Latent force models (LFM) are principled approaches to incorporating
solutions to differential equations within non-parametric inference methods.
Unfortunately, the development and application of LFMs can be inhibited by
their computational cost, especially when closed-form solutions for the LFM are
unavailable, as is the case in many real world problems where these latent
forces exhibit periodic behaviour. Given this, we develop a new sparse
representation of LFMs which considerably improves their computational
efficiency, as well as broadening their applicability, in a principled way, to
domains with periodic or near periodic latent forces. Our approach uses a
linear basis model to approximate one generative model for each periodic force.
We assume that the latent forces are generated from Gaussian process priors and
develop a linear basis model which fully expresses these priors. We apply our
approach to model the thermal dynamics of domestic buildings and show that it
is effective at predicting day-ahead temperatures within the homes. We also
apply our approach within queueing theory in which quasi-periodic arrival rates
are modelled as latent forces. In both cases, we demonstrate that our approach
can be implemented efficiently using state-space methods which encode the
linear dynamic systems via LFMs. Further, we show that state estimates obtained
using periodic latent force models can reduce the root mean squared error to
17% of that from non-periodic models and 27% of the nearest rival approach
which is the resonator model.Comment: 61 pages, 13 figures, accepted for publication in JMLR. Updates from
earlier version occur throughout article in response to JMLR review