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Abstract

This thesis covers optimizing the first phase of the start-up of a thermal power plant
using Nonlinear Model Predictive Control (NMPC) and state estimation using an
Unscented Kalman Filter (UKF). The start-up has been optimized in regards to time
and fuel usage. The thesis is done as a joint project between Vattenfall and Modelon.
Both NMPC and UKF are nonlinear methods and require a model of the power
plant. The model used in this thesis has been developed in the language Modelica
in a previous master thesis and has been extended and improved upon during this
thesis. The optimization and simulation of the model required by the NMPC and
UKF was done within the framework of JModelica.org. Another, more detailed,
model of the power plant, developed by Vattenfall, was originally planned to be
used as the process to be controlled.

State estimation using the UKF has been successful, with a maximum mean absolute
error of 0.7 % when estimating the states of the detailed model in a reference start-
up. When using the NMPC to control the optimization model itself, the simulated
start-up time is 70 minutes faster compared to a reference start-up using the detailed
model. This is more than half the time of the first phase of the start-up. The total
firing power, which relates to the fuel amount, is also considerably less, with the
optimized value being about 40 % of that in the reference soft start with the detailed
model.

Due to difficulties in initializing the detailed model, it was not possible to run it
online together with the NMPC and UKF. Running the NMPC and UKF together on
the optimization model worked, but the NMPC failed to find an optimal trajectory 8
out of 10 iterations. The conclusion is that the start-up has potential for optimization,
but requires more robust models to work with.

Keywords: NMPC, UKF, Thermal Power Plants, JModelica.org, Modelica
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1
Introduction

The requirement on more flexible thermal power plants is increasing as intermittent
power production like solar power and wind power is increasing. In the future it is
expected that the thermal power plants will have to shut down when the electricity
demand is low and the production of sustainable energy is high enough to satisfy the
demand. However, it is time consuming and expensive to start up a thermal power
plant, and they are usually not designed for frequent start-ups. In particular they
are not optimized for that type of operation. A problem is the wear on certain com-
ponents due to the thermal stress they are exposed to during the start-up phase. A
lot of time and resources could therefore potentially be saved if these start-ups can
be executed as fast and smooth as possible. The environmental impact will also be
reduced if less fuel is used for start-up of the plant and if the plant could be run for
smaller periods of time. One way to achieve the goal of optimizing the start-up is
to utilize model-based online optimization in the form of model predictive control
(MPC). Vattenfall and Modelon have been collaborating on this for one of Vatten-
fall’s thermal power plant as a part of the research project MODRIO [Modelica
Association, 2015].

The two previous master theses [Andersson, 2013] and [Runvik, 2014] have been
done at Modelon and Vattenfall with the aim of developing a simplified model
suitable for online optimization and to set up an environment to run some typi-
cal optimization problems. In the master thesis [Axelsson, 2015] done at Modelon,
a general MPC tool has been developed which is also compatible with the simpli-
fied model. In parallel, a detailed plant model has been developed in collaboration
between Vattenfall and Rostock University. The detailed model is able to simulate
the plant start-up in high detail and is intended to be utilized as the target plant
in simulation studies. Building upon the results of the previous master theses and
interfacing an MPC to the detailed model is a way to create a demonstrator from
which the potential of optimizing the start-up can be analyzed.
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1.1 Aim of Thesis

1.1 Aim of Thesis

The objective of this master thesis is to research the possibility of using a nonlinear
model predictive controller (NMPC) to optimize the start-up of a thermal power
plant by minimizing the time and fuel consumption. This is to be done while re-
garding maximum allowable stress levels in critical components of the plant.

The objective will be achieved by deriving and implementing a state-estimator in
the form of an unscented Kalman filter (UKF) including disturbance dynamics for
the plant, which will be combined with an NMPC based on the modelling and op-
timization work done in [Runvik, 2014] and [Axelsson, 2015]. The controller and
estimator is to be interfaced to a detailed simulation model, developed at Vatten-
fall, to form a demonstrator, which can be used to demonstrate and analyze start-up
optimization scenarios for a thermal power plant.

1.2 Specifications

The following specifications were set from Vattenfall and Modelon:

• The UKF shall be compatible with JModelica.org.

• Optimization is to be done using JModelica.org.

• The UKF and NMPC shall use the model developed in [Runvik, 2014] as a
basis for their internal models.

• The detailed model that has been developed by Vattenfall shall be used as the
process model in the final demonstrator.

• Stress levels of the critical components in the plant should be small enough
to ensure 2000 start-ups.

1.3 Research Questions

In order to achieve the aim of the thesis while conforming to the specifications, the
following questions were investigated:

• How should the detailed model be interfaced to the JModelica.org framework
in the implementation of a demonstrator?

• How can the start-up process be optimized, using NMPC, in regards to total
time and fuel spent?

• How does the simplified optimization model need to be changed to make it
as similar to the detailed plant model as possible?
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Chapter 1. Introduction

• Are the current constraints appropriate for the actual plant or are there other
sections that are more critical?

• How should the optimization model be modified to make it usable in NMPC
optimization and UKF estimation?

• How should a general UKF class be implemented, and how should it interface
with JModelica.org?

• How should the measurement signals from the plant be chosen to ensure ob-
servability?

1.4 Tasks

From the goal of the thesis and our research questions, the following tasks were
defined:

• Add new critical components to the optimization model, and remove those
deemed not critical.

• Tune the parameters of the optimization model to make it more similar to the
detailed model during start-up.

• Implement and test a UKF within the JModelica.org framework.

• Make the optimization model usable with the NMPC and UKF.

• Make a simple observability analysis of the plant model.

• Make an analysis of the disturbance dynamics for the plant.

• Improve the formulation of the start-up optimization by testing different cost
functions and in particular minimize fuel and time consumption.

• Find a solution to interface the detailed model to the JModelica.org frame-
work.

• Integrate all components into a solution that can be used to demonstrate start-
up optimization scenarios for a thermal power plant.

18



1.5 Structure of Thesis

1.5 Structure of Thesis

In Chapter 2, background theory on the power plant start-up process is explained.
Additionally, basic theory of NMPC, the UKF, disturbance modelling, nonlinear
observability and numerical optimization is presented. The chapter is concluded by
a brief description of the Modelica and Optimica languages used for modelling in
this thesis.

In Chapter 3, the delimitations on the work are presented. The methods used in
implementing the NMPC and UKF, modelling disturbances, observability analysis
and validation of the optimization model are explained.

In Chapter 4, the setups of the experiments performed with the UKF and NMPC on
the power plant models are presented. In chapter 5, the results from the experiments
are presented. The full estimation results are found in appendix A.

The thesis is concluded with a discussion of the results, methodology and thoughts
on improvements in Chapter 6. The conclusions and recommendations for future
work are summarized in Chapter 7.
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2
Background

2.1 The Jänschwalde Thermal Power Plant

The power plant which is simulated in this thesis is the Vattenfall owned power
plant Jänschwalde in Germany. Built between 1976 and 1988, the plant is the third
largest lignite fired power plant in Germany. It has a capacity of 3000 MW with an
overall efficiency of about 36% [Runvik, 2014].

The Jänschwalde plant is divided into six blocks where each block contains two
boilers. The two boilers of each block provide steam for a mutual turbine. An
overview of a block of the Jänschwalde power plant is presented in Figure 2.1.
The fundamental principle of a lignite-fired power plant is to convert the chemical
energy stored in the lignite to electrical energy. The lignite is fed to the furnace
in each boiler where it is mixed with air and combusted, producing hot flue gas.
The energy emitted from the combustion and energy stored in the hot flue gas is
transferred to the water in the evaporators of each boiler. The water evaporates, and
pressure is built up. When the steam from the boilers is expanded in the turbine,
mechanical force is exerted on the turbine blades, making them rotate. The turbines
will power a generator, which outputs electrical energy.

Since the boilers in a block are started one at a time, we will, in this thesis, consider
a simplified block with a single water steam cycle line and boiler connected to the
turbine. All components common to both boilers can then be modelled as a symmet-
ric part with half the size. An overview of the simplified block of the Jänschwalde
power plant is presented in Figure 2.2. SH and RH denotes super-heaters and re-
heaters respectively while LPP and HPP denotes low pressure and high pressure
preheaters. These are heat exchangers, consisting of bundles of tubes perpendicular
to the flue gas flow in the flue gas channel. Between many of the heat exchangers
there are spray attemperators that spray water into the hot steam to regulate the tem-
perature. Eco denotes economizer, which also is a section of heat exchange. HP-T,
IP-T and L-T represent the different turbine stages of the plant, and denote high,
intermediate and low pressure turbine respectively. The steam entering the HP-T is

20



2.1 The Jänschwalde Thermal Power Plant

Figure 2.1 Overview of one of the blocks in the Jänschwalde power plant. The component
seen between the turbine and the LPP is the condenser.

commonly known as live steam (LS). The steam entering the IP-T will in this thesis
be referred to as the re-heat steam (RS). Between the outlet headers, which collect
the steam from the heat exchangers, and the HP and IP turbines there are bypass
valves that can be opened to let the steam continue the steam cycle without entering
the turbine.
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Figure 2.2 Overview of one boiler connected to the turbines in the Jänschwalde plant.

The steam cycle in each block is designed to maximize the efficiency of the process.
This involves super-heating the steam before it enters the high pressure turbine, and
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Chapter 2. Background

then re-heating the steam again before expanding it in the intermediate- and low
pressure turbines. A detailed description concerning the thermodynamics of this
procedure can be found in [Runvik, 2014].

2.1.1 The Start-up
The start-up of a block is divided into three different types depending on the stand-
still time. The types are cold, soft and hot start. The three start-up types are defined
in Table 2.1.

Start-up Stand-still Time (T ) Approximate start-up time Occurrences at Jänschwalde 2012
Cold T ≥ 48h 20 h 15
Soft 12h < T < 48h 9 h 6
Hot T ≤ 12h 3 h 4

Table 2.1 Definitions and occurrences of the different start-up types.

A typical start-up of a block is done step-wise and one boiler at a time. In Figure
2.3 a reference soft start of one boiler from the handbook of the plant [Vattenfall
AB, 2012] is presented. The start-up is divided into three phases:

(i) Initially, oil burners are used to quickly start up the combustion process in the
furnace. The oil burners are started one at a time. When the temperature in the
furnace is sufficiently high, they are gradually switched out for the coal mills,
which feed the furnace with lignite. The temperature and pressure of the LS
and RS in the boiler are increased until they reach desired values. The turbine
valves are closed during this phase while the bypass valves are open, meaning
no steam enters the turbines. This phase corresponds to the time between 0
and 180 minutes in Figure 2.3.

(ii) The turbine valve of the intermediate pressure turbine is opened while the
corresponding bypass valve starts to close, allowing steam to expand in the
turbine. Later, the steam is allowed to enter the low and high pressure turbines
as well. Turbine speed is increased step-wise until 3000 rpm is reached. At
that time the bypass valves are fully closed. During this phase temperature
and pressure of the steam are further increased. This phase corresponds to the
time between 180 and 295 minutes in Figure 2.3.

(iii) The generator is connected to the electrical grid, and live steam pressure
and temperature continues to increase until the desired power set-point of
the plant is reached. A full load of 500 MW, when both boilers are online,
corresponds to set-points of 535◦C and 160 bar for the live steam (LS). The
pressure set-point is 120 bar with one boiler online as seen in Figure 2.3.
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2.1 The Jänschwalde Thermal Power Plant

Figure 2.3 Signals for pressure, temperature and mass flow of LS, temperature and pressure
of RS, generator load, boiler load and turbine speed during a reference soft start [Vattenfall
AB, 2012]. The boiler load is the power of the fuel, divided by the efficiency of the power
plant at full load. This means that at full load the boiler load and generator load should be
equal.

The start-up time of one boiler for a soft start is approximately 9 hours. A more
extreme case is a cold start for an entire block, which takes approximately 20 hours
[Runvik, 2014].

2.1.2 Constraints on Start-up
The start-up is deliberately done in a slow and controlled manner in order to avoid
too large temperature gradients in the thick-walled metal components of the plant.
Steep temperature gradients give rise to large thermal stresses in the components
and can reduce the life-time of the component significantly.

Components that are potentially critical to break due to stress in the start-up are the
headers of the heat exchangers. The headers are cylindrical pipes connected with
smaller pipes that collect the steam from all the tubes in the heat exchanger into one
steam flow. The highest stress occurs on the edges of the branching smaller pipes,
see Figure 2.4. It was previously assumed that the separator wall was also critical,
but it was later deemed uncritical in [Runvik, 2014].

The total stress in a component is given as the sum of the thermal stress from tem-
perature differences in the walls and the mechanical stress from the high pressure
of the steam. The thermal stress during start-up will typically give rise to negative
stress values while the mechanical stress will have positive values. Positive stress is
defined as stress directed radially inwards in the cylindrical header, while negative
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Chapter 2. Background

Figure 2.4 Design of header used in the plant.

stress is directed outwards. Formulas used for stress calculations of the headers can
be found in [Runvik, 2014] and [Andersson, 2013].

Too large stress levels in components will cause life-time consumption. Vattenfall
wish to optimize the start-up while still guaranteeing that the components will hold
for 2000 cold start-ups.

2.1.3 The Detailed Plant Model
A detailed simulation model of the Jänschwalde power plant has been developed
in Dymola using the programming language Modelica in a collaboration between
Vattenfall and Rostock University. The top-layer of the model is presented in Figure
2.5. It models the control system and most of the components of the power plant.
Because of the high complexity and the amount of time it takes to simulate, it can
not be used in real-time for online optimization or as an observer model in a state
estimator. Instead, the detailed model was planned to be used as the real process to
be controlled and optimized. An overview of the model is presented in [Hübel et al.,
2014b].

The available inputs to the plant model are set-points for pressures and temperatures
of LS and RS and also a set-point for firing power. This input is a normalized firing
power for the furnace in the range [0,1]. The control system then controls the flow
of fuel in the form of oil or coal so that the correct firing power is met.

2.1.4 The Optimization Model
Since the detailed plant model is not suitable for optimization or state estimation
in real-time, a simplified model of the plant is used instead. This model has been
developed in Dymola in [Andersson, 2013] and [Runvik, 2014] using the language
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2.1 The Jänschwalde Thermal Power Plant

Figure 2.5 Top layer of the detailed model of the Jänschwalde power plant.

Modelica. In the latter thesis there is a description of the model that is used as a
base for this project.

There are two versions of the model, one for the first and one for the second phase
of the start-up described in section 2.1.1. In the model for phase 1, that is used as
a base for the model in this thesis, the turbines and turbine valves are not present
since they are not used in this phase. This model is presented in Figure 2.6.

The rate of change of the LS pressure set-point and the flue gas flow are used as in-
puts. An internal PI controller controls the opening degree of the HP-T bypass valve.
The boiler itself is modelled from flue gas input through all the heat exchanger sec-
tions. It does not model the furnace and instead uses a controllable gas source. In
addition the whole water steam cycle after RH2 including the intermediate and low-
pressure turbines and the preheaters are exchanged for boundary conditions. The
LS of the model is found in the SH4 header component, while the RS corresponds
to the steam at the boundary condition after RH2, i.e the RS is considered to have
constant pressure.

The dynamics of the model are on the steam side and in the walls of the heat ex-
changers, while the gas side is modelled with static relations. The dynamic states
in each heat exchanger is the density and internal energy of the steam. The walls of
each heat exchanger are modelled to have a uniform temperature, which is also a dy-
namic state. The SH4-header and the separator also have a separate wall-component
with three nodal temperatures, which is used to calculate the thermal stress. The
center-most nodal temperatures in these wall-components are also dynamic states
in the model.
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Figure 2.6 Top layer of the optimization model developed in [Runvik, 2014].

All the thermodynamic relations of the water in the model are approximated with
polynomial functions, using the Modelon developed Modelica package water_poly.
Having polynomial approximations rather than relations with discontinuities makes
the model more optimization friendly. However, the approximations have a limited
range of validity.

