1,241 research outputs found

    Fuzzy Logic Modeling and Observers Applied to Estimate Compositions in Batch Distillation Columns

    Get PDF
    In this chapter, the analysis and design of a fuzzy observer based on a Takagi-Sugeno model of a batch distillation column are presented. The observer estimates the molar compositions and temperatures of the light component in the distillation column considering a binary mixture. This estimation aims to allow monitoring the physical variables in the process to improve the quality of the distillated product as well as to detect failures that could affect the system performance. The Takagi-Sugeno fuzzy model is based on eight linear subsystems determined by three premise variables: the opening percentage of the reflux valve and the liquid molar composition of the light element of the binary mixture in the boiler and in the condenser. The stability analysis and the observer gains are obtained by linear matrix inequalities (LMIs). The observer is validated by MATLAB® simulations using real data obtained from a distillation column to verify the observer’s convergence and analyze its response under system disturbances

    Linear active disturbance rejection control of waste heat recovery systems with organic Rankine cycles

    Get PDF
    In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection

    Development of a Solution for Start-up Optimization of a Thermal Power Plant

    Get PDF
    This thesis covers optimizing the first phase of the start-up of a thermal power plant using Nonlinear Model Predictive Control (NMPC) and state estimation using an Unscented Kalman Filter (UKF). The start-up has been optimized in regards to time and fuel usage. The thesis is done as a joint project between Vattenfall and Modelon. Both NMPC and UKF are nonlinear methods and require a model of the power plant. The model used in this thesis has been developed in the language Modelica in a previous master thesis and has been extended and improved upon during this thesis. The optimization and simulation of the model required by the NMPC and UKF was done within the framework of JModelica.org. Another, more detailed, model of the power plant, developed by Vattenfall, was originally planned to be used as the process to be controlled. State estimation using the UKF has been successful, with a maximum mean absolute error of 0.7 % when estimating the states of the detailed model in a reference startup. When using the NMPC to control the optimization model itself, the simulated start-up time is 70 minutes faster compared to a reference start-up using the detailed model. This is more than half the time of the first phase of the start-up. The total firing power, which relates to the fuel amount, is also considerably less, with the optimized value being about 40 % of that in the reference soft start with the detailed model. Due to difficulties in initializing the detailed model, it was not possible to run it online together with the NMPC and UKF. Running the NMPC and UKF together on the optimization model worked, but the NMPC failed to find an optimal trajectory 8 out of 10 iterations. The conclusion is that the start-up has potential for optimization, but requires more robust models to work with

    Distillation

    Get PDF
    The purpose of this book is to offer readers important topics on the modeling, simulation, and optimization of distillation processes. The book is divided into four main sections: the first section is introduction to the topic, the second presents work related to distillation process modeling, the third deals with the modeling of phase equilibrium, one of the most important steps of distillation process modeling, and the the fourth looks at the reactive distillation process, a process that has been applied successfully to a number of applications and has been revealed as a promising strategy for a number of recent challenges

    Dynamic behavior investigations and disturbance rejection predictive control of solvent-based post-combustion CO2 capture process

    Get PDF
    Increasing demand for flexible operation has posed significant challenges to the control system design of solvent-based post-combustion CO2 capture (PCC) process: 1) the capture system itself has very slow dynamics; 2) in the case of wide range of operation, dynamic behavior of the PCC process will change significantly at different operating points; and 3) the frequent variation of upstream flue gas flowrate will bring in strong disturbances to the capture system. For these reasons, this paper provides a comprehensive study on the dynamic characteristics of the PCC process. The system dynamics under different CO2 capture rates, re-boiler temperatures, and flue gas flow rates are analyzed and compared through step-response tests. Based on the in-depth understanding of the system behavior, a disturbance rejection predictive controller (DRPC) is proposed for the PCC process. The predictive controller can track the desired CO2 capture rate quickly and smoothly in a wide operating range while tightly maintaining the re-boiler temperature around the optimal value. Active disturbance rejection approach is used in the predictive control design to improve the control property in the presence of dynamic variations or disturbances. The measured disturbances, such as the flue gas flow rate, is considered as an additional input in the predictive model development, so that accurate model prediction and timely control adjustment can be made once the disturbance is detected. For unmeasured disturbances, including model mismatches, plant behavior variations, etc., a disturbance observer is designed to estimate the value of disturbances. The estimated signal is then used as a compensation to the predictive control signal to remove the influence of disturbances. Simulations on a monoethanolamine (MEA) based PCC system developed on gCCS demonstrates the excellent effect of the proposed controller

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Deep Learning-Based, Passive Fault Tolerant Control Facilitated by a Taxonomy of Cyber-Attack Effects

    Get PDF
    In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault tolerant control (FTC) is unique in the research literature. The proposed controller is applied to both linear and nonlinear systems. Additionally, the application and testing are accomplished with both actuators and sensors being affected by attacks and /or faults

    Activity Report 1996-97

    Get PDF

    Model-based Fuel Flow Control for Fossil-fired Power Plants

    Get PDF
    • …
    corecore