-
delay embedding ofxi with embedding delayτ for obtain-
ing state vectors in phase space [28]. It has been proven that
for deterministic dynamical systems, the thus reconstructed
phase space is topologically equivalent to the original space if
m > 2DF , whereDF is the fractal dimension of the support
of the invariant measure generated by the dynamics in the true
(but often at most partially observed) state space. Note that
DF can be much smaller than the dimension of the under-
lying original (physical) phase space spanned by all relevant
system variables.

From a practical perspective, when analyzing a scalar time
series of whatever origin, neither embedding dimensionm nor
delayτ are known a priori. The false nearest-neighbors (FNN)
method [29] was introduced to derive a reasonable guess of
how to choosem based on studying whether or not proximity
relations between state vectors are lost when the embedding
dimension is successively increased. If a reasonable embed-
ding dimension is found, all dynamically relevant coordinates
of the system are appropriately represented, so that all proxim-
ity relationships are correct and not due to lower-dimensional
projection effects. In a similar spirit, the first root of theauto-
correlation function (ACF) of a time series often yields a good
estimate forτ . A more refined method is to use time-delayed
mutual information [30].

While the aforementioned approaches to determiningm
andτ commonly work well for data from deterministic dy-
namical systems, applying them to fBm leads to severe con-
ceptual problems:

On the one hand, we note that the concepts of a fractal di-
mension has two aspects when being applied to a stochastic
process instead of a deterministic dynamical system. From
the phase space perspective, the fractal dimension is com-
monly defined as some scaling property described by a pa-
rameter that converges to a fixed value asN → ∞ andm
is sufficiently high. This fact is used, for example, in the fa-
mous Grassberger-Procaccia algorithm for estimating the cor-
relation dimensionD2 of chaotic attractors [31]. However,
according to the latter viewpoint, stochastic behavior is char-
acterized by an absence of such convergence, formally lead-
ing to D2 = ∞. Finite estimates ofD2 are spurious due to
the finite amount of data used. The latter result is reasonable
since an infinite amount of data (i.e., the innovations at each
time step) are necessary to fully describe the evolution of a
stochastic process.

As an alternative perspective, the fractal dimension of a
stochastic process is often defined via the fractal dimension
of its graph. For a one-dimensional process, this graph is rep-
resented in the(t, x)-plane, and its dimension is hence bound
from above byDG = 2. Specifically, for fBm with a Hurst ex-
ponentH ∈ (0, 1), it has been shown thatDG = 2−H , taking

the different scaling behavior in association with the process’
self-similarity into account [32, 33]. However, the latteras-
pect is clearly distinct from the notion of fractal dimensions
used in the phase space context. Thus, from a conceptual
perspective, the embedding dimension should be chosen in-
finitely large. In turn, finitem will necessarily cause spurious
results since the full complexity of the system’s (discrete) tra-
jectory is not captured.

On the other hand, the embedding delayτ is not considered
in the mathematical embedding theorems for deterministic dy-
namical systems. Embeddings with the same embedding di-
mensionm but differentτ are topologically equivalent in the
mathematical sense [1], but in reality a good choice ofτ facil-
itates further analysis. Ifτ is small compared to the relevant
internal time-scales of the system, successive elements ofthe
delay vectors are strongly correlated. This leads to the practi-
cal requirement that the embedding delay should cover a much
longer time interval than the largest characteristic time-scale
that is relevant for the dynamics of the system. However, in
fBm arbitrarily long time-scales are relevant due to the self-
similar nature of the process. This makes finding a feasible
value ofτ a challenging (and, regarding formal optimality cri-
teria, even theoretically impossible) task.

In summary, we emphasize that in the case of non-
stationary fBm, the fundamental concepts of phase space re-
construction and low-dimensional dynamics do not apply (not
even approximately) anymore. Therefore, any attempt to ap-
plying RN analysis to fBm directly necessarily yields results
that hold only for the particular embedding parameters chosen
and the specific length of the given time series [16]. We will
demonstrate some numerical results illustrating these points
in more detail in the following.

B. Numerical results

Estimating the ACF of a stationary time series at lagτ is
straightforward as long asτ is small compared to the total
length of the time series,N . For stationary stochastic pro-
cesses, the functional form and rate of decay of the ACF de-
pends on the specific properties of the process. Specifically,
for a stationary long-range correlated process, the ACF de-
cays like a power-law with the characteristic exponent being
directly related withH [34].