2.2 Nonlinear Model Predictive Control

The basic idea behind Model Predictive Control (MPC) is that a control law is
derived by solving an optimal control problem using measurements from the target
system. Optimal control is a method where a sequence of optimal control values
are generated using a model of the system, a predefined cost function and some
constraints on the states and control input. The problem is solved offline, and the
generated control signal is applied to the system. Using MPC the first control action
from the optimal control problem is applied to the system for one sampling instance
and then a new optimal control problem is solved for the new point in the state space,
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X. A model of the dynamic behaviour of the system is used to model its behaviour
over a specified time horizon, Tp, called the prediction horizon. The control action
is then calculated for a time horizon, Tc, called the control horizon, where Tc ≤ Tp
[Allgöwer et al., 2004]. One of the main advantages of MPC is that it can take
constraints on the states or control signal into account explicitly [Grüne and Pannek,
2011]. In linear MPC the system model is linear while in nonlinear MPC (NMPC)
the system model is nonlinear. The resulting closed loop system will be nonlinear
in both cases however due to the presence of constraints [Allgöwer et al., 2004].

2.2.1 Basic Definition
The NMPC solves an optimal control problem for each iteration. With a sampling
interval h and the discrete prediction horizon N = Tp/h, the optimization problem
O that has to be solved is defined by

min
{ui}

VN({xi},{ui}) (2.1)

subject to ui ∈ U xi ∈ X xN ∈ X f ∀i ∈ (0, N−1) (2.2)

where {xi} denotes the sequence of n number of states that is derived when using
the sequence of m number of control input {ui}. VN is the cost function. U and X are
the constraint sets for {ui} and {xi} respectively and X f is the terminal constraint
set for {xi}.

The cost function, VN , is defined by

VN({xi},{ui}) =
N−1

∑
i=0

`(xi,ui) (2.3)

where the stage cost function, `, is an arbitrary function If the control horizon is
shorter than the prediction horizon the remaining values of the control sequence are
chosen equal to the last value (i.e. a constant control signal) [Rawlings and Mayne,
2012].

Using the solution to O, the control law can be defined as κN(x) := {u0}o(x), where
{u0}o(x) denotes the first element in the optimal control sequence starting at the
point x. This control sequence can generally not be calculated for all points, x, and
the optimization problem therefore has to be solved online when a new x is mea-
sured each sampling instance. The fact that the NMPC algorithm does not require
the computation of κN(x) ∀x ∈ X is one of the things which make NMPC so useful
[Rawlings and Mayne, 2012].

It should be noted that with an infinite control horizon and a deterministic problem
the control law, κN({xi}), could be determined offline as κN({xi}) = {ui} where
{ui} is the solution to O at x0. When the control horizon is chosen as a finite
value the control law will however differ from the open loop optimal control se-
quence. This is because new information is introduced at each step of the algorithm
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as the control horizon is expanded [Allgöwer et al., 2004]. Real problems will also
have disturbances, mismatches between model and target system and unmeasurable
states. This means that an open loop solution in general will not work for a real
system.

2.2.2 Stability and Convergence of Nominal System
The system with no disturbances, mismatches between model and target system
or unmeasurable states is called the nominal system. Even if this is not true for
a practical system the analysis of this system is still important since it makes it
easier to analyse the system. Satisfactory behaviour of the nominal system is also
necessary for our controller. If it cannot handle the simplified case it will never be
able to cope with the actual system [Grüne and Pannek, 2011].

The convergence problem can be divided into the case with infinite control horizon
and the one with a finite horizon. For the infinite horizon it is possible to calcu-
late the optimal control sequence offline using the dynamic programming principle
which means that the results of the NMPC algorithm can be verified. This is de-
scribed by [Grüne and Pannek, 2011]. Since the closed and open loop solutions
differ for finite control horizons the stability problem becomes much harder. In gen-
eral the controlled system is not stable, but in [Rawlings and Mayne, 2012], [Grüne
and Pannek, 2011] and [Ruan et al., 2014] a few ways to stabilize the system are
described. These methods are based on modifying VN to obtain a Lyapunov function
in a neighbourhood of the reference point [Rawlings and Mayne, 2012].

It is also not necessary to find an optimal solution to O each iteration to ensure
stability, which help with numerical calculations. As long as a feasible solution that
decreases the value function compared to the last iteration can be found for each
iteration the system will converge [Allgöwer et al., 2004].

2.2.3 Robustness
The robustness of a system is defined as how well it handles disturbances. Classic
control theory states that you need a closed-loop system to handle disturbances.
Since MPC samples the system each iteration it does use feedback which means
that it has a certain built in robustness. However, the optimization problem itself
is run open-loop, which might lead to unstable systems if constraints on the states
are present. Therefore it would be good for the optimization problem to also be a
closed loop problem, but this is very hard to implement practically [Allgöwer et al.,
2004]. Different methods to provide robust NMPCs are described in [Rawlings and
Mayne, 2012] and [Grüne and Pannek, 2011].

2.2.4 Using NMPC with an Observer
If all states of the system are not measurable they will need to be estimated by
an observer. For linear systems the observer and controller can be decoupled and
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designed separately without any loss in performance or stability. For nonlinear sys-
tems this is no longer the case, stability is only guaranteed for small observer errors
and in general nothing can be said about the degree of smallness [Allgöwer et al.,
2004]. Often a decoupled approach will still work for nonlinear systems and this is
what will be tried in this thesis.

2.3 Numerical Optimization

The main focus of optimization theory is finding the minimum of some function
under certain conditions and constraints. For general optimization problems with
arbitrary functions and constraints, no algorithm exists that can solve all problems
efficiently. Instead the problem needs to be restricted to a certain subgroup of prob-
lems that one particular method can handle. This is true for both symbolic and
numerical optimization.

One important subset of problems for optimization are problems defined on convex
sets or using convex functions. In convex optimization a local optimium is guaran-
teed to be a global minimizer. Unless the problem is strongly convex the solution is
not guaranteed to be unique however. The proof of this and more information about
optimization theory can be found in [Böiers, 2010]. This attribute makes convex
problems much easier and faster to solve. Even if a whole problem is not convex,
having convex constraints and using convex sets can make it possible to solve a
problem much faster.

One of the subclasses of optimization problems is the nonlinear programming
(NLP) problem described in [Wächter, 2009]. The problem is formulated as

min
x∈Rn

p(x) (2.4)

s.t. bL ≤ b(x)≤ bU

xL ≤ x≤ xU

where x denotes the optimization variables, p : Rn→R and b : Rn→Rm are arbitrary
discrete functions, and bL ∈ Rm, bU ∈ Rm, xL ∈ Rn and xU ∈ Rn are constant bounds.
One method to solve this kind of problem is presented in [Wächter, 2009] and uses
an interior point barrier method. The functions p and b are assumed to be at least
once continuously differentiable and are not necessarily convex. More background
on this method can be found in [Böiers, 2010].

Unless the problem is convex the solution that is found is not guaranteed to be a
global minimizer. The algorithm has tools to avoid maximum and saddle points, but
no guarantees are given [Wächter, 2009].
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2.4 The Unscented Kalman Filter

State estimation is the concept of reconstructing the states of a system from the mea-
sured signals and control inputs. This is done by using an observer. The observer
used in this thesis is an Unscented Kalman Filter (UKF), which is an observer for
nonlinear systems. The UKF is a modified version of the Kalman filter, whose al-
gorithm will be explained briefly before presenting the UKF framework.

2.4.1 The Kalman Filter
The Kalman Filter is a widely used algorithm for state estimation of non-
measureable states or states subject to noise. It utilizes mean and covariance of
the state to make an estimation of the true state value.

Consider the discrete system at time instant k, subject to process and measurement
noise

xk+1 = f (xk,vk,uk) (2.5)
yk = h(xk,nk)

where xk are the states to be estimated, uk are the input signals, yk are the observed
measurements, vk is the process noise and nk is the measurement noise. f and h
are discrete functions that are assumed to be known. The algorithm of the Kalman
filter is divided into two parts; prediction and correction. In the prediction step, the
estimate x̂ of the states and its covariance P from the previous time instant are used
to form the a priori estimate of the state x̂−, measurement ŷ− and covariance P− of
the state values at the next time instant

x̂−k = E[ f (x̂k−1,uk−1,vk−1)] (2.6)

ŷ−k = E[h(x̂−k ,nk)] (2.7)

P−k = E[e−k e−T
k ] (2.8)

where e−k = xk− x̂−k is the a priori estimation error. When new measurements are
sampled, the predicted estimates of the states and covariance are corrected in the
correction step according to

Pxk,yk = E[e−k ey
−T
k ] (2.9)

Pȳk,ȳk = E[ey
−
k ey

−T
k ] (2.10)

K = Pxk,yk P−1
ȳk,ȳk

(2.11)

x̂k = x̂−k +K(yk− ŷ−k ) (2.12)

Pk = P−k −KPȳk,ȳk KT (2.13)

where ey
−
k = y− ŷ−. The algorithm then iterates by using the current state and

covariance estimate from the correction step to form the a priori estimates in the
prediction step of the next time instant [Julier and Uhlmann, 2004].
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2.4.2 The Unscented Transform
The Kalman filter can not be applied directly to a nonlinear system since (2.6) -
(2.10) have no explicit expressions. Therefore the UKF uses an algorithm called
unscented transform (UT) to approximate how the mean and covariance of the esti-
mated states are transformed when f and h in (2.5) are nonlinear functions.

The general idea of the UT is to choose a set of points with a known mean and
covariance and apply the nonlinear function to each of them, see Figure 2.7. These
points are known as sigma points and the i:th sigma point is denoted Xi. The statis-
tical values of the transformed points are then calculated to form an approximation
of the nonlinearly transformed mean and covariance [Julier and Uhlmann, 2004].
Consider the random variables x and y (both with dimension L) which are related

Figure 2.7 The principle of the UT. The sigma points in a symmetric set with known mean
and covariance (left) are transformed nonlinearly and produce a new set of points (right). The
statistics of the new set of points is used to approximate the transformed mean and covariance
[Julier and Uhlmann, 2004].

through the nonlinear function y = g(x). Assume x has mean x̄ and covariance Px.
To calculate the statistical values of y we form 2L+1 sigma points. The choice of
sigma points comes in different variations. In this thesis they are chosen as described
in [Wan and Van der Merwe, 2000]. The sigma points are chosen symmetrically
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around the mean with corresponding weights Wi as

Xi =


x̄ i = 0
x̄+(

√
(L+λ )Px)i i = 1, ...,L

x̄− (
√
(L+λ )Px)i−L i = L+1, ...,2L

(2.14)

W m
0 =

λ

L+λ
(2.15)

W c
0 =

λ

L+λ
+(1−α

2 +β ) (2.16)

W m
i =W c

i =
1

2(L+λ )
i = 1, ...,2L (2.17)

λ = α
2(L+κ)−L (2.18)

where the parameter α determines the spread of the sigma points around the mean,
and is usually set to a small positive value [Wan and Van der Merwe, 2000]. The
parameter β is used to include prior knowledge of the distribution of x. β = 2 is for
example optimal for Gaussian distributions, see [Julier and Uhlmann, 2004]). The
parameter κ is a secondary, non-negative scaling parameter that is chosen to ensure
the semi positive definiteness of the covariance matrix. The default choice is κ = 0
[Alkaya, 2014]. The expression (

√
(L+λ )Px)i corresponds to the ith row of the

matrix square root.

Applying the nonlinear function to the sigma points yields

Yi = g(Xi) i = 0, ...,2L (2.19)

where Yi is the transformed sigma point. The mean ȳ and covariance Py of y are
then approximated by the weighted mean and covariance of the transformed sigma
points according to

ȳ≈
2L

∑
i=0

W m
i Yi (2.20)

Py ≈
2L

∑
i=0

W c
i (Yi− ȳ)(Yi− ȳ)T (2.21)

2.4.3 The UKF Algorithm
There are two common versions of the UKF algorithm; the augmented and the non-
augmented version [Fuming et al., 2009]. The non-augmented one can be used when
the process and measurement noise in (2.5) are considered additive, and has the
benefit of using less sigma points in its estimation than the augmented version. In
this thesis, the non-augmented version will be used. The algorithm presented below
is based on the non-augmented UKF presented in [Fuming et al., 2009].
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The UKF algorithm is initialized with

x̂0 = E[x0] (2.22)

P0 = E[(x0− x̂0)(x0− x̂0)
T ] (2.23)

where x̂0 is the initial estimate of xk and P0 is the initial state covariance.

After initialization, the algorithm is divided into three steps for each time instant
k ∈N. The first step is to calculate the sigma points. The estimate of the state vector,
x̂k−1, is used together with the covariance Pk−1 to calculate the sigma points Xi,k−1
according to (2.14). The corresponding weight to each sigma point is calculated
according to (2.15) - (2.17).

The second step of the algorithm is the prediction step of the UKF. The sigma points
are transformed by the nonlinear system. The resulting points are then used to obtain
the a priori predicted mean x̂−k and covariance P−k according to (2.20) and (2.21).
The process noise is incorporated into the predicted state covariance by adding the
process noise covariance matrix to the predicted state covariance.

The same procedure is done with the measurement function to obtain the a priori
predicted mean ŷ−k , covariance Pȳk,ȳk and cross-covariance Pxk,yk of the measure-
ment. The measurement noise is incorporated into the predicted measurement co-
variance by adding the measurement noise covariance matrix.

With the predicted covariance matrices, the Kalman filter gain K and the corrected
state covariance Pk are calculated according to (2.11) and (2.13). The third step of
the algorithm is performed when the measurement is available. Then the a priori
estimates x̂−k are corrected into x̂k as in (2.12). The three steps of the algorithm are
then repeated to produce estimates for the next time instant.

2.5 Observability in the Nonlinear Case

An important concept in state estimation is the observability of a system. A system
is defined in [Salau et al., 2014] as observable if for any initial state x0 and any final
time k f > 0,k f ∈ N, the initial state can be uniquely determined by knowledge of
the sequence of inputs {ui} and outputs{yi} for all k ∈ [0,k f ],k ∈ N.

Determining observability of a linear time-invariant system is straight-forward by
checking the rank of its observability matrix. However, in the nonlinear case it is
not as simple. Local observability for a nonlinear system can be proved formally
by applying Lie derivatives to the system according as described in [Hendrick and
Girard, 2010]. Proving observability using Lie derivatives can, however, easily be-
come complex for large systems, as in the case of this master thesis.

Another method suggested in [Salau et al., 2014] is linearisation of the system at
each discrete time instant and applying linear observability criterion. Observability
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will then be guaranteed along a specific sampled trajectory as long as the linear
observability criterion is satisfied in each time instant. The method is simple to
implement and was therefore planned to be used for observability analysis in this
thesis.

2.6 Disturbance Modelling

To cope with different disturbances to the system and model the kind of disturbance
and its magnitude need to be analysed. Disturbances can enter the system in dif-
ferent ways. Three different kinds of disturbances are described in [Rawlings and
Mayne, 2012]:

1. Measurement noise - Noise that enters the system through sensors and has
the form y = h(x) + v, where v is the added noise. The noise is generally
considered to be white noise with zero mean.

2. Process noise - Modelling uncertainties and noise inside the real process. The
system function has to be changed like x+ = f (x,u,θ) where θ represent
parameters that are unknown.

3. Additive process noise - differences between the process and the model that
can be described with an added noise variable, i.e. x+ = f (x,u)+w where w
is the noise.

Another possibility is to have a load disturbance that enters on the input of the
system. This can be defined as

4. Load disturbance - disturbance that enters on the input of the real system and
affects the update equation as x+ = f (x,u+d).

In this thesis, (1), (3) and (4) are considered where (1) is analysed compared to
measurements from the real plant and (3) and (4) are analysed compared to the
detailed model.

2.7 The Modelica and Optimica Languages

Modelica is an open source, object based, modelling language [Aronsson et al.,
2014]. It uses an hierarchical structure based on components which are defined
using sub-components and symbolical equations. The equations are interpreted
acausally which means that it makes no difference which order equations are de-
fined. Instead Modelica connects different components using connection equations
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and solve differential equations to calculate the dynamic behaviour of the model,
based on some initial condition and input. The language uses both a graphical and
a textual representation of the components which are linked so they always cor-
respond to each other. More information about the language specification can be
found in [Aronsson et al., 2014].

Modelica facilitates both building, simulation and transferring of models. Trans-
ferring is done using the Functional Mock-Up Interface (FMI) standard. This is a
language independent standard that allows the exchange of equation based models
between different tools and languages in the form of data packages called functional
mock-up units (FMU) [Blochwitz et al., 2011]. An XML file is used to define all
variables used in the model and then a file with C-code is used to define all the
equations.

Standard Modelica does not support terminology for optimization problems. To
facilitate this an extension to Modelica, called Optimica, has been introduced
[Åkesson, 2008]. This extention introduces concepts such as cost functions, free
variables and initial guesses and makes it possible to define large classes of op-
timization problems. A common concept is using previously designed Modelica
models and extend them with Optimica code to add optimization. This extension
is supported by the compiler JModelica.org developed at Modelon [Modelon AB,
2014].

In this project Modelica was used to create both a detailed model of the power
plant and an optimization model while Optimica was used to create the optimization
formulations in the optimization model.
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3.1 Delimitations

The optimization model of the start-up was initially divided into two separate mod-
els, corresponding to the first and second phase of the start-up described in section
2.1.1. Discussions with Vattenfall led to the decision that the model correspond-
ing to the first phase was to be used. The motivation was that the first phase had
the highest potential for optimization since it is longer than the second phase and
because oil is partly used as fuel which is more expensive than lignite.

It was also decided that the soft start should be the scenario to investigate. The
motivation was that it is a realistic scenario in the case of frequent shut-downs and
start-ups. The current initial values of the detailed model were also close to those of
a soft start.

The original plan was to have the detailed model working as the target system and
interface with it through an FMU in JModelica.org. However, due to the complexity
of the detailed model this was not possible. Attempting to instead interface with the
detailed model in Dymola, using Python, it was discovered that it was not possible to
simulate the detailed model iteratively. Hence it could not be used with the NMPC.
The UKF could however still be used offline on a pre-simulated start-up trajectory
of the detailed model.

3.2 Development Tools

The main tools that have been used are the open source program JModelica.org de-
veloped by Modelon [Modelon AB, 2014] and the programming language Python.
JModelica.org has support for the Optimica extension of Modelica as well as stan-
dard Modelica and importing and exporting FMUs. It has solvers for both simula-
tion and optimization and uses Python as a scripting language to interact with the
user. As well as a scripting language for JModelica, Python was used to create the
program structure and the UKF is implemented as a Python class. JModelica.org
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was used for optimization in the NMPC algorithm and for simulation of the opti-
mization model, imported as an FMU, in the UKF and NMPC.

JModelica.org uses the open source software IPOPT to solve optimization prob-
lems. IPOPT uses the algorithm described in Section 2.3 to solve the problem. To
convert the problem into the correct form JModelica.org uses the CasADi inter-
face [Andersson et al., 2011]. A method called direct collocation is used to convert
the continuous Modelica model into a discrete NLP problem. Direct collocation is
based around fitting a number of polynomials so that the function and derivative
values match at a number of points, called collocation points, and using these poly-
nomials to approximate the original system. The time space is divided into a certain
number of elements and an equal number of collocation points are put inside each
element. In the NMPC implementation the elements are chosen as one time step.
More collocation points means that the original system will be more closely ap-
proximated, but result in a larger NLP problem.

Modelling was done using the commercial program Dymola from Dassault Systems
[Dassault Systemes, 2015]. Dymola is a tool for creating and simulating Modelica
code. It has both a graphical and a textual interface that are connected so they always
match each other. In this project Dymolawas used to edit the optimization model to
suit the needs of this project and to run tests and simulations on the detailed model.
There is also a Python/Dymola interface that makes it possible to simulate a model
from Python using Dymola.

3.3 Modelling

3.3.1 Critical Components and Stress Constraints
The optimization model developed in [Runvik, 2014] needed to be changed to match
the detailed model better and to incorporate a new critical component. The previous
model included the separator wall as a critical component but in [Runvik, 2014]
this was considered not to be critical for the start up. The results in [Hübel et al.,
2014a], suggests that the outlet header of the reheater 2 (RH2) component might
be critical instead. Therefore the separator wall was removed from the model and
a header component similar to the superheater 4 header (SH4) was added, together
with a controllable valve that represent the IP-T bypass valve.

The specification from Vattenfall was that the critical components should be able
to withstand stress from 2000 cold starts. In order to meet this demand, Vattenfall
provided limits on admissible stress levels during start-up for the RH2 and SH4
headers, see Table 3.1. There are three limits for each header, where stresses above
the most conservative value will ensure that there is no lifetime consumption. The
middle value is the highest stress level on the components with the current start up
procedure in the power plant. The critical limit is where the components will hold
for 2000 start-ups.
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Minimum allowed stress SH4 header RH2 header
No fatigue -47.1 MPa -44.1 MPa
Current level -84 MPa -96.3 MPa
2000 cold starts -253.4 MPa -259.5 MPa

Table 3.1 Stress level limits on SH4 and RH2 headers.

After adding the RH2 header, it was shown in early offline optimizations that the
stress limit was active along the optimized trajectory, making it a well justified
addition to the model.

3.3.2 Model Inputs
Both a version with a new input added, that controlled the IP-T bypass valve, and
a version without this new input were tested. When the new input is not added the
control of the IP-T bypass valve is handled internally. When the input is added,
it can either control the IP-T bypass valve directly or control a set-point for a PI
controller in the same way as the HP-T bypass valve is controlled in the SH section.
The benefit of controlling a valve directly is that it removes some dynamics from
the system and should make it easier to control, but the version with a built in PI
controller is more similar to the control system in the real plant. For the finalized
model it was chosen to control both the IP-T and the HP-T bypass valves directly.

To match the inputs of the real plant the input on the gas side needed to be changed.
The input used to be flow of flue gas, but was changed to firing power. The mass
flow of the flue gas is kept constant at a rate of 316 kg/s and the relation be-
tween firing power PF and flue gas temperature Tf g is a simple quadratic function,
Tf g = 5431 ·PF

2−1253 ·PF +621. The quadratic relation was derived from a least
square fitting to the detailed model, performed by Moritz Hübel. The comparison
between the derived functions and trajectories from the detailed model is shown in
Figures 3.1 and 3.2. The derived function for flue gas temperature has its minimum
in 0.115 which means that for very low firing powers the function will have unphys-
ical behaviour and fit the detailed model poorly. Therefore a minimum constraint of
0.12 was introduced on the firing power to avoid approaching the minimum value.

The finalized optimization model with added RH section, direct valve control and
firing power input can be seen in Figure 3.3.

3.3.3 Model Validation and Fitting
The parameters of the updated optimization model were tuned to the detailed model.
The difference between the models was investigated using a reference soft start
of the detailed model. This was done by simulating the optimization model with
the input trajectories from the detailed model as inputs. The main differences were
the energy balance and pressure drops. The valve characteristics were also very
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Figure 3.1 A comparison between the flue gas flow of the detailed model and the approxi-
mation used in the optimization model.

different in the two models and the separator level in the simulation of the detailed
model was around 15.5 m while the set-point in the optimization model was 14 m.

There seemed to be more energy in total in the optimization model compared to the
detailed model. The reason for this was the simplified firing power conversion in
the optimization model and the fact that the spray attemperators are not modelled in
the optimization model. This was assumed to be handled by adding a disturbance
state to the firing power input.

In addition to the higher total energy, the distribution of energy in the boiler was
different. There was too much energy taken from the flue gas in the SH section and
too little in the evaporator leading to very high temperatures in the SH section. To
compensate for this in a simple way, the value of the coefficient of heat transfer
between the flue gas and the evaporator wall, al pha_gas_wall, was increased in the
optimization model. The result of this can be seen in Figures 3.4 and 3.5. Since the
mass flow is much higher in the evaporator the enthalpy difference, and therefore
temperature difference, is negligible there while the difference in the live steam
temperature is significant. The value of the heat transfer coefficient was chosen so
that the live steam temperatures between the models would fit as well as possible
resulting in increasing al pha_gas_wall from 195 to 600 W/m2K.

The pressure drops were also tuned in the optimization model. The difference in
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Figure 3.2 A comparison between the flue gas temperature of the detailed model, the
quadratic relation used in the linear model and a linear relation that was also considered.

pressure drops between components was analyzed by holding the LS and RS pres-
sure the same in both models. The results showed large differences in the pressure
drops and pressure to mass flow ratio, see Table 3.2. Since the pressure drop is flow
dependent in both models, the flow coefficients of the pressure drop components in
the optimization model where modified so that the quotient between pressure drop
and mass flow was the same as in the detailed model. As in [Runvik, 2014] the
pressure drop is evenly distributed over all components in the same section. When
measuring the pressures using the new flow coefficients in the optimization model,
the pressures in the models matched almost perfectly over the whole soft start ref-
erence simulation.

The difference in bypass valve dynamics was not possible to solve without making
larger modifications. In contrast to the optimization model, the detailed model has
density dependent valves which are controlled by an elaborate control system. Sim-
ilarly to the firing power, the valve differences were represented with disturbance
states. To make sure both models had the same initial RS and LS pressures and
temperatures with identical initial inputs, the flow coefficients of the bypass valves
were tuned. The flow coefficient was changed to 3 ·10−4 kg/sPa for the HP-T bypass
valve and 6 ·10−4 kg/sPa for the IP-T bypass valve.

During the start-up of the power plant, both models have a separator level set-point
at 14 m. Despite the set-point, the detailed model kept a level of 15.5 m during start-
up. The reason is that there is an overflow valve in the detailed model that keeps the

40



3.3 Modelling

SH3

RH2

SH4

RH1B

SH2

RH1A

SHS

SH1

evaporator

gasSink

p T

headerSH4

.
.

m
steamSource

headerWallSH4

Q=0

separa
tor

.

pump

mixingPoint

PI

bypassCooling

realExpression

.
.

m
coolingSource co

ol
in

g
M

ix

headerRH2

headerWallRH2

Q=0

T.m
gasSource

flueGas_m_flow_quad

integratorSHPressure

integratorFP

p

p h

reheatSink

6e3

pressureBoundary

integratorRHPressure

uFP

uSHPressure

uRHPressure

Figure 3.3 The optimization model used by the NMPC. The inputs (large blue arrows) are
rate of change of firing power and openings of the HP-T and IP-T bypass valves.

maximum level at 15.5 m. During the start-up the evaporator does not evaporate as
much steam as during regular operation which results in separator overflow. The
simplest way to represent this was to change the set-point in the optimization model
to 15.5 m which showed reasonable results. Not representing the overflow might
contribute to the higher energy content in the optimization model though. When the
overflow valve in the detailed model is activated the water will flow back to the feed
water tank which represents an energy loss in the separator.

3.3.4 Modifications for Optimization and UKF
Changes had to be made to keep the optimization model simple to optimize and
suitable to use with the UKF. These changes resulted in two different versions of
the model, one for the UKF and one for the NMPC.

For the UKF the thermodynamic states for the steam was changed back to enthalpy
and pressure as in [Andersson, 2013]. The reason was that all functions in the wa-
ter_poly package were explicit in pressure and enthalpy, and using density and in-
ternal energy resulted in the need to invert the functions. Inverting functions made
the initialization of the model difficult. Since each sigma point in the UKF requires
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Figure 3.4 Comparison of the evaporator steam temperature between the detailed model
(blue line) and the optimization model with al pha_gas_wall = 195 (magenta line) and 600
W/m2K (green line).

an initialization, the model worked better with pressure and enthalpy as states.

To make the model more optimization friendly the fast dynamics in the system
needed to be removed. The reason is that the collocation will become a very stiff
problem if fast dynamics are present. The fast dynamics were the PI controllers for
the bypass valves and the dynamics of the steam, which are considerably faster than
the temperature dynamics of the thick-walled metal components. Therefore the PI
controllers for the bypass valves were removed and the steam dynamics were ex-
changed for static relations in the optimization model used by the NMPC. However,
the steam dynamics were not exchanged in the UKF version of the optimization
model. The reason was that the static relations resulted in an equation system that
proved too difficult to solve in many sigma point initializations.

The models with and without dynamic steam were very similar. In steady state the
models were equal, but the static version had faster responses to changes in inputs
and also some fast dynamics in the dynamic version of the model were not present
in the static version. The results of the comparison can be seen in Figure 3.6. The
maximum difference between the models was 0.41% for the temperature and 4.13%
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Figure 3.5 Comparison of the LS temperature between the detailed model (blue line) and
the optimization model with al pha_gas_wall = 195 (magenta line) and 600 W/m2K (green
line).

for the pressure and the mean difference was 0.15% and 1.93% respectively.

Like the PI controllers for the bypass valves, the separator level control represents
another fast dynamic in the system. Ideally, the separator should be replaced by an
ideal component that separates the liquid and steam water and have an ideal con-
troller that controls the mass flow to keep the level constant. This was tested in the
end of the thesis work with a separator component developed by our supervisor at
Modelon, Stephane Velut. The mass flow required to keep the separator at a constant
level was derived explicitly and sent through a first order filter that removed any fast
dynamics before sending it as input to the feed water component. This way the PI
controller for the separator level could be removed. Due to the time constraints on
the project this modified version of the optimization model was not validated against
the detailed model and only limited experiments were run this setup.

A few other, minor, changes were made to the optimization model to make it more
optimization friendly. All differential equations were scaled so that both sides had a
magnitude close to one, making them numerically easier to solve. The cost function
was also divided into parts for each cost term that were then added together. A
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Section Model Pressure Drop Mass Flow Quotient (dP/φ )
Evaporator Detailed 2.37 ·106 Pa 888.0 kg/s 2.67 ·103

Optimization 1.47 ·106 Pa 883.0 kg/s 1.66 ·103

Superheater Detailed 1.64 ·104 Pa 59.0 kg/s 2.78 ·102

Optimization 1.11 ·106 Pa 111.9 kg/s 9.87 ·103

Reheater Detailed 9.00 ·103 Pa 61.7 kg/s 1.46 ·102

Optimization 2.39 ·105 Pa 116.7 kg/s 2.05 ·103

Table 3.2 Comparison between pressure drops and mass flows in the detailed and optimiza-
tion model. The values are extracted at the time where the mass flow is equal to the mean
mass flow in the detailed model during phase 1 of the start-up and all measurements for each
section are taken at the same time instance.

nominal value was then added to each part of the cost function so that they could
be scaled properly by the optimizer. Also, minimal and maximal values of -0.1 and
10 were added to the the valve openings. This was well outside the normal range of
operation so as not to change the solution, but still meant that the optimizer had a
smaller set of feasible points to search.
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Figure 3.6 Comparison of the LS temperature and pressure between the optimization
model with dynamic steam state (whole, magenta, line) and the one with static steam states
(dashed, blue, line). The input is a constant firing power ramp with a slope of 7 ·10−5 /s from
0 to 5000 s and a constant firing power after that. The valve openings are kept constant.

3.4 Implementation of the NMPC

The NMPC controller was implemented using Python, JModelica.org and a general
MPC class presented in [Axelsson, 2015]. It uses the optimization model with static
steam relations presented in Section 3.3 as its internal model.

The NMPC setup was tested on the nominal system to tune parameters and see if
the approach was feasible for the model. This was done by using the optimization
model as the target system. Later, measurement noise were added to the nominal
system to test the robustness of the controller.

The original plan was to run the NMPC with the detailed model as the target system
but as is outlined in Section 3.1 this was not possible.

3.4.1 The MPC Class
The MPC class that has been used in this project was developed in Python using
JModelica.org to solve the optimal control problem. It was developed in [Axelsson,
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2015]. The class provides methods to update the state of the internal optimization
model and perform one MPC step. It uses the built in IPOPT solver to solve the
optimization problem but provides features such as warm start of the optimization
each iteration. The warm start is performed by shifting the result array one step to
the left and setting the new last value equal to the current last value. This array is
used to initialize the next iteration of the MPC. It also provides support for soften-
ing constraints, setting the prediction horizon and extracting states from simulation
results.

The implementation is based on an initialization step and a loop where the MPC
algorithm is applied iteratively by first setting the states of the optimization model,
then doing one MPC calculation and sending the result into the system. The methods
for this and how they are to be used are described in [Axelsson, 2015].

3.4.2 Optimization Parameters
In offline optimization tests the updated optimization model proved very hard to
optimize. The offline optimizations were run for 5000 s and the optimizer was only
able to find a solution when using a prediction interval that was equal to, or almost
equal to, the whole runtime of the simulation. With this large prediction horizon the
number of degrees of freedom for the optimization problem needed to be minimized
in order for it to be solvable. This was done partly by choosing only ten elements for
the optimization making the element length 500 s. The number of collocation points
in each element were chosen to be three which is the least amount of points that still
provide an acceptable discretization. The minimum sample time of the NMPC is the
length of one element which means that a sample time of 500 s had to be chosen.