In contrast to this, for the non-stationary fBm sample esti-
mates of the ACF decay extremely slowly beyond the “nor-
mal” behavior of stationary long-range dependent processes,
which can be seen clearly in Fig. 1 (in fact, the concept of ACF
is not appropriate for describing the serial dependence struc-
ture of non-stationary processes). Specifically, we show three
example trajectories of fBms withH = 0.7, N = 213 and
their corresponding naı̈ve ACF estimates. Due to the stochas-
tic nature of the process, the de-correlation time (which can
be expressed asτ1/e or τ0.1, i.e., the time lags after which
the estimated ACF has decayed to1/e or 0.1, respectively)
depends on the specific realization of the process (Fig. 1B).
Even more, the corresponding ensemble spread does not ex-
clusively originate from the finite sample size, but is enhanced
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FIG. 1: (A) Three example trajectories of fBm withH = 0.7 and (B)
the corresponding ACFs. (C) Average ACFs taken over 200 indepen-
dent realizations of fBm with the same Hurst exponentH . Different
line colors correspond to different values ofH from 0.05 to 0.95 in
steps of0.05 (from bottom to top at smallτ ). In all cases, the time
series length has been set toN = 213. (D) As (C) forN = 215.

by the inherent non-stationarity of fBm.
Taking an ensemble average over a variety of independent

realizations, we numerically observe that the location of the
first root of the estimated ACF hardly depends at all on the
Hurst exponentH , which is shown in Fig. 1C. However, as
expected from theoretical study of fBm, it appears to system-
atically increase as the length of time series is increased to
N = 215 (Fig. 1D, note the different scales in Figs. 1C and
D). More specifically, if we extend the length of the realiza-
tion by a factor of 4, the first root of the ACF estimate also
shifts to a four times larger lag.

Irrespective of the sample sizeN , the spectrum of the fBm
process has a significant amount of energy in frequencies that
are not much larger than1/N (i.e., in the low-frequency part).
This explains why the first root of the ACF estimate appears
at larger time lags asN is increased. Consequently, the de-
correlation time increases for longer time series. From the
viewpoint of time-delay embedding (given it is performed dis-
regarding the conceptual concerns detailed above), this ham-
pers the proper choice of the embedding delayτ . In turn, the
increasing persistence yields an increase inτ1/e andτ0.1 as
well, as can be seen from the mutual offset of the different
lines in Fig. 1C,D.

To further illustrate the practical consequences of the ob-
served behavior of the sample ACF when using embedding
techniques, Fig. 2 displays the same realization of a fBm em-
bedded in a two-dimensional space with different embedding
delaysτ . Notably, the two embedding components are highly
correlated for smallτ but less correlated for largerτ , lead-
ing to an entirely different geometric shape of the data ob-
ject in the reconstructed phase space. The same behavior
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FIG. 2: Example trajectory of a fBm withH = 0.7 in a two-
dimensional reconstructed phase space with embedding delays (A)
τ = 100 and (B)τ = 750 (N = 213).
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FIG. 3: Fraction of false nearest-neighbors (FNN) for (A) fBm and
(B) fGn with H = 0.7 and different time series lengthsN (black:
N = 1000, blue:N = 21000, and red:N = 31000).

will be necessarily observed in higher embedding dimensions.
As a consequence, a “practical” choice of the embedding de-
lay for fBm should be independent ofH , but depend onN .
The numerical results presented above suggestτ ≈ 2000 for
N = 213 andτ ≈ 8000 for N = 215, possibly generalizing to
τ ≈ N/4. This is a rather large value, clearly far larger than
those used by Liuet al. [16] (τ ∼ 10 . . . 20 for N = 212).

The determination of a reasonable embedding dimensionm
is often achieved by the FNN method [29]. The criterion for
the embedding dimension being high enough is that the frac-
tion of false nearest-neighbors is zero or at least sufficiently
small. Figure 3A displays our corresponding numerical re-
sults for fBm for three different lengths, which consistently
suggestm = 4.

C. Choice of the recurrence threshold

An appropriate choice of the recurrence thresholdε has at-
tracted great interest in the literature on RNs [19, 21, 22, 35,
36]. The most wide-spread procedure is fixing the resulting
recurrence rateρ (i.e., the fraction of recurrences) and adjust-
ing ε accordingly. As a rule-of-thumb,ρ is often taken be-
tween about 0.01 and 0.05 for typical RN sizes of a few thou-
sand vertices [8, 19], presenting a trade-off between the ne-
cessity of avoiding a largely disconnected network (too small
ǫ) and the interest in the geometric fine structure of the sys-
tem in its phase space, which is hidden when considering
too large spatial domains. The latter requirement has been
more precisely formulated in [21], emphasizing on the empir-
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ically expected relationship for the RN’s average path length,
L(ε) ∼ ε−1, which has been numerically confirmed [7, 21].