Only piecewise constant inputs were considered. This means that the inputs are held
constant over each sample interval which simplifies the optimization problem sig-
nificantly. A control horizon different from the prediction horizon was implemented
by adding blocking factors to the optimization problem. Blocking factors tell the op-
timizer that it should keep the input constant over a specified number of elements.
Therefore, to have a control horizon of n elements a list that has the length n, with
the first n− 1 elements being ones and the last element being the prediction hori-
zon minus n, should be used as blocking factors for the optimization problem. In
our experiments a slightly different list of [1,1,1,2,5] was used providing a slightly
smoother transition between the controlled elements and the rest of the prediction
horizon. The reason for using a control horizon of only 5 elements was to reduce
the degrees of freedom in the optimization problem further and that in an NMPC
application only the control signal for the first element will be used anyway.

3.4.3 Cost Function Selection
To make the optimization problem possible to solve some parts of the standard
problem needed to be simplified. In this thesis only quadratic cost functions were
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considered. This means that the stage cost function has the form

`(xi,ui) = (xi−xre f )
T A(xi−xre f )+ui

T Bui (3.1)

where A and B are symmetric matrices and xre f are the reference values for the
set-points that are used.

The A and B matrices were both chosen to be diagonal, with non-zero weights
only for the states that had a corresponding set-point. One exception to this was the
firing power where a weight was added to the integrated firing power input. This was
added to penalize large firing power values making the start-up more cost efficient.
Also, since the state is always positive the value was not squared since this distorts
the cost between low and high values.

The weight for each set-point were initially the same as in [Runvik, 2014], with the
addition of a weight for RS pressure because of the added IP-T bypass valve input
to the model. Offline optimizations with this setup resulted in two different optimal
solutions with different state values at the final time. Both solutions reached the set-
points, but one had about half the firing power and significantly smaller mass flows.
The state values were compared to the detailed model and the result with higher
firing power had state values that matched the detailed model better. To push the
optimizer into choosing this end result, the RS temperature was added as a new set-
point. The reason for choosing this value as set-point was that it is one of the states
that is controlled in the start-up of the real plant. Its value was also very different
in the two optimization results making it a good candidate to make sure that the
correct end result was reached. With the RS temperature there were four set-points
in the optimization problem, with only 3 degrees of freedom. Therefore all states for
which there are set-points cannot be controlled independently. The RS temperature
was therefore set to be the end value the optimizer reached previously so that all
set-points could still be reached.

3.4.4 Constraint Implementation
The values of the constraints were set to make sure that the stress constraints on
the real systems were not violated. Initial tests showed that the execution time was
much shorter using soft constraints rather than hard constraints. Soft constraints
mean that a large cost is added to the cost function when the solution to the opti-
mization problem violates the constraints. Soft constraints can be violated a bit but
the optimizer will push the system back into the feasible set.

During test runs with the optimization model as target system the solution violated
the constraints even using hard constraints. Therefore it was decided to set the con-
straints as soft constraints but keeping them very tight, knowing that they will likely
be violated slightly. In addition, model differences mean that the stresses might be
larger in the real process than in the optimization model.
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The chosen constraints were the no fatigue constraints in Table 3.1 which left a good
safety margin to the critical constraints for the power plant. The input constraints
were kept as hard constraints as that does not make the problem much harder to
solve.

3.4.5 Cost Function Evaluation
With the setup defined in Sections 3.4.2, 3.4.3 and 3.4.4 it was possible to solve
the optimization problem offline and for most of the NMPC iterations. The prob-
lem was, however, sensitive to parameter changes. To assess the impact of different
weights in the cost function a number of offline optimizations were performed.

The results were mostly consistent with what would be expected from theory. It
is possible to push the optimized trajectory in different ways by manipulating the
weight on the appropriate set-point. A quantitative result can be found in Table 3.3.
The experiment was done before the additional set-point on RS temperature was
added and the optimizations where the lower firing power solution was chosen can
be easily seen as the firing power integral is almost half that of the other experi-
ments, i.e., all with a firing power integral below 1000.

The cost terms show what impact the weights actually have and should be viewed in
comparison with each other and with other experiments. Since these terms are the
weight multiplied with the deviation from the set-points it shows how the optimality
of the corresponding trajectory changes between experiments. It can be used to
get a quantitative figure of the impact of different weights on the solution. If for
example the corresponding weight stays the same and the cost term increases the
new solution is less optimal in that its mean value is further away from the set-
points. If the weight is increased however, and the cost term is increased by a smaller
factor, the new solution is more optimal.

There were big differences in the time it took to reach the set-points between the
different setups. Among the setups that reached the higher firing power the dif-
ference between the longest and the shortest one was about 29%. The difference in
firing power for these setups was about 15%. In addition to this experiment a weight
of 108 was tried on the inputs instead of 106, but this had almost no affect on the
trajectory.
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Weights Mean Costs Set-points Reached
FP LST LSP RSP FP LST LSP RSP FP integral At Time
1 0.01 0.01 0.1 0.3 29.6 10.0 1.8 1739 4000 s
1 0.01 0.01 10 0.3 30.9 10.2 155.3 1671 4250 s
1 0.01 1 0.1 0.3 30.8 971.1 1.8 1666 4500 s
1 0.01 1 10 0.3 31.5 974.9 167.7 1592 5000 s
1 0.1 0.01 0.1 0.4 283.7 10.7 3.8 1838 3500 s
1 0.1 0.01 10 0.3 288.2 12.7 174.9 1758 4500 s
1 0.1 1 0.1 - - - - - Diverged
1 0.1 1 10 0.3 303.1 974.4 173.5 1689 4000 s

100 0.01 0.01 0.1 19.8 29.2 9.7 1.8 994 2500 s
100 0.01 0.01 10 19.8 30.3 9.8 154.6 993 2500 s
100 0.01 1 0.1 19.8 29.6 970.1 2.0 992 3500 s
100 0.01 1 10 - - - - - Diverged
100 0.1 0.01 0.1 35.8 284.0 10.7 3.5 1809 3500 s
100 0.1 0.01 10 33.4 291.2 13.1 171.9 1684 3750 s
100 0.1 1 0.1 33.3 301.2 973.1 1.9 1683 3750 s
100 0.1 1 10 32.9 303.9 974.4 172.9 1664 4000 s

0 0.01 0.01 0.1 0 29.0 10.5 1.9 1763 3750 s
1 1 0.01 0.1 0.4 2798.5 18.1 16.5 1787 3500 s

Table 3.3 Offline optimization of the optimization model. All input weights are kept con-
stant at 106. FP, LST, LSP and RSP are firing power, LS temperature, LS pressure and RS
pressure. Weights stand for weights in the cost function. The mean costs are the mean value
of the corresponding term in ` over all elements. The FP integral is the integral of the firing
power over the interval [0, 5000].

3.4.6 Initiation
In the same way as in [Runvik, 2014] the target system was simulated once to get rid
of transients and then the internal model of the MPC class was initialized using the
state of the simulated model. However, instead of using a simulation with ramped
input signals as initial guess to the NMPC, the result of an offline optimization
was used. This was done because the optimization problem was much harder to
solve with the new constraints. When using an initial trajectory close to the correct
optimal solution the optimization was considerably easier.

3.5 Implementation of the UKF

As JModelica.org is interfaced through a Python shell, and the MPC class was im-
plemented in Python, it was decided to implement the UKF as a Python class. The
algorithm used by the UKF class is described in section 2.4.3. The nonlinear model
the UKF uses for predictions is represented as an FMU, where a discrete time step
corresponds to simulating the FMU for one sample interval. Each sigma point cor-
responds to one set of values for the state variables in the model. These are set as
initial values in the FMU before each simulation. The FMU is then reset to initial
conditions before setting a new sigma point.

49



Chapter 3. Method

The noise in the UKF implementation was assumed to be additive, corresponding
to the third noise representation in Section 2.6, and also zero-mean. This is a simple
but often found assumption in UKF implementations [Yuanxin et al., 2005]. The
estimated covariance of the noise is set through input matrices.

The implementation consists of three classes. The class UKF is the main class used
for producing state estimates, with methods for prediction and measurement update
as described in Section 2.4.3. The class UKFOptions is a class containing design
parameter values for the UKF. Lastly, the class ScaledVariable is a class rep-
resenting a variable, which contains information such as name, current value and
nominal value.

3.5.1 The UKF Class
A UKF object is created by calling the constructor:

#Create a UKF -object:
ukf = UKF(model , x_0 , measurements , h, options)

The input arguments to the constructor are:

• model: A reference to an FMUModel-object, representing the observer model.

• x_0: A dictionary with strings of the state names as keys and initial values of
each state as values.

• measurements: A list of strings of the names of the variables in the model
that are considered measurable.

• h: The sampling interval in seconds.

• options: A reference to an object of the UKFOptions-class.

The main public methods of the UKF-class are predict and update. The method
predict corresponds to the prediction step described in Section 2.4.3, and is called
on the UKF-object ukf as:

#Make a prediction:
ukf.predict(u, known_values)

The input arguments to predict are:

• u: The input object to the simulation, which should follow the structure de-
fined in the FMI-standard for simulation of FMU’s. This should be a tuple
where the first element is a list of strings of the input names, and the second
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element is a matrix with input values. The first column is the time vector, and
the following columns are corresponding input values at each time instant. It
is also possible to send in the input function generated by the MPC class from
[Axelsson, 2015].

• known_values: A dictionary whose keys are strings of the names of states
which are considered known (i.e are not estimated by the UKF), and whose
values are the value of each known state.

When measurements from the process are available, the method update is called to
produce the corrected state estimates according to (2.12):

#Make a correction and retrieve the state estimates:
x = ukf.update(y)

The input argument and output from update are;

• y: A dictionary whose keys are strings of the measurement names and whose
values are the measurement values.

• x: A dictionary whose keys are strings of the state names and whose values
are the current estimations.

In addition to predict and update there are the public methods get_options and
update_options to retrive a copy of and set new parameter values for the internal
UKFOptions object respectively.

In addition to its public methods, the UKF-class has the following two private meth-
ods:

• _calc_weights: Calculates the sigma point weights according to (2.15) -
(2.17).

• _calc_sigma: Calculates the sigma points around the current state estimate
according to (2.14).

3.5.2 The UKFOptions Class
The UKFOptions-class extends the JModelica.org class OptionBase [Python API
Docs, Common Folder] and is used for storage of the sigma weight parameters α,β
and κ and the covariance matrices P0,Pv and Pn described in Section 2.4.3. It stores
these values in a dictionary, and to set and retrieve these parameters the following
string keys are referred to:
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• ’alpha’: Key for a float value corresponding to α .

• ’beta’: Key for a float value corresponding to β .

• ’kappa’: Key for a float value corresponding to κ .

• ’P_0’: Key for a dictionary corresponding to P0.

• ’P_v’: Key for a dictionary corresponding to Pv.

• ’P_n’: Key for a dictionary corresponding to Pn.

The covariance matrices are represented as dictionaries, where the keys are strings
of the state or measurement names, whose corresponding values are the covariance
values. The representation assumes that the covariance matrices are diagonal. For
instance, in the case of two states called x1 and x2 subject to process noise with
variance 1 and 10 respectively, Pv would be represented as:

#Create a process noise covariance matrix
represented by a dictionary

P_v = {’x1’:1, ’x2’:10}

3.5.3 The ScaledVariable Class
The range and magnitude of the variable values in the power plant varies a lot.
Handling values of very different scale can be numerically unsafe and lead to
poor results. One example is the calculation of the matrix square root in (2.14),
which in the implementation is done by a Cholesky decomposition of the covari-
ance matrix. Having values that differ in several orders of magnitude will make
the matrix ill-conditioned, which risks making the Cholesky decompositon break
down [Yanagisawa et al., 2014]. This motivated the implementation of the class
ScaledVariable.

The class ScaledVariable represents a state or measured variable, and holds a
string containing the name of the variable, the actual value of the variable and the
nominal value of the variable. The class is used internally in the UKF class to use
scaled values in all computations. The values are scaled back to their original value
when simulating in JModelica.org and when returning values to the user.

The following public methods are available in the ScaledVariable class:

• get_name: Returns a string with the name of the variable.

• set_actual_value: Set the value of the variable using an unscaled value.

• set_scaled_value: Set the value of the variable using a scaled value.
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• get_scaled_value: Returns the scaled value of the variable.

• get_actual_value: Returns the unscaled value of the variable.

• get_nominal_value: Returns the nominal value of the variable.

3.5.4 Running the UKF in JModelica.org
In this section an example of using the UKF-class for state estimation with models
represented as FMUModel-object is presented. The model used by the UKF in this
example is assumed to have two states called x1 and x2, which are to be estimated
by measuring x1. The model also has the input u.

First the Modelica-models corresponding to the actual process and the observer
model are compiled and loaded as FMUModel-objects using the JModelica.org func-
tions compile_fmu and load_fmu;

from pymodelica import compile_fmu
from pyfmi import load_fmu

#Compile process and observer model as FMU’s
process_fmu = compile_fmu(’Process ’, ’process.mo’,

separate_process = True)
obsModel_fmu = compile_fmu(’ObserverModel ’,

’observerModel.mo’, separate_process = True)

#Load process and observer model as FMUModel -objects
process = load_fmu(process)
obsModel = load_fmu(observer_fmu)

Then the parameters for the UKF are defined, and a UKF-object is created:

#Create dictionary for initial state estimate
x_0 = {’x1’:0.0, ’x2’: 0.5}

#Create a list of which variables are measured
measurements = [’x1’]

#Define the sampling interval (in seconds)
h = 0.1

#Create a UKFOptions -object , and assign parameters
opt = UKFOptions ()
opt[’P_0’] = {’x1’: 1.0, ’x2’: 1.0}
opt[’P_v’] = {’x1’: 1e-3, ’x2’: 1e-3}
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opt[’P_n’] = {’x1’: 1e-1}
opt[’alpha ’] = 1e-3
opt[’beta’] = 2.0
opt[’kappa ’] = 0.0

#Create a UKF -object with the defined parameters
ukf = UKF(obsModel , x_0 , measurements , h, opt)

With the UKF-object available, it can be used together with the FMU representing
the process to estimate the states x1 and x2. First a prediction for the next sample
instant is performed:

#Define input to the system.
import numpy as N
t = N.array ([0.0 , 0.005])
u = N.array ([1.0 , 1.1])
u_traj = N.transpose(N.vstack ((t,u))
input_object = (’u’, u_traj)

#No states are considered known , so send an empty
dictionary

known_values = {}

#Make a prediction
ukf.predict(input_object , known_values)

Then the process model is simulated and measurements are extracted. The measure-
ments are then used to perform a measurement update, and the state estimates are
retrieved:

#Simulate the process FMU
result = process.simulate(start_time = 0.0,

final_time = h, input = input_object)

#Retrieve the last value (index -1 in Python) of the
measured variable from the simulation result.

y = {}
for meas in measurements:

y[meas] = result[meas ][-1]

#Send the dictionary containing the measurement to
the ukf to retrieve the estimation.

x = ukf.update(y)
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This framework can then be iterated to simulate the sampling of a real process,
where the UKF is producing state estimates at each sample.

3.5.5 Validation of the UKF Implementation
The correctness of the implementation of the UKF class was verified by using it
to reproduce the results of the UKF state estimation of the Van-Der-Pol-oscillator
(VDP) scenarios described in [Rambabu et al., 2008]. In [Rambabu et al., 2008]
the performance of an extended Kalman filter (EKF) and UKF are compared when
estimating the states of the normal and reverse-time VDP, which are nonlinear pro-
cesses with a stable and an unstable limit cycle respectively. The scenarios were
chosen for comparison because the VDP-model is easy to overview with its two
states, simplifying debugging of the UKF implementation.

The normal VDP-model is defined as

ẋ1 = x2 (3.2)

ẋ2 = µ(1− x1
2)x2− x1 (3.3)

y = [x1,x2]
T (3.4)

and in reverse-time as

ẋ1 =−x2 (3.5)

ẋ2 =−µ(1− x1
2)x2 + x1 (3.6)

y = [x1,x2]
T (3.7)

where x1 and x2 are the states, µ is a constant parameter and y is the measurement
signal. Both states are directly measured in both models.

The tests were conducted with the VDP-models and compared to the corresponding
results in [Rambabu et al., 2008]. The processes were subject to additive Gaussian
zero-mean uncorrelated process and measurement noise, all with variance 10−3. The
sampling interval was 0.1 s in both tests. The scenario with the normal VDP model
is testing the performance of the UKF when there is a model difference between the
process and the model used by the UKF, in this case a change in the parameter µ .
The setup of the test scenario with the normal VDP is presented in Table 3.4.

The result of the state estimation of the normal VDP model from [Rambabu et al.,
2008] and the corresponding result with the UKF-implementation from this thesis
is presented in Figure 3.7. A comparison of the errors in amplitude and phase are
presented in Figure 3.8. The performance of the implemented UKF is very similar
to the results from [Rambabu et al., 2008]. Since the seed for the random generator
used in [Rambabu et al., 2008] was not available, it is not possible to reproduce
exactly the same results, which explains the small differences that can be seen.
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Normal VDP test

Initial state values [x1,x2] = [0.5,0]
Initial state estimates [x̂1, x̂2] = [5,−1]
UKF model parameter µ = 0.5
Process model parameter µ = 0.2
Initial estimated state covariance P0 =

(
1 0
0 1

)
Processs noise covariance Pv =

(
10−3 0

0 10−3

)
Measurement noise covariance Pn =

(
10−3 0

0 10−3

)
Table 3.4 Test setup for the first VDP test.

Reverse-time VDP test

Initial state values [x1,x2] = [1.4,0]
Initial state estimates [x̂1, x̂2] = [0,5]
UKF model parameter µ = 0.2
Process model parameter µ = 0.2
Initial estimated state covariance P0 =

(
10−2 0

0 10−2

)
Processs noise covariance Pv =

(
10−3 0

0 10−3

)
Measurement noise covariance Pn =

(
1 0
0 1

)
Table 3.5 Test setup for the second VDP test.

The second comparison was done with the reverse-time VDP, in a scenario where
the initial state estimates and covariance matrices are chosen poorly. The setup of
the test scenario with the reverse-time VDP is presented in Table 3.5.

The comparison of the reverse-time VDP scenario is presented in Figure 3.9. It
can be seen that the UKF estimates in both results are quite similar. Also here,
the difference in generated noise is the probable explanation to the differences that
can be seen. Additionally, since the process is in an unstable limit cycle it is very
sensitive to perturbations, which explains why there are differences in the true state
values of the process in the results.
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Figure 3.7 Comparison of the estimation results for the normal VDP model obtained in
[Rambabu et al., 2008] (top two plots) and with the UKF-implementation in this thesis (bot-
tom two plots).

57



Chapter 3. Method

Figure 3.8 Comparison of the estimation errors in polar coordinates for the normal VDP
model obtained in [Rambabu et al., 2008] (top two plots) and with the UKF-implementation
in this thesis (bottom two plots).
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Figure 3.9 Comparison of the estimation results for the reverse-time VDP model obtained
in [Rambabu et al., 2008] (top two plots) and with the UKF-implementation in this thesis
(bottom two plots).
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3.6 Disturbance Estimation

3.6.1 Disturbance States
Process disturbances represents the deviations between the optimization model and
the detailed model. Therefore, the disturbance modelling was done in parallel to
the model validation. In the model validation in Section 3.3.3 it was concluded that
the valve dynamics were different in the models. It was also concluded that the
overall energy in the optimization model was generally higher. A way to model
these differences in the models is to assume load disturbances on the inputs to the
model, i.e, the fourth noise representation in Section 2.6.

The load disturbances chosen for the inputs of the optimization model were of the
form

ud = uin +d (3.8)

ḋ = 0 (3.9)

where ud is the disturbed input signal, uin is the undisturbed signal and d is a con-
stant additive disturbance. The disturbances become additional states that the UKF
estimates in order to compensate for model differences.

In addition to the inputs there was an uncertainty in the value of the heat transfer
coefficient on the flue gas side of the evaporator, al pha_gas_wall. Therefore a con-
stant disturbance state was added to the parameter in the model for some of the
experiments.

3.6.2 Process Noise
The UKF-implementation assumes process noise on each state that is additive, un-
correlated and of zero-mean. The UKF needs an estimate of the variance of that
process noise. This is regarded as one of the design parameters for the UKF, and
will affect both the spread of the sigma points and also the gain of the measurement
update for each state.

Because of the complexity of the model, suitable process noise variance values were
determined systematically. In order to get values that would be in the proper magni-
tude, each state trajectory was compared between the detailed model and the opti-
mization model during a reference soft start. The mean-square-error (MSE) of each
compared state trajectory was used as the value for the standard deviation of the
assumed process noise. The three input disturbance states and the integral error of
the PI controller controlling the separator level had no equivalents in the detailed
model, and so these values were chosen by trial and error. The MSE value used as
estimate for the standard deviation of the process noise for each state is presented
in Table 3.6
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State Estimated Process Noise Standard Deviation
RH1A Wall Temperature 37 K
RH1A Enthalpy 0.081 MJ/Kg
RH1A Pressure 0.094 bar
RH1B Wall Temperature 47 K
RH1B Enthalpy 0.11 MJ/Kg
RH1B Pressure 0.069 bar
RH2 Wall Temperature 33 K
RH2 Enthalpy 0.074 MJ/Kg
RH2 Pressure 0.048 bar
SHS Wall Temperature 27 K
SHS Enthalpy 0.13 MJ/Kg
SHS Pressure 0.20 bar
SH1 Wall Temperature 25 K
SH1 Enthalpy 0.12 MJ/Kg
SH1 Pressure 0.19 bar
SH2 Wall Temperature 36 K
SH2 Enthalpy 0.10 MJ/Kg
SH2 Pressure 0.16 bar
SH3 Wall Temperature 25 K
SH3 Enthalpy 0.068 MJ/Kg
SH3 Pressure 0.15 bar
SH4 Wall Temperature 13 K
SH4 Enthalpy 0.035 MJ/Kg
SH4 Pressure 0.14 bar
Header SH4 Wall Temperature (Center) 15 K
Header SH4 Enthalpy 0.035 MJ/Kg
Header SH4 Pressure 0.14 bar
Header RH2 Wall Temperature (Center) 32 K
Header RH2 Enthalpy 0.077 MJ/Kg
Header RH2 Pressure 0.034 bar
Evaporator Wall Temperature 22 K
Evaporator Enthalpy 0.085 MJ/Kg
Evaporator Pressure 2.0 bar
Level-Controller Integral Error 10
Separator Mixture Enthalpy 0.015 MJ/Kg
Separator Mixture Pressure 0.20 bar
Firing Power Disturbance 0.01
HP-Valve Opening Disturbance 0.01
IP-Valve Opening Disturbance 0.01

Table 3.6 The MSE of each state in a comparison between the optimization model and the
detailed model during a reference soft start. The MSE is used as an estimate of the standard
deviation of the process noise. The values for the level-controller integral error and the dis-
turbance states could not be compared between the models, and were chosen through trial
and error.
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3.6.3 Measurement noise
There is no measurement noise in the signals retrieved from the detailed model. To
make the setup more realistic and to make it more likely to work on the real plant,
artificial measurement noise can be added. Since there is no information on which
kind of noise there is in the real plant, zero mean, Gaussian, noise was assumed.
To determine the standard deviation of the noise, real measurements from the plant
during a start-up were studied. This approach was problematic since the data from
the plant uses a dead-band that holds the output constant as long as it stays inside
a predefined interval. This means that standard techniques using frequency analysis
cannot be used since the shape of the signal destroys the frequency of the original
measurement. The studied signals were however constant for large periods of time
which means that all high frequency white noise must have a peak to peak amplitude
smaller than the dead-band. The assumption is therefore that the standard deviation
of the measurement noise is roughly one fourth of the dead-band, meaning that
about 96 % of the noise values will be inside the dead-band. A typical measurement
is provided in Figure 3.10 to show how the data looks. The dead bands are clearly
visible, note the time scale.
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Figure 3.10 A measurement signal from the power plant.

The data that Vattenfall provided did not have measurements for all states that are
assumed measureable in the detailed model. This meant that some noise levels have
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3.7 Observability analysis

Measurement Signal Dead Band Amplitude Part of mean
Live Steam Temperature 3.2 ◦C 0.81 %
Separator Steam Temperature 2.2 ◦C 0.75 %
RH1 Outflow Steam Temperature 2.1 ◦C 0.54 %
SH1 Outflow Steam Temperature 2.1 ◦C 0.63 %
SH2 Outflow Steam Temperature 2.1 ◦C 0.57 %
Live Steam Pressure 0.04 bar 0.04 %
Separator Steam Pressure 0.04 bar 0.03 %
HP Safety Valve Wall Temperature 3.2 ◦C 0.85 %

Table 3.7 Dead band peak to peak amplitudes for measurement signals from the real plant.
Also includes values for how many percent of the mean value the dead band is for each signal.

to be assumed from similar measurements. The measurements that have been anal-
ysed and their dead band amplitudes are presented in Table 3.7. All the noise values
in the table have values that are smaller than 1 % of the mean value of the mea-
surement. Temperatures have values between 0.5 and 1 % while pressures are more
precise with values below 0.05 %.

3.7 Observability analysis

3.7.1 Linearization Method
In order to choose suitable measurement signals from the power plant model, an
observability analysis had to be done. The analysis was to be done according to
the method for observability analysis described in Section 2.5. Therefore a script
for linearizing the power plant model using JModelica.org and performing a linear
observability analysis at each sample instant was developed.

The linearization was done with the functions linearize_dae_with_simresult
and linear_dae_to_ode, which are part of the JModelica.org Model Interface
(JMI) library [Modelon AB, 2014]. linearize_dae_with_simresult takes an
object representing the model and linearizes it around a certain time instant using
simulation results. Since the model is usually represented as a system of nonlinear
differential algebraic equations (DAE), the function returns matrices corresponding
to a linearizied DAE. Using the function linear_dae_to_ode, the linear DAE can
be transformed to a linear system of ordinary differential equations (ODE), which
is the desired form for performing a linear observability analysis.

Initial testing of the observability script on the VDP model (see (3.2)-(3.3)) looked
promising, and the script flagged observability or non-observability in the correct
cases. However, when testing the script on the optimization model the obtained
observability matrix was very ill-conditioned, leading to large numerical errors and

63



Chapter 3. Method

incorrect rank computations. Since correct rank computations are essential to get a
correct observability analysis, the method was not reliable.

3.7.2 Steady-State Estimation Test
Another test was developed to analyze observability, where the UKF was used to
estimate all states of the model in steady-state, when using a given set of measure-
ment signals. The reasoning was that when using the same model both as process
and observer model, but with an initial steady-state offset, that if the UKF could
manage to make all estimates converge using the given measurements, then this
would indicate observability.

Measurement signals were chosen from a set of variables that were deemed realistic
measurements by Vattenfall. The states to be estimated in the optimization model
used by the UKF are pressures, enthalpies, mean wall temperatures of the heat ex-
changers and the integral error of the PI controller controlling the separator water
level. Additionally, the center-most nodal temperature in the walls of the headers
are also considered states in the model. Pressures were considered realistic mea-
surements, and so these states could be measured directly. Since the thermal stress
in the headers are monitored in the real power plant, the wall temperatures of the
headers were also considered directly measurable. Steam temperatures were also re-
alistic measurements, and these measurements were chosen since they would relate
strongly to the steam enthalpy and also the wall temperature of the heat exchangers.
The water level in the separator was chosen as a measurement to relate to the inte-
gral error in the PI controller. The final list of chosen measurements is presented in
Table 3.8.

The measurement signals listed in Table 3.8 were used in an observability test,
where both the UKF and process model were simulated to steady-state before start-
ing the estimation. The initial offset between the states in the models was due to
setting different values of the constant input disturbance states in the process. The
firing power had an added offset of 0.01, and the valves had an added offset of
0.05 each. The estimation then proceeded with the same constant input values for
firing power (0.15), HP-valve opening (0.1) and IP-valve opening (0.2). Measure-

Final Measurements:

Component Measured Signals
Evaporator Steam pressure and temperature
Separator Steam/water-mix pressure and temperature, liquid water level
SHS, SH1-SH4 Steam pressure and temperature
RH1A, RH1B, RH2 Steam pressure and temperature
SH4 Header Steam pressure and temperature, wall temperature at center
RH2 Header Steam pressure and temperature, wall temperature at center

Table 3.8 The measurement signals chosen from the observability analysis.
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3.8 Demonstrator Implementation

ment noise was added to the measured signals, and the sampling interval was 100
s. The results for all state estimates are presented in Table A.1 in the appendix. The
estimation errors are presented relative to the true state value according to:

True value−Estimation
True value

(3.10)

When comparing the initial and final percentage errors in Table A.1 it is apparent
that all errors have declined drastically during the estimation. The results from the
steady-state test indicated that the chosen measurement signals would provide ob-
servability for the optimization model, and so the measurement set in Table 3.8 was
used in the experiments.

3.8 Demonstrator Implementation

The aim of the thesis is to run the NMPC and UKF together in a demonstrator.
The flow of data in the demonstrator and in which way the models are used is
described in Figure 3.11. One instance of the optimization model is used by the
UKF to estimate the states with measurements taken from the target system. The
estimated states are used to initialize the model the optimizer in the NMPC uses to
solve the optimization problem, O. As is described in Section 2.2.1 the first value
in {ui}o is then sent into the target system. It is also sent to the UKF class for use
in its prediction. The NMPC and UKF does not have to have the same sampling
period. It is possible for the UKF to sample the target system more frequently than
the NMPC solves O. The NMPC sampling period does however need to be an even
multiple of the UKF sampling time.
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Figure 3.11 Flowchart of the data flow in the demonstrator.

3.8.1 Python Implementation
Firstly the UKF is instantiated according to Section 2.4.3 and the NMPC is in-
stantiated in the same way as in [Axelsson, 2015]. Both models are initialized by
simulating them to a steady state and the inital trajectory of the NMPC is set to the
result of an offline optimization. The sampling time of the NMPC, h_MPC, and of
the UKF, h_UKF, are defined separately.

The main control loop of the demonstrator is presented below. Since the NMPC
and UKF uses two different version of the optimization model with the UKF having
more states than the NMPC they have different state vectors, x_MPC and x_UKF.
Before the loop, x_MPC is initialized to have the same values as the optimization
model. The states in x_MPC have names that start with _start_, which comes from
using the compilation option state_initial_equations when the optimization
problem object is created. This means that when getting the actual state names the
first seven letters have to be removed, which in Python code translates to: state =
_start_state[7:].
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#Begin the main loop of the demonstrator
for i in range(number_samp_tot):

# Update the state and compute the optimal input
# for the next sample period
MPC_object.update_state(x_MPC)
u_k = MPC_object.sample ()

for j in range(h_MPC/h_UKF):
ukf.predict(u_k , known_values)

# Simulate the model with the optimized
# control inputs
tStart = i*h_MPC + j*h_UKF

sim_res = process.simulate(start_time =
tStart , final_time = tStart + h_UKF ,
options = sim_opt , input = u_k)

# Extract measurements
for meas in measurements:

y[meas] = sim_res[meas ][-1] +
Random.gauss(0, N.sqrt(P_n[meas]))

# Update with measurements and retrieve
# estimates
x_UKF = ukf.update(y)

for name in known_values:
known_values[name] = sim_res[name ][-1]

# After UKF loop , update NMPC state start values
for state in x_MPC:

if state [7:] in known_values:
x_MPC[state] = known_values[state [7:]]

else:
x_MPC[state] = x_UKF[state [7:]]
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4
Experiment Setups

The experiments were chosen to test the performance of the NMPC and UKF both
individually and also together as a demonstrator. Since the detailed model was not
available for control purposes, the demonstrator was instead tested on the optimiza-
tion model. Four main categories of experiments were defined:

• UKF estimation of the optimization model.

• UKF estimation of the detailed model.

• NMPC control of the optimization model.

• Demonstrator run on the optimization model.

The set of additive process noise assumed by the UKF in experiments with the
detailed model was the set that was presented in Table 3.6. The corresponding set
used for the optimization model experiments is presented in Table 4.1. The values in
the experiments with the optimization model were chosen generally lower because
of the greater similarity between the process and the model used by the UKF in
those scenarios.

The UKF assumed the same variance of the measurement noise as the actual noise
that was applied to the measurement signals. From the measurement noise analy-
sis in Section 3.6.3, a set of zero-mean Gaussian noise distributions was defined
for each type of measurement signal. The measurement noise characteristics are
presented in Table 4.2.

The set of parameters for the UKF used in the experiments is presented in Table 4.3.
The values for β and κ were chosen using the default values defined in Section 2.4.2
and α was chosen to get a suitable spread of the sigma points. The set of parameters
used by the NMPC is presented in Table 4.4. The reasons for choosing these values
for the parameters are described in Section 3.4.2.
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State Type Process Noise Standard Deviation
Wall Temperatures 1K
SH/Evaporator/Separator Enthalpies 0.001 MJ/Kg
SH/Evaporator/Separator Pressures 0.01 bar
RH Enthalpies 0.01 MJ/Kg
RH Pressures 1.0 bar
Disturbance States 0. 001
Level-Controller Integral Error 10

Table 4.1 Standard deviations of the assumed process noise used in estimation experiments
with the optimization model.