Recently, [16, 36] suggested using the percolation thresh-
old of the random geometric graph constructed from the given
distribution of observed state vectors in phase space as a suit-
able lower bound toε. As shown by [21], the scaling of the
RN’s average path length breaks down ifε falls below the
limit for which the RN decomposed into disjoint components,
which is a necessary consequence of the fact that the averag-
ing involved in the calculation ofL is commonly considered
only over pairs of vertices that are mutually reachable [7, 21].
However, when disregarding shortest path-based RN charac-
teristics, there is no reason why one should restrict oneself to
connected-networks, since other graph properties are hardly
affected by the presence of more than one component. In par-
ticular, requesting the existence of a single component can
lead to rather largeε due to the presence of outliers in the
data [19], especially in case of stochastic processes.

In this spirit, we recommend fixingρ at some reasonable
value instead of tuningε according to the percolation thresh-
old. Notably, in this case results obtained for different data
sets still correspond to differentε when they originate from
independent realizations of stochastic processes. However,
the problem of the dependence of some network measures on
the number of edges in the RN is relieved in this case. Note
that for fBm, due to the non-stationarity in variance the spread
of state vectors in any reconstructed phase space necessarily
grows with the sample sizeN .

III. RN ANALYSIS OF FGN PROCESSES

Based on our discussion presented in the previous section,
we conclude that the results recently presented in [16] hold
only for the particular choices of the algorithmic parameters
(for instance, length of time series, embeddings etc), show-
ing limited physical interpretations. Moreover, using non-
stationary time series data necessarily produces unreliable and
spurious results.

One solution to the problem could be transforming the pro-
cess in a way so that it becomes stationary. In recent appli-
cations to non-stationary real-world time series [17, 18],the
authors have removed non-stationarities in the mean by re-
moving averages taken within sliding windows from the data.
In the particular case of fBm, where non-stationary affects
the variance, the underlying stochastic process can be trans-
formed into a stationary one by a first-order difference filter,
i.e., by considering its incrementsxi+1−xi. The transformed
series is commonly referred to as fractional Gaussian noise
(fGn) in analogy with the classical Brownian motion arising
from an aggregation of Gaussian innovations. Notably, fGn
retains the long-range correlations and Gaussian probability
density function (PDF) from the underlying fBm process. For
illustration purposes, three independent realizations offGn
with the same characteristic Hurst parameterH = 0.7 are
shown in Fig. 4A. Visual inspection clearly suggests the ab-
sence of non-stationarity in both mean and variance.
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FIG. 4: As in Fig. 1 for fGn obtained by differencing the previous
fBms. In (B), the additional green line represents the averaged ACF
over 200 independent realizations.

A. Embedding of fGn processes

Because of its stationarity, for fGn the estimated ACF
shows a much faster decay and less ensemble spread than for
fBm (Fig. 4B). Therefore, disregarding the conceptual limita-
tions of this approach when considering stochastic processes,
embedding parameters can be chosen more properly for fGn
than for fBm. Concerning embedding delayτ , one easily
sees thatτ = 1 is a natural choice forH < 0.5 according
to the classical ACF criterion, since the corresponding pro-
cess is anti-persistent. Specifically, in this case the ACF drops
to negative value at lag one (as shown in Fig. 4C), i.e., sub-
sequent values are negatively correlated – the defining prop-
erty of anti-persistence. In contrast, forH > 0.5 we use the
de-correlation timeτ0.1 as an estimator for embedding delay
τ , which increases with risingH as one would expect since
largerH indicates a longer temporal range of correlations.

As before, the embedding dimensionm is chosen via the
FNN method. In Fig. 3B, we show the fraction of false
nearest-neighbors asm is varied. Unlike for fBm, our re-
sults suggest that the optimal valuem rises with an increas-
ing length of the time series. In general, considerably higher
values ofm are suggested than for fBm, which matches the
theoretical expectations more closely. However, due to thefi-
nite sample size, we still find a vanishing FNN rate at a finite
embedding dimension, which is probably related to a lack of
proper neighbors when high dimensions are considered.