Measurement Type Measurement Noise Standard Deviation
Temperatures 0.75 K
Pressures 0.01 bar
Separator Water Level 5 cm

Table 4.2 Measurement noise covariances used in all estimations.

Parameter Value
α 0.1
β 2
κ 0

Table 4.3 Standard set of parameters used by the UKF during experiments.

The set-points for the LS and RS pressure and temperature were chosen from a
reference soft start done with the detailed model. The set-points represent the end
of the first phase of the start-up. The initial values were chosen as the steady-state
values of the optimization model with the firing power 0.15, the HP-valve opening
0.1 and the IP-valve opening 0.2, which are the same initial inputs as in the detailed
model. The set-points and initial values are presented in Table 4.5 and were used in
all experiments with the NMPC.
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Parameter Value
Sampling Interval 500 s
Number of Collocation Points per Sample 3
Prediction Horizon 5000 s
Blocking Factors [1,1,1,2,5]
Constraint Violation Cost 104

Noise Seed 1

Table 4.4 Standard set of parameters used by the NMPC during experiments.

Variable Initial Value Set-point
LS Pressure 10.6 bar 93 bar
LS Temperature 512 K 633 K
RS Pressure 2.1 bar 15 bar
RS Temperature 517 K 693 K

Table 4.5 Set-points used by the NMPC during experiments.

4.1 UKF Estimation of Optimization Model

In these experiments the performance of the UKF estimation is tested when the opti-
mization model is used both as UKF-model and as target system. Both models have
dynamic steam states. To test how well the UKF can handle un-modelled differ-
ences, an offset is set in the heat transfer coefficient (the parameter alpha_gas_wall
in Section 3.3.3) on the flue gas side in the evaporator of the model used by the
UKF. The value used by the UKF-model is set to 400 W/m2K, while the process
has the value 600 W/m2K.

The three experiments are:

A.1 Estimation when the process has a ramp input in firing power and valve open-
ings. Firing power is increased at the rate 7 ·10−5 /s, HP-T bypass valve closes
with the rate −1 ·10−5 /s and the IP-T bypass valve with −2 ·10−5 /s.

A.2 Estimation when the process has a ramp input as in A.1 and the UKF-model
includes a disturbance state for the parameter difference.

A.3 The same test as in A.1, but when the process has an offline-optimized input
trajectory.

In all three experiments the UKF has a disturbance model with constant disturbance
states added to each input. A constant added offset of 0.01 to firing power and 0.05
to both valve openings are present in the process. In the second experiment, the
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UKF also has an additional constant disturbance state added to the parameter that
differs from the process.

Measurement noise according to Table 4.2 is added to each measurement signal
during the experiments. The sampling interval of the UKF is set to 100 s, and the
total simulation time for each experiment is 5000 s.

4.2 UKF Estimation of Detailed Model

In these experiments the performance of the UKF estimation was tested on a pre-
simulated reference soft start with the detailed model. The task proved difficult
for the UKF, and so a model where the pressure at the IP-T bypass valve was set
identical to the detailed model was used to simplify the estimation. No disturbance
estimation for the IP-T bypass valve was therefore performed in these experiments.
The disturbance states at the other inputs were still present. In total, three experi-
ments were performed. The first two were performed using the optimization model
with dynamic steam in the UKF:

B.1 Estimation with no measurement noise, with 10 s sample interval.

B.2 Estimation with no measurement noise, with 100 s sample interval.

In the third experiment the model used by the UKF was changed to have static
steam dynamics and an ideal separator as described in Section 3.3.4. Minimum and
maximum values were also set on the variables in the model to keep them within
the valid range of the water_poly functions:

B.3 Estimation with measurement noise, with 10 s sample interval. UKF uses
optimization model with static steam dynamics, ideal separator and limits on
variables.

Measurement noise according to Table 4.2 was added to each measurement signal
during the third experiment. The total time of the first phase of the reference soft
start in the detailed model is 7700s.

4.3 NMPC Control of Optimization Model

In this experiment the NMPC was used to control the optimization model. The
model used by the NMPC and the target system are the same, without any param-
eter changes, and uses static relations for the steam. All the states were considered
measurable and Gaussian zero-mean noise was added to each measurement signal.
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Name of set Input FP LST RST LSP RSP
C1 106 1 0.1 0.001 0.01 0.1
C2 106 100 0.1 0.001 1 0.1

Table 4.6 Two sets of cost function weights for inputs and states, used in the NMPC exper-
iments. The parameter names are defined in the same way as in Table 3.3.

The total simulation time was 5000 s. Two different cost functions, C1 and C2, were
tested. The weights in the cost functions are defined in Table 4.6. C1 correspond to
the fastest, most fuel consuming, of the setups in Table 3.3, while C2 corresponds
to the one with least fuel consumption. An offline optimization using the C1 cost
function was also performed for comparison to the NMPC results.

4.4 Demonstrator Run

In this experiment the NMPC and UKF were run together. The model used by the
UKF was the optimization model with dynamic steam, while the NMPC and target
system used the optimization model with static steam relations. The target system
had constant load disturbances added on firing power (0.001) and on the bypass
valve openings (0.01). Measurement noise was added according to Table 4.2. The
UKF used a sampling interval of 100 s, while the NMPC used 500 s. The total
simulation time was 5000 s. The NMPC used the cost function weights defined in
Table 4.7.

Input FP LST RST LSP RSP
106 10 0.01 0.001 0.01 0.1

Table 4.7 Cost function weights for inputs and states, used in the demonstrator experiment.
The parameter names are defined in the same way as in Table 3.3.
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5
Results

In this chapter the results from the experiments with the UKF, NMPC and the
demonstrator are presented. The experiment setups are defined in Chapter 4.

5.1 UKF Estimation of Optimization Model

The mean absolute errors for the state estimates in experiment A.1 (ramp input and
no model of the evaporator disturbance) was in the range 0.1-9.0 %. The corre-
sponding range in experiment A.2 (ramp input and including a model of the evapo-
rator disturbance) was 0.02-1.0 %. The estimation results for some of the enthalpies,
wall temperatures and disturbance states from experiments A.1 and A.2 are pre-
sented in Figures 5.1-5.3, where the actual and estimated values are compared. A
comparison is also shown for the estimation of the level controller’s integral er-
ror in Figure 5.4 which diverged in experiment A.1. The estimation in A.1 ran for
4700 s until the UKF produced an estimate that proved infeasible when trying to
simulate. Each new estimation took approximately 40 s to 30 min in real-time to
produce. The estimation in A.2 ran for the full 5000 s, where each new estimation
took approximately 40 s up to 4 min in real-time to produce.

The mean absolute errors for the state estimates in experiment A.3 (optimized input)
was 0.1-54.3 %. The estimation results for some of the enthalpies, wall temperatures
and disturbance states from experiment A.3 are presented in Figures 5.5-5.7. The
diverging estimates of the level controller’s integral error and the separator mixture
enthalpy is presented in Figure 5.8. The estimation ran for 4800 s until the UKF
produced an estimate that proved infeasible when trying to simulate. Each new es-
timation took approximately 40 s to 30 min in real-time to produce.

The estimation errors for all states from experiments A.1, A.2 and A.3 are presented
in the appendix in Tables A.2, A.3 and A.4 respectively.
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Figure 5.1 Enthalpy estimation results for LS (SH4 header), RS (RH2 header) and evapo-
rator from experiment A.1 and A.2 (ramp inputs). The solid line is the true state value, while
the dash-dotted and dashed lines corresponds to experiment A.1 and A.2 respectively.

Figure 5.2 Wall Temperature estimation results for the SH4 header, the RH2 header and the
evaporator from experiment A.1 and A.2 (ramp inputs). The solid line is the true state value,
while the dash-dotted and dashed lines corresponds to experiment A.1 and A.2 respectively.
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Figure 5.3 Disturbance state estimation results from experiment A.1 and A.2 (ramp in-
puts). The dash-dotted and dashed lines corresponds to estimates in experiment A.1 and A.2
respectively. Note that the heat transfer coefficient disturbance is only part of the disturbance
model in experiment A.2.

Figure 5.4 Level controller integral error estimation results from experiment A.1 and A.2
(ramp inputs). The solid line is the true state value, while the dash-dotted and dashed lines
corresponds to experiment A.1 and A.2 respectively. 75
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Figure 5.5 Enthalpy estimation results for LS (SH4 header), RS (RH2 header) and evapo-
rator from experiment A.3 (optimized inputs). The solid line is the true state value, while the
dashed line is the estimate.

Figure 5.6 Wall Temperature estimation results for the SH4 header, the RH2 header and
the evaporator from experiment A.3 (optimized inputs). The solid line is the true state value,
while the dashed line is the estimate.
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Figure 5.7 Disturbance state estimation results from experiment A.3 (optimized inputs).

Figure 5.8 Level controller integral error and separator mixture enthalpy estimation results
from experiment A.3. The solid line is the true state value, while the dashed line is the esti-
mate. 77
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5.2 UKF Estimation of Detailed Model

The mean absolute errors of the state estimates in experiment B.1 (no measurement
noise and 10 s sampling interval) were in the range 0.09-52.3 %. The estimation
results for some of the pressures, enthalpies and wall temperatures from experi-
ment B.1 are presented in Figures 5.9-5.11. The diverging estimates of the steam
enthalpies in SHS, SH1 and SH2 are presented in Figure 5.12. The estimation ran
for 280 s until the UKF produced an estimate that proved infeasible when trying to
simulate. Each new estimation took approximately 40 s up to 30 min in real-time to
produce.

The estimation in experiment B.2 (no measurement noise and 100 s sampling in-
terval) resulted in divergence for the majority of the states after two iterations. The
estimation ran for 700 s, i.e, 7 iterations, until the UKF produced an estimate that
proved infeasible to simulate.

The mean absolute errors of the state estimates in B.3 (fast dynamics removed,
measurement noise present and 10 s sampling interval) were in the range 0.09-
0.7 %. The estimation results for some of the wall temperatures and disturbance
states from experiment B.3 are presented in Figures 5.13, 5.14 and 5.15. Since the
steam dynamics were changed to static relations, steam enthalpy and pressure were
no longer states in the model and therefore not estimated. The estimation ran for the
full 7700 s. Each new estimation took approximately 5 s in real-time to produce.

The full results from experiment B.1 and B.3 are presented in the appendix in Tables
A.5 and A.6 respectively.
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5.2 UKF Estimation of Detailed Model

Figure 5.9 Pressure estimation results for LS (SH4 header), RS (RH2 header) and evapo-
rator from experiment B.1 (10 s sample interval). The solid line is the true state value, while
the dashed line is the estimate.
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Figure 5.10 Enthalpy estimation results for LS (SH4 header), RS (RH2 header) and evapo-
rator from experiment B.1 (10 s sample interval). The solid line is the true state value, while
the dashed line is the estimate.

Figure 5.11 Wall Temperature estimation results for the SH4 header, the RH2 header and
the evaporator from experiment B.1 (10 s sample interval). The solid line is the true state
value, while the dashed line is the estimate.
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Figure 5.12 Diverging enthalpy estimations from experiment B.1 (10 s sample interval).
The solid line is the true state value, while the dashed line is the estimate.

Figure 5.13 Wall temperature estimation results for SHS, SH2 and SH4 from experiment
B.3 (modified optimization model and 10 s sampling interval). The solid line is the true state
value, while the dashed line is the estimate.
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Figure 5.14 Wall temperature estimation results for the SH4 header, the RH2 header and
the evaporator from experiment B.3 (modified optimization model and 10 s sampling inter-
val). The solid line is the true state value, while the dashed line is the estimate.

Figure 5.15 Estimated disturbance states from experiment B.3 (modified optimization
model and 10 s sampling interval).
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5.3 NMPC Control of Optimization Model

The optimized trajectories for each NMPC iteration with C1 from Table 4.6 as cost
function are presented in Figure 5.16. The trajectories using C2 from Table 4.6
are presented in Figure 5.17. Actual simulation results of the target model using
the NMPC inputs together with simulation results using an offline optimization as
comparison are presented in Figures 5.18 - 5.21.

The integral of the firing power, which relates to the total amount of fuel used,
was 1176 after 3500 s and 1890 after the full simulation at 5000 s when using
C1. The corresponding values for C2 were 1178 and 1885. Each NMPC iteration
took roughly 1-30 seconds depending on how many iterations the solver needed to
perform.

Figure 5.16 The solution to O (see Section 2.2.1) at each iteration of the NMPC using the
C1 cost function weights. Each curve corresponds to the predicted trajectory at each sampling
instant by the NMPC. The optimizer fails to find an optimal solution at iteration 3 and 8.
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Figure 5.17 The solution to O (see Section 2.2.1) at each iteration of the NMPC using the
C2 cost function weights. Each curve corresponds to the predicted trajectory at each sampling
instant by the NMPC. The optimizer fails to find an optimal solution at iteration 10.

Figure 5.18 The LS and RS temperature of the plant together with the firing power. The
blue line is the simulation result of the target system controlled by the NMPC using the C1
cost function, the magenta line is the value for the C2 cost function and the black line is the
simulation result using the offline optimization with the C1 cost function. The dashed, green,
line is the temperature set-point.
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Figure 5.19 The LS pressure of the plant together with the valve opening of the HP-T
bypass valve. The blue line is the simulation result of the target system controlled by the
NMPC using the C1 cost function, the magenta line is the value for the C2 cost function and
the black line is the simulation result using the offline optimization with the C1 cost function.
The dashed, green, line is the pressure set-point.

Figure 5.20 The RS pressure of the plant together with the valve opening of the IP-T bypass
valve. The blue line is the simulation result of the target system controlled by the NMPC
using the C1 cost function, the magenta line is the value for the C2 cost function and the
black line is the simulation result using the offline optimization with the C1 cost function.
The dashed, green, line is the pressure set-point.
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Figure 5.21 The stresses in the SH4 and RH2 headers of the plant. The blue line is the
simulation result of the target system controlled by the NMPC using the C1 cost function,
the magenta line is the value for the C2 cost function and the black line is the simulation
result using the offline optimization with the C1 cost function. The dashed red line is the
stress constraint used by the NMPC.

5.4 Demonstrator Run

The demonstrator was able to run successfully for the full 5000 s. State estimates for
pressures, enthalpies and wall temperatures had a mean absolute error in the range
0.009-0.09 %, while the level controller integral error had 0.5 % and the disturbance
states 4.1-55.6%. The optimizer in the NMPC only managed to find a solution to
O for two iterations 1 and 7, meaning that most of the time the target system was
controlled using an offline simulation.

The simulation results of the target system are presented in Figures 5.22 - 5.25. The
full results from the UKF estimation is presented in table A.7 in the appendix.
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Figure 5.22 The LS and RS temperature of the plant together with the firing power for the
demonstrator run. The dashed, green, line is the temperature set-point.

Figure 5.23 The LS pressure of the plant together with the valve opening of the HP-T
bypass valve for the demonstrator run. The dashed, green, line is the pressure set-point.
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Figure 5.24 The RS pressure of the plant together with the valve opening of the IP-T bypass
valve for the demonstrator run. The dashed, green, line is the pressure set-point.

Figure 5.25 The stresses in the SH4 and RH2 headers of the plant for the demonstrator run.
The dashed, red, line is the stress constraint used by the NMPC.
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Discussion

6.1 State Estimation using UKF

The UKF robustness to parameter choices in the model and input disturbances is
tested in experiments A.1-A.3 (defined in Section 4.1). The results in A.1 and A.3
show that the estimations of pressures and header wall temperatures are robust to the
model changes, with mean absolute errors in the range 0.1-0.4 %. The robustness is
expected since these states are directly measurable. However, the parameter change
makes the estimation of enthalpies and wall temperatures difficult when there is
no disturbance model for the change (see Figures 5.1, 5.2, 5.5 and 5.6), with mean
absolute errors 0.2-4.5 %. The parameter change has a large impact on the predicted
steam enthalpy which in turn affects the water level of the separator and the control
action to keep it at 15.5 m. The fast dynamics of the level controller makes the
predicted integral error deviate much from the true value before the measurement
update is done. This eventually makes the estimate diverge, see Figures 5.4 and 5.8.
This issue is solved in experiment A.2 where the UKF successfully estimates the
offset in the heat transfer coefficient and the model and process essentially become
identical, see Figure 5.3. The experiments A.1 - A.3 indicates that the dynamics of
the separator level controller is too fast for a sampling interval of 100 s, and that
good disturbance modelling is essential for a robust UKF performance.

The main objective of the UKF is to produce estimates of the states in the detailed
model. This is done in experiments B.1 - B.3, where the choice of sampling interval
is analyzed in B.1 and B.2. In B.2 the majority of the estimates diverges which
indicates that 100 s sample interval is too long. However, the results in B.1 indicate
that also 10 s sample interval might be too long when using the current optimization
model. As in A.1 - A.3, the UKF in B.1 provides the most accurate estimates in
percentage for the directly measurable pressures and header wall temperatures (see
Figures 5.9 and 5.11 ), with mean absolute errors in the range 0.09-3.0 %. The
enthalpy estimations are difficult for the UKF and are diverging in SHS, SH1 and
SH2 (see Figure 5.12). The results show that even with 10 s sampling interval the
measurement updates are not enough to keep the estimates close to the true values.
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The robustness and performance of the UKF is improved significantly with the mod-
ified optimization model (fast dynamics removed and using an ideal separator) in
experiment B.3 (see Figures 5.13 and 5.14), where the UKF manages to get all mean
absolute estimation errors within 0.7 % for the entire first phase of the reference soft
start. This confirms that removing the separator level controller component from the
optimization model is beneficial, and that setting limits on the variables helps the
robustness. The experiment B.3 also shows that the measurement variables were
chosen adequately, and that the noise assumptions made for the UKF implemen-
tation are not too simple. However, further testing should be done with the UKF
where the IP-T bypass valve is also included in the model.

The UKF performs well in the demonstrator run with the NMPC, mainly because
the only not modelled difference between the UKF model and the process is that
the steam dynamics are static in the process. All state estimations except for the
level controller integral error and disturbance states have a mean absolute error in
the range 0.009-0.09 %, which is better results than in any other experiment. The
NMPC still fails to find an optimal solution in most iterations in the demonstrator
run, but that seems to be a robustness issue with the optimization model rather than
poor estimates from the UKF.

Overall, the robustness and performance of the UKF implementation with interface
to JModelica.org depend heavily on the model used. If the model is sensitive to
the choice of initial state values, then the UKF risks failing several sigma point
simulations which leads to poor performance or total break down. Another factor
that the UKF robustness depends upon is the choice of the parameter α . With an
unstable model, a large spread of sigma points (i.e α close to 1) will risk having
a number of sigma point simulations diverging. The diverging sigma points will
have a large impact on the weighted mean calculations and produce unreasonable
predictions.

The model used in B.3 addresses the issues of model robustness and therefore im-
proves the performance of the UKF. With the results from experiment B.3 the UKF
proves to be a viable solution for state estimation during the start-up of the power
plant.

6.2 Disturbance Modelling

In the UKF experiments A.1, A.3 and B.3 (defined in Sections 4.1 and 4.2) the in-
put disturbance states are used by the UKF to compensate for model mismatches.
Experiment A.1 and A.3 showed that the lack of disturbance model for the heat
transfer coefficient makes the UKF underestimate the amount of transferred heat in
the evaporator while overestimating the transferred heat in the other heat exchang-
ers, similar to what was seen in Figures 3.4 and 3.5. To compensate for this the
UKF estimates a negative offset on the firing power (see Figures 5.3 and 5.7) and
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underestimates the offsets on the valve openings to keep the steam pressure up.
The lowered firing power makes the UKF underestimate the heat transferred to the
evaporator even more, and essentially trade better enthalpy and wall temperature es-
timates for all the heat exchangers at the price of poorer estimates of the evaporator
states.

The results from B.3 show that a negative firing power offset is estimated and the
evaporator wall temperature is underestimated, see Figures 5.14 and 5.15. The be-
havior is similar to the results in A.1 and A.3, which indicates that the heat transfer
coefficient of the evaporator in the optimization model differs to the one in the
detailed model. Adding a disturbance state as in A.2 to the evaporator in the opti-
mization model used in B.3 could prove to be a method to improve the performance.
Also, results from A.2 indicates that the disturbance state is observable with the cur-
rent set of measurements which would make the addition straight-forward to test.

The heat transfer coefficients of all the heat exchangers are dependent on the flow
of flue gas and steam on each side of the wall. However, with the approximation
made in Section 3.3.2 the flue gas flow will always be constant in the optimization
model, which in turn makes all the heat transfer coefficient on the gas side constant.
After evaluating the addition of the disturbance state to the evaporator, the addition
of similar disturbance states to the rest of the heat exchangers could be tested to see
if improved performance can be gained.

Another not modelled effect in the optimization model that could possibly be com-
pensated for by disturbance modelling is the spray attemperators in the power plant.
The spray attemperators are present in the detailed model, and cool down the steam
in the heat exchangers. The cooling leads to an enthalpy decrease that is not present
in the optimization model. A suggestion is to add constant disturbance states to
the energy balance equations of each heat exchanger where spray attemperators are
present. Note that these disturbances should only be added to the heat exchangers
where spray attemperators are actually present and their estimated values should be
limited to represent energy loss. Otherwise they could risk representing unphysical
losses or even gains of energy to the power plant.

All disturbance states used in this thesis are assumed to be constant. This assump-
tion works when the disturbances can be regarded as approximately constant on the
current time scale. In the case of A.2, it works well since the disturbances really are
constant, and in B.3 it works at the relatively short time scale of 10 s. However, if
the sampling interval is increased the assumption could prove insufficient.

6.3 Control using NMPC

When controlling the optimization model the NMPC seems to be working well. All
set-points are reached and even without any integral action there are no stationary
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errors. This shows that no terminal constraints or costs are needed to reach the
set-points. Reaching all set-points exactly is also not critical for the plant and if
small stationary errors arise from model disparities it should cause no problems for
the overall control of the start-up. As there is measurement noise present in these
experiments, the NMPC seems to be robust to the level of noise that is expected from
the real plant. The stress constraints put on the NMPC are violated slightly and the
most negative stress value found was around -75 MPa in the SH header and -50
MPa in the RH header, see Figure 5.21. However, both of these are within the stress
levels for the currently used start-up scheme found in Table 3.1 and well below
the requirement that the plant should manage 2000 cold starts. In the demonstrator
experiment the stress violations were larger and there was a sharp pressure dip in
the RH header stress. This is probably due to the load disturbance put on the system
which was not yet estimated by the UKF at the first NMPC iteration.

Comparing offline and NMPC results it is clear that the NMPC provides better
results even when no process disturbances are present. The NMPC reaches its set-
point which the offline optimization does not, and the offline optimization has huge
overshoots in both pressure signals in Figures 5.19 and 5.20. The reason for the
better performance is the feedback incorporated in the MPC algorithm. Due to the
coarse discretization in the optimization problem the simulation results will differ
from what the NMPC expects. Here feedback helps as the states in the NMPC are
updated each iteration with the correct values in the same way as if process noise
was present. Another benefit is that the NMPC allows more changes in the input.
Both NMPC and offline optimization have a control horizon of five samples to make
the optimization converge. With the NMPC a new input can still be calculated for
each sampling interval.

The different cost functions did not seem to have a big effect on the end result. The
set-points were reached in a similar time even if the trajectories have different pro-
files. Setting a larger weight is effective if the goal is to reach one specific set-point
earlier. It shows, both quantitatively in Table 3.3 and in the plots that increasing the
weight on a state made that trajectory more optimal. The difference in total firing
power used during the start up, that could be seen in the offline optimizations in
Table 3.3, was not present in the NMPC results, however.

The coarse discretization is one of the largest approximations made by the NMPC.
The long sample time will also lead to errors if there are differences between the
optimization model and the target system. With shorter sampling time the feedback
would be more frequent letting the NMPC react more to process noise. In order to
have a shorter sample time the prediction horizon will need to be shorter however
so that the degrees of freedom do not increase too much. There is probably a limit
on how small the prediction horizon can be made though. An educated guess is that
it needs to be at least 2000-2500 s so that the initial temperature and pressure ramp,
stress dip and pressure overshoot can be predicted in the first samples.
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The robustness problems and failed optimizations were the biggest problems for the
NMPC used in this thesis. Even a small deviation in start values from the optimal
trajectory can lead to a diverging optimization. A few failed iterations does not have
a great impact on the end result assuming the optimization model is a good enough
approximation of the target system thanks to the error handling implemented in
[Axelsson, 2015]. It indicates, however, that the model is not robust enough to be
used in a real application. When running the NMPC against the detailed model
or the real plant the deviations from the preferred trajectories will also be much
larger. The largest problem seems to be the fast dynamics in the optimization model
creating a stiff problem. Early tests using a model with an ideal separator, as was
used in experiment B.3, seems promising and resulted in a more robust NMPC.

6.4 Optimization Model

The largest problems with using the optimization model were that some dynamics
were much faster than the sampling time of the system which leads to stiff prob-
lems. Removing the dynamic steam states improved the model significantly and
made it more optimization friendly compared to the model used in [Runvik, 2014].
The only fast dynamic left in the model was the separator level control. The first
test with an ideal separator, with these dynamics removed, showed much promise.
In experiment B.3 the UKF convergence is shown to improve greatly and the initial-
ization problems present with the earlier model with a static steam model also seem
to have been fixed. The steady state values of this new model does differ from those
of the old model however, so before it can be used in a real application it needs to be
calibrated and validated against the detailed model in the same way as the current
model.

The robustness issue with the optimization model is due to a limited feasibility re-
gion. One limitation is that the pressures need to decrease for each heat exchanger
in the chain to avoid back flows (which are unphysical). Another limitation is that
the water_poly functions have a limited range on their inputs where they are valid.
The first problem is not easy to handle since the values that lead to a feasible prob-
lem all depend on each other, but there does not seem to have been any issues with
this during the experiments. It is still something that should be monitored when
evaluating the model however. A test to handle the second issue was performed in
experiment B.3 where maximum and minimum values were added to these signals
and that seems to be working. No sigma points failed during this test and the states
converged.

When comparing the values of the optimization model to the detailed model they
seem to be matching fairly well, see the MSE for each state in Table 3.6. The largest
differences are the energy balances in the system, causing the relatively large tem-
perature devitations, and the valve characteristics. The valve characteristic differ-
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ences are not that easy to solve but it is possible to circumvent that by sending
calculated pressure values as set-points to the detailed models instead of directly
using valve positions.

6.5 Real-Time Aspects

The real-time aspects of the UKF and NMPC must be considered if the demonstra-
tor is to be applied to the real power plant. In the UKF experiments the sampling
deadlines were only met in B.3, where the UKF completed each iteration in about 5
s with a sampling interval of 10 s. In the case of the NMPC the sampling deadlines
were met in all experiments, where each iteration was completed in about 1-30 s
with a sampling interval of 500 s. Preferably the sampling interval of the NMPC
should be shorter, and will then require faster optimization.

For the UKF, there are two ways of improving the computational speed. The first
is to minimize the number of sigma points used in each prediction. Since the num-
ber of sigma points is directly related to the number of states (see Section 2.4.2),
this means that simplifying the model by assuming static relations will increase the
speed of the UKF. The second way is to make the integrator able to simulate the
model with larger time steps. This can be done by ensuring that the model is non-
stiff. Both suggested methods were applied to the optimization model in experiment
B.3, where the UKF went from a worst case of about 30 min per iteration to 5 s per
iteration.

For the NMPC, the ways of improving the computational speed are similar to those
for the UKF. An initial test with the model from B.3 shows a promising increase
in speed also for the NMPC that should be further investigated. Another way of
increasing the speed could be to linearize the optimization problem on a shorter time
horizon and use a linear MPC. A convex optimization problem can then be solved,
which not only simplifies the optimization but also guarantees a global optimal
solution, see Section 2.3.

Simulations and optimization in JModelica.org are not done with respect to real-
time constraints, and for the Jänschwalde plant this will require the application to
run in a real-time operating system. Especially the UKF could benefit from this
since several sigma points could be simulated in parallel.

Even if all deadlines are met, a long optimization time can lead to delays. The UKF
prediction step will not cause this problem as it is run after the NMPC has sent the
inputs to the target system. The UKF update and NMPC optimization steps will
however need to be performed between the sampling of the system and sending a
control input. This is no problem in simulation, but when running against the real
plant significant delays, compared to the sampling period, will lead to disturbances.
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One way to make the NMPC more robust to delays is to let the UKF predict the
states at some point in the future and let the NMPC optimize using these states.
This value is then sent as input to the system when the predicted time point has
arrived. The time point needs to be further into the future than the optimization
time. If the UKF predictions are unreliable this might lead to larger disturbances
than the delay though so this must be inspected carefully if it is to be implemented.

6.6 Start-up Optimization Potential

The specified constraints on stress in critical components are fulfilled and as dis-
cussed in Section 6.3 the stress levels during simulations are far from the limits for
2000 cold start-ups, found in Table 3.1. There is therefore potential of ramping up
the power plant even faster, but because of the model disparities between the opti-
mization model and the detailed model it is probably good to leave a large margin
to the constraints.

The total time for the first phase of the soft start is 7700 s in the reference start-
up with the detailed model. The reference soft start in Figure 2.3 starts with lower
pressure and temperature values than in the detailed model, and the initial values
of the detailed model corresponds to roughly the time instant 90 min in Figure 2.3.
The corresponding start-up time in the hand book is then 5400 s. In the NMPC
experiment the time to reach and stabilize the set-points is below 3500 s with both
C1 and C2 cost functions. This indicates a time saving of 1900-4200 s or roughly
30-70 min. In the case of the demonstrator the set-points are not entirely met after
the time frame of 5000 s and time saving is therefore not estimated.

Saving time during start-up increases income as the power plant is online and sells
electricity for a longer time. A time saving of 30-70 min for a block of two boilers
with a generator output of 500 MW means an additional energy output of about 250-
583 MWh to the electricity grid. Assuming an energy price of e 33,25 per MWh
[EEX, 2015], that means an additional income of roughly e 8000-19000 per block
for one soft start.

The fuel consumption of the start-up is related to the integral of the firing power.
The integral of the firing power is similar for both cost functions C1 and C2 in
the NMPC experiment, with values 1176 and 1178 respectively after 3500 s. The
corresponding value for the reference soft start with the detailed model is 3047 after
7700 s. This also indicates that fuel could be saved when optimizing the start-up.
However, a more accurate calculation of possible savings has to be done when using
the NMPC on the detailed model.

Saving fuel during start-up is desirable both from an environmental and a monetary
viewpoint. Saving lignite and oil reduces the negative impact on global warming by
reducing the amount of CO2 emissions during start-up. From a monetary viewpoint
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it is desirable to reduce the total amount of fuel used to reduce fuel costs. It has
however not been possible to convert the firing power to amount of coal and oil
used, so no figure on the amount of money or CO2 saved can be calculated at this
point. There is no explicit relation between this firing power signal and mass of
fuel. The only way to get these values is to simulate the detailed model with the
correct firing power and let it calculate the fuel flow. This was not possible in the
current study since the oil burners and coal mills are run with a fixed time schedule,
restricting the firing power.
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Conclusions

In this thesis a solution for start-up optimization of a thermal power plant has been
developed. An NMPC (Nonlinear Model Predictive Controller) solution based on
the class developed in [Axelsson, 2015] has been implemented to optimize the input
trajectory to the power plant while keeping stress levels in the plant within specified
constraints. To estimate the states of the plant, a UKF (Unscented Kalman Filter)
class compatible with the framework JModelica.org has been implemented. The
optimization model used in the NMPC and UKF implementations has been previ-
ously developed in [Runvik, 2014], but was modified to increase performance and
robustness. The NMPC and UKF implementations were tested separately and in an
integrated solution against the optimization model acting as the real plant. Addi-
tionally, the UKF was also tested offline on a more detailed model of the power
plant.

The aim was to achieve an integrated solution by packaging the different models
as FMUs (Functional Mock-up Units). However, the detailed model could not be
compiled into an FMU and used with the JModelica.org framework, nor could it
be simulated iteratively through the Python/Dymola interface. Because of this, the
specification on using the detailed model as target system could not be met. To
include the detailed model, further work has to be performed to simplify the initial-
ization at each sample instant.