B. Expected RN properties of stationary Gaussian processes

Given a proper representation of the considered system
by its phase space reconstruction, the RN properties can be
computed analytically from estimates of the underlyingm-
dimensional state densityp(x) [21]. In this spirit, an appro-
priate representation requires that the sample size is sufficient
to cover all relevant parts of phase space, and that the sam-
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FIG. 5: Dependence of (A) RN transitivityT and (B) global cluster-
ing coefficientC for fGn on the Hurst exponentH for different em-
bedding dimensions (m = 3: �, m = 4: ⊳, m = 5: ∗, m = 6: •),
taken over 200 independent realizations and using a RN edge density
of ρ = 0.03. The embedding delay has been kept at the same value
for all realizations with the sameH according to the de-correlation
time τ0.1. In all cases,N = 212.

pling interval is reasonably chosen (i.e., to avoid sampling
times co-prime with natural frequencies of continuous-time
systems). For fBm, the latter condition cannot be fulfilled due
to the non-stationarity of the process, whereas it is technically
met for fGn processes.

Making use of the analytical results of [21], we expect that
the degree distributionp(k) of the obtained RNs should be
the same for any stationary process with Gaussian PDF given
the same embedding dimensionm. Specifically, this distribu-
tion has a complex shape [37] that is independent ofH (note
that we may fix the mean degree〈k〉 by selecting a given
ρ = 〈k〉 /(N − 1)). In fact, this invariance is a direct con-
sequence of the fact that the geometry of the data in phase
space is not affected byH when considering sufficiently de-
correlated components, a requirement that has not been met by
[16] in their recent investigation of fBm as discussed above.

We emphasize again that the above considerations require
a stationary Gaussian process and an embedding for which all
components are as close as possible to being linearly inde-
pendent. Otherwise, dependences between the components of
the embedding vector lead to a deformation of the data dis-
tribution in phase space and, hence, possibly different geo-
metric properties such as a too small effective dimension (i.e.,
smaller thanm).

C. Transitivity properties

In [27], we have recently demonstrated that the RN char-
acteristics transitivityT and global clustering coefficientC
provide relevant information for characterizing the geometry
of the resulted RNs, which has been numerically supported
for various deterministic-chaotic systems. However, given
the theory presented in [21], the corresponding considera-
tions can be extended to any kind of process or, more gen-
erally, any kind of random geometric graph [38] with a given
state densityp(x). Here, we exemplify these considerations
for the case of fGn and examine how the transitivity proper-
ties of RNs arising from such stationary long-range correlated
stochastic processes depend on the characteristic Hurst expo-
nent as well as the underlying algorithmic parameters.

3 4 5 6 7 8 9 10
10

−0.8

10
−0.6

10
−0.4

dimension m

T
,
C

 

 A

ρ=1%

T
C

3 4 5 6 7 8 9 10
10

−0.8

10
−0.6

10
−0.4

dimension m

T
,
C

 

 B

ρ=3%

T
C

FIG. 6: Dependence of RN transitivityT and global clustering co-
efficient C on the embedding dimensionm for fGn with H = 0.7
(averages over 200 realizations) for two different values of ρ ((A):
ρ = 0.01, (B): ρ = 0.03). The dashed line corresponds to the ex-
pected analytical valuesT = (3/4)m for m-dimensional Gaussian
processes. In all cases,N = 212.

ForH > 0.5, Fig. 5 shows that for a given embedding di-
mensionm, both transitivity and global clustering coefficient
do not depend onH . Following our above considerations,
this is expected since them-dimensional Gaussian PDF of the
process does not depend onH , and the components are suffi-
ciently de-correlated so that any marked geometric deforma-
tion of the embedded data is avoided. Hence, we construct
RNs from the same PDF in all cases. Some minor devia-
tion from the constant values can be observed atH close to
1, i.e., close to the non-stationary limit case representedby
1/f -noise, which might be due to numerical effects since the
corresponding processes are harder to simulate than such with
moderateH .

ForH < 0.5, the behavior changes markedly: bothT and
C rise with decreasing Hurst exponent. The reason for this
behavior is thatτ = 1 is the recommended, but still not “opti-
mal” embedding delay for anti-persistent processes. Specif-
ically, the closerH approaches 0, the stronger is the anti-
correlation at lag one. This means that with the same em-
bedding delayτ = 1, the smallerH the stronger are the mu-
tual correlations between the different components of the em-
bedding vector. As a consequence, the state vectors do not
form a homogeneousm-dimensional Gaussian PDF with in-
dependent components in the reconstructed phase space, but
are stretched and squeezed along certain directions, so that
the resulting geometric structure appears significantly lower-
dimensional thanm.

Given thatT (C) is related to a geometric notion of the
global (average local) dimension of the data [27], a reduced
dimensionality of the data object results in a positive bias
of both properties, which is exactly what we observe here
(Fig. 5). Following the latter considerations, it is also easy
to explain why bothT andC systematically decrease with in-
creasing embedding dimensionm (Figs. 5, 6). Specifically,
for a random geometric graph inm dimensions (computed
with the maximum norm as also used in this work), one can
show analytically thatT = (3/4)m [27] (similar considera-
tions apply toC [21]). For a fixed sample sizeN , however, this
theoretical expectation is only met at low embedding dimen-
sionsm, whereas we find a systematic upward bias of bothT
andC asm increases (Fig. 6). We explain the latter observa-
tion by the finite sample size together with the problem that
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proximity relationships become more ambiguous in higher di-
mensions when fixing a certain value ofρ. Therefore, it can be
expected that the bias should be systematically reduced when
using larger sample sizesN together with smaller edge densi-
tiesρ (for the latter effect, cf. Fig. 6A,B).

It would be straightforward to extend this kind of analysis
to other network measures, since the available analytical de-
scription of RNs allows for their calculation as well [21]. We
leave a corresponding discussion as a subject of future work.

IV. CONCLUSIONS

By a critical reassessment of previous work [16], we have
identified several sources of errors when applying recurrence
network analysis (or, in a similar way, other concepts basedon
recurrences in phase space) to long-range correlated stochastic
processes. In summary, the main conclusions of this analysis
are as follows:

(i) RN analysis is based on phase space concepts originated
in the theory of deterministic dynamical systems. There-
fore, its potential application to stochastic processes re-
quires special care.

(ii) The RN theory [21, 35] holds only for stationary pro-
cesses. A direct application of RN analysis to typical
non-stationary processes (in particular fBm) therefore
has to fail, since the PDF of the process in the consid-
ered phase space changes with time. Without correcting
for non-stationarity by a proper transformation of the se-
ries, the obtained results are commonly spurious.

(iii) A major problem associated with non-stationary pro-
cesses is that embedding cannot be properly defined. In
particular, the necessary selection of an embedding delay
is ambiguous since auto-correlation function and related
measures of serial dependences are not well-defined any-
more.

(iv) For stationary stochastic processes, an embedding delay
can be formally estimated from the data. However, the
problem of selecting an embedding dimension remains,
since stochastic processes are (in the viewpoint of dy-
namical systems theory) infinite-dimensional. Hence,
any low-dimensional embedding of a stochastic process
necessarily loses relevant information, which is a major
cause of spurious results.

Despite the aforementioned conceptual problems and pit-
falls resulting thereof, RN can still be used for obtaining inter-
esting information on stationary stochastic processes. Draw-
ing upon the interpretation of RNs as random geometric
graphs [38] in some reconstructed phase space, the network
properties could in principle be computed solely from the
multi-dimensional PDF of the embedded process. Deviations
from the expectations are related to statistical dependencies
between the different embedding components as well as finite-
sample and finite-scale effects. The latter are also relevant for

deterministic-chaotic processes, where in turn the underlying
PDF can often not be calculated or at least estimated with high
accuracy. In this spirit, deriving information based on stochas-
tic processes can indeed help by providing benchmarks for
studies of deterministic dynamics.

In general, applying RN analysis to scalar measurements
requires an appropriate choice of embedding parameters. We
do not claim that all choices made in this work have been
based on fully objective quantitative criteria. The concepts
like de-correlation time and false nearest-neighbors applied
in this work rather present heuristics capturing only some as-
pects relevant for obtaining a proper phase space reconstruc-
tion. In this spirit, the results reported in [16] are conceptually
interesting but practically difficult to interpret. For systematic
applications, the choice of embedding parameters depends on
the particular process under consideration and should involve
careful statistical evaluation beyond visual inspection.

Finally, we emphasize that for non-stationary systems, em-
bedding parameters cannot be properly defined in general, so
that any RN analysis (as well as other time series analysis
techniques) necessarily yields systematic errors. This partic-
ularly applies to fBm and related processes arising from an
integration of stationary processes (e.g., fractional Lévy mo-
tion, (F)ARIMA models, etc.). In such cases, a proper trans-
formation is required to remove the particular type of non-
stationarity from the data. This can be achieved by additive
detrending, phase adjustment (de-seasonalization), difference
filtering (incrementation) or other techniques, with the one
mentioned last being the proper tool for the particular case
of fBm transforming the original process into stationary fGn.
Applying RN analysis to the latter indeed provides meaning-
ful results. It should be noted that this observation is consis-
tent with some wide-spread conceptual ideas beyond success-
ful methodological alternatives for non-stationary time series
analysis such as DFA [11], which commonly make use of
detrending and/or time series differentiation/aggregation. A
more systematic exploration of corresponding approaches in
combination with recurrence-based techniques is general,and
RN analysis in particular, could be an interesting subject of
future work.
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