The performance of the UKF is highly dependent on the model itself, and requires
a model which is robust to initialization with various initial state values. The results
from the experiments with the UKF show a robustness issue with the optimization
model, where estimates of states with fast dynamics diverged when the differences
between process and model were too large. Using a modified optimization model
which addresses these issues, the performance of the UKF is drastically improved
in terms of robustness and computation time. Using the modified model the UKF
manages to estimate the states during a soft start with the detailed model with a
maximum mean absolute error of 0.7 % on the estimates.
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To choose suitable measurement signals from the plant, an observability analysis
was performed. Only signals that are considered measurable in the real plant were
considered. The initial method was to linearize the plant model at each sampling
instant and apply linear observability criterion. The method proved numerically un-
reliable. Therefore a simpler test, estimating the states in a steady-state simulation,
was derived and performed. The final set of measurement signals derived from the
observability analysis includes steam pressures and temperatures from all heat ex-
changer, and is sufficient for the UKF to reduce the estimation error of all states.

The optimization model’s input dynamics differ from the detailed model, and the
two models respond differently, especially for different valve inputs. Using distur-
bance states on the inputs as a solution is shown to be beneficial for the estimation
performance. Experiments where a constant disturbance is put on the evaporator
heat transfer coefficient in the optimization model show similar behaviour as in the
estimation of the detailed model. This indicates that the estimation of the detailed
model could be improved by modelling an added disturbance to the heat transfer
coefficient of the evaporator.

The results from the optimized start-ups using NMPC show potential for saving time
and fuel, but this has still to be verified against the detailed model. In all optimized
start-up experiments the stress levels of the critical components stay within the lim-
its of the 2000 cold start specification. The largest stress value encountered does not
reach 50 % of the critical limit, which gives a large margin for model disparities and
also indicates a potential for optimizing the start-up time even further. All set-points
were reached in 3500 s, which is considerably faster than the reference soft starts
in both the detailed model and the power plant hand book. The NMPC also seems
to be robust to measurement noise of the level expected in the plant. In the same
experiments, the total energy input from fuel is less than 40 % of the corresponding
total in the reference soft start with the detailed model.

Simulation with the detailed model indicated that the stress constraint in the RH2
header component is active during start-up. Therefore the RH2 header was added to
the optimization model. The addition proved critical as the stress constraint was ac-
tive during the optimized start-up of the optimization model. However, the addition
also made the optimization problem more difficult to solve.

The optimization model proved to be stiff due to the different speed of its dynamics.
The dynamics of the wall temperatures were slower than the steam and separator
level control dynamics. The stiffness issue was solved by using static steam relations
and replacing the level control with an ideal separator. The robustness was improved
by limiting the variables within the valid range of the polynomial functions that
approximate the thermodynamic relations in the model. The modifications produce
significantly better results in terms of robustness for the UKF, and initial testing
suggests that the NMPC robustness is also improved.
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With an average computation time of 5 s and a sampling interval of 10 s the UKF
should be feasible in a real-time application. The NMPC managed to complete each
iteration with a computation time of 1-30 s, with a sampling interval of 500 s. Hence,
the NMPC met its real-time sampling deadline. These results indicate that an inte-
grated solution could be feasible in a real time application. However, more testing is
still needed to verify this, and the impact of real time issues such as computational
delays must be investigated.

7.1 Future Work

Recommendations for future work are:

• Calibrate and validate the modified optimization model with the ideal separa-
tor, and use it for future experiments.

• Evaluate the addition of disturbance states on the heat transfer coefficients of
the heat exchangers when testing against the detailed model.

• Evaluate the addition of disturbance states to the energy balances of the heat
exchangers that have spray attemperators in the real plant.

• Simplify the detailed model so that it can be initialized at any time instant in
a robust manner.

• Find a solution to shorten the sampling time of the NMPC.

• Improve the optimization so that it converges for all NMPC iterations.

• Test the demonstrator using the detailed model as target system.

• Calculate monetary and environmental savings using the optimized start-up.
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Appendix A. Estimation Results

State Initial Error Final Error
RH1A Wall Temperature -11.2 % 0.1 %
RH1A Enthalpy -3.6 % 0.05 %
RH1A Pressure 1.2 % -0.07 %
RH1B Wall Temperature -5.5 % 0.001 %
RH1B Enthalpy -1.9 % 0.001 %
RH1B Pressure 1.1 % -0.07 %
RH2 Wall Temperature -2.5 % -0.02 %
RH2 Enthalpy -0.9 % -0.009 %
RH2 Pressure 1.0 % -0.07 %
SHS Wall Temperature -0.9 % 0.007 %
SHS Enthalpy -8.8 % 0.2 %
SHS Pressure -10.3 % 0.009 %
SH1 Wall Temperature -4.1 % 0.009 %
SH1 Enthalpy -23.2 % 1.0 %
SH1 Pressure -10.4 % 0.009 %
SH2 Wall Temperature -12.0 % 0.002 %
SH2 Enthalpy -18.3 % 1.0 %
SH2 Pressure -10.5 % 0.01 %
SH3 Wall Temperature -10.7 % 0.002 %
SH3 Enthalpy -13.6 % 1.0 %
SH3 Pressure -10.5 % 0.01 %
SH4 Wall Temperature -13.4 % 0.002%
SH4 Enthalpy -8.7 % 1.0 %
SH4 Pressure -10.6 % 0.01%
Header SH4 Wall Temperature -13.5 % -0.001%
Header SH4 Enthalpy -8.7 % 1.0 %
Header SH4 Pressure -10.6 % 0.01%
Header RH2 Wall Temperature -2.6 % 0.01 %
Header RH2 Enthalpy -0.9 % -0.008 %
Header RH2 Pressure 0.8 % -0.07%
Evaporator Wall Temperature -0.6 % -0.02%
Evaporator Enthalpy -1.6 % -0.04%
Evaporator Pressure -2.6 % -0.01%
Level-Controller Integral Error -3.4 % 0.3 %
Separator Mixture Enthalpy -2.7 % 0.008 %
Separator Mixture Pressure -10.3 % 0.008%
Firing Power Disturbance 100.0% -10.1 %
HP-T Bypass Valve Disturbance 100.0 % -0.9 %
IP-T Bypass Valve Disturbance 100.0 % -0.2 %

Table A.1 Procentual estimation errors for each state in the observability analysis.
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -12.6 % -1.3 % -0.6 % 0.6 %
RH1A Enthalpy -4.0 % -0.7 % -0.2 % 0.3 %
RH1A Pressure 4.2 % 0.4 % 0.2 % 0.3 %
RH1B Wall Temperature -6.7 % -1.8 % -0.7 % 0.7 %
RH1B Enthalpy -2.3 % -0.9 % -0.3 % 0.3 %
RH1B Pressure 4.0 % 0.2 % 0.1 % 0.2 %
RH2 Wall Temperature -3.6 % -0.3 % -0.5 % 0.5 %
RH2 Enthalpy -1.3 % -0.3 % -0.2 % 0.2 %
RH2 Pressure 4.0 % -0.03 % 0.02 % 0.2 %
SHS Wall Temperature -0.7 % -0.3 % -0.2 % 0.2 %
SHS Enthalpy -6.2 % -0.3 % -0.2 % 0.5 %
SHS Pressure -7.0 % 0.09 % -0.1 % 0.2 %
SH1 Wall Temperature -4.5 % 0.6 % 0.01 % 0.3 %
SH1 Enthalpy -23.5 % 0.3 % -1.9 % 2.2 %
SH1 Pressure -7.0 % 0.04 % -0.1 % 0.2 %
SH2 Wall Temperature -13.1 % -0.8 % -0.6 % 0.6 %
SH2 Enthalpy -18.8 % -0.5 % -1.6 % 1.7 %
SH2 Pressure -7.0 % 0.00005 % -0.2 % 0.2 %
SH3 Wall Temperature -11.8 % -0.6 % -0.4 % 0.5 %
SH3 Enthalpy -14.2 % -0.4 % -1.0 % 1.5 %
SH3 Pressure -7.1 % -0.05 % -0.2 % 0.2 %
SH4 Wall Temperature -14.7 % -0.7 % -0.5 % 0.6 %
SH4 Enthalpy -9.3 % -0.5 % -0.5 % 0.5 %
SH4 Pressure -7.1 % -0.09 % -0.2 % 0.2 %
Header SH4 Wall Temperature -14.8 % 0.02 % -0.3 % 0.4 %
Header SH4 Enthalpy -9.3 % -0.5 % -0.6 % 0.6 %
Header SH4 Pressure -7.2 % -0.1 % -0.2 % 0.2 %
Header RH2 Wall Temperature -3.7 % -0.006 % -0.3 % 0.3 %
Header RH2 Enthalpy -1.3 % -0.3 % -0.2 % 0.2 %
Header RH2 Pressure 3.8 % -0.2 % -0.09 % 0.3 %
Evaporator Wall Temperature -0.2 % 0.6 % 0.9 % 0.9 %
Evaporator Enthalpy -0.6 % 7.4 % 2.6 % 2.6 %
Evaporator Pressure -1.5 % 0.03 % 0.06 % 0.1 %
Level-Controller Integral Error -3.9 % -47.4 % -8.1 % 9.0 %
Separator Mixture Enthalpy -1.8 % 0.3 % -0.08 % 0.2 %
Separator Mixture Pressure -6.9 % 0.1 % -0.1 % 0.2 %

Table A.2 Results from the UKF estimation in experiment A.1 (ramp input).
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -12.6 % -0.02 % -0.3 % 0.3 %
RH1A Enthalpy -4.0 % -0.01 % -0.08 % 0.1 %
RH1A Pressure 4.2 % -0.008 % 0.07 % 0.2 %
RH1B Wall Temperature -6.7 % -0.02 % -0.1 % 0.2 %
RH1B Enthalpy -2.3 % -0.008 % -0.05 % 0.06 %
RH1B Pressure 4.0 % -0.008 % 0.07 % 0.2 %
RH2 Wall Temperature -3.6 % -0.02 % -0.09 % 0.1 %
RH2 Enthalpy -1.3 % -0.01 % -0.03 % 0.04 %
RH2 Pressure 4.0 % -0.007 % 0.06 % 0.2 %
SHS Wall Temperature -0.7 % 0.002 % -0.01 % 0.02 %
SHS Enthalpy -6.2 % 0.0008 % -0.1 % 0.2 %
SHS Pressure -7.0 % 0.002 % -0.1 % 0.1 %
SH1 Wall Temperature -4.5 % -0.02 % -0.06 % 0.1 %
SH1 Enthalpy -23.5 % -0.01 % -0.9 % 1.0 %
SH1 Pressure -7.0 % 0.002 % -0.1 % 0.1 %
SH2 Wall Temperature -13.1 % -0.03 % -0.3 % 0.3 %
SH2 Enthalpy -18.8 % -0.02 % -0.7 % 0.7 %
SH2 Pressure -7.0 % 0.002 % -0.1 % 0.2 %
SH3 Wall Temperature -11.8 % -0.04 % -0.2 % 0.3 %
SH3 Enthalpy -14.2 % -0.02 % -0.5 % 0.5 %
SH3 Pressure -7.1 % 0.002 % -0.1 % 0.2 %
SH4 Wall Temperature -14.7 % -0.04 % -0.3 % 0.3 %
SH4 Enthalpy -9.3 % -0.03 % -0.3 % 0.3 %
SH4 Pressure -7.1 % 0.002 % -0.1 % 0.2 %
Header SH4 Wall Temperature -14.8 % -0.03 % -0.3 % 0.3 %
Header SH4 Enthalpy -9.3 % -0.03 % -0.3 % 0.3 %
Header SH4 Pressure -7.2 % 0.003 % -0.1 % 0.2 %
Header RH2 Wall Temperature -3.7 % 0.009 % -0.08 % 0.1 %
Header RH2 Enthalpy -1.3 % -0.01 % -0.03 % 0.04 %
Header RH2 Pressure 3.8 % -0.006 % 0.06 % 0.2 %
Evaporator Wall Temperature -0.2 % -0.003 % -0.006 % 0.02 %
Evaporator Enthalpy -0.6 % -0.03 % -0.01 % 0.05 %
Evaporator Pressure -1.5 % -0.003 % -0.03 % 0.05 %
Level-Controller Integral Error -3.9 % 0.6 % -0.07 % 0.6 %
Separator Mixture Enthalpy -1.8 % 0.02 % -0.04 % 0.05 %
Separator Mixture Pressure -6.9 % 0.001 % -0.1 % 0.1 %

Table A.3 Results from the UKF estimation in experiment A.2 (ramp input and added
disturbance state in UKF model)
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -12.6 % -1.2 % -0.7 % 0.7 %
RH1A Enthalpy -4.0 % -0.7 % -0.3 % 0.3 %
RH1A Pressure 4.2 % 0.3 % 0.2 % 0.3 %
RH1B Wall Temperature -6.7 % -1.6 % -0.9 % 0.9 %
RH1B Enthalpy -2.3 % -0.9 % -0.4 % 0.4 %
RH1B Pressure 4.0 % 0.07 % 0.1 % 0.2 %
RH2 Wall Temperature -3.6 % 0.3 % -0.5 % 0.5 %
RH2 Enthalpy -1.3 % -0.1 % -0.3 % 0.3 %
RH2 Pressure 4.0 % -0.2 % 0.03 % 0.1 %
SHS Wall Temperature -0.7 % 1.0 % -0.4 % 0.4 %
SHS Enthalpy -6.2 % 0.7 % -0.6 % 0.8 %
SHS Pressure -7.0 % 0.05 % -0.1 % 0.2 %
SH1 Wall Temperature -4.5 % 0.4 % 0.1 % 0.3 %
SH1 Enthalpy -23.5 % -0.03 % -1.2 % 1.4 %
SH1 Pressure -7.0 % 0.06 % -0.1 % 0.2 %
SH2 Wall Temperature -13.1 % -0.5 % -0.5 % 0.6 %
SH2 Enthalpy -18.8 % -0.6 % -1.7 % 1.8 %
SH2 Pressure -7.0 % 0.03 % -0.2 % 0.2 %
SH3 Wall Temperature -11.8 % -0.3 % -0.4 % 0.5 %
SH3 Enthalpy -14.2 % -0.4 % -0.9 % 0.9 %
SH3 Pressure -7.1 % -0.006 % -0.2 % 0.2 %
SH4 Wall Temperature -14.7 % -0.4 % -0.5 % 0.6 %
SH4 Enthalpy -9.3 % -0.4 % -0.5 % 0.5 %
SH4 Pressure -7.1 % -0.05 % -0.2 % 0.2 %
Header SH4 Wall Temperature -14.8 % 0.4 % -0.3 % 0.4 %
Header SH4 Enthalpy -9.3 % -0.4 % -0.4 % 0.4 %
Header SH4 Pressure -7.2 % -0.09 % -0.2 % 0.2 %
Header RH2 Wall Temperature -3.7 % 0.1 % -0.2 % 0.3 %
Header RH2 Enthalpy -1.3 % -0.2 % -0.3 % 0.3 %
Header RH2 Pressure 3.8 % -0.5 % -0.08 % 0.2 %
Evaporator Wall Temperature -0.2 % 0.4 % 0.7 % 0.8 %
Evaporator Enthalpy -0.6 % 10.3 % 3.4 % 3.5 %
Evaporator Pressure -1.5 % 0.009 % 0.03 % 0.1 %
Level-Controller Integral Error -3.9 % -568 % -48.4 % 54.3 %
Separator Mixture Enthalpy -1.8 % 103 % 4.2 % 4.5 %
Separator Mixture Pressure -6.9 % 0.04 % -0.09 % 0.2 %

Table A.4 Results from the UKF estimation in experiment A.3 (optimized input).
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -6.3 % -0.03 % -0.2 % 0.2 %
RH1A Enthalpy -1.6 % 0.4 % 0.4 % 0.5 %
RH1A Pressure 3.4 % 0.5 % 1.3 % 1.3 %
RH1B Wall Temperature -5.4 % -0.09 % -0.3 % 0.3 %
RH1B Enthalpy -1.3 % 0.5 % 0.4 % 0.5 %
RH1B Pressure 3.2 % 1.2 % 1.9 % 1.9 %
RH2 Wall Temperature 7.1 % -0.8 % -0.4 % 0.9 %
RH2 Enthalpy 3.1 % 0.3 % 0.5 % 0.5 %
RH2 Pressure 2.9 % 1.7 % 2.4 % 2.4 %
SHS Wall Temperature 0.5 % -0.2 % -0.4 % 0.7 %
SHS Enthalpy 11.8 % 28.3 % 47.0 % 50.0 %
SHS Pressure 6.2 % -0.1 % 0.1 % 0.3 %
SH1 Wall Temperature -1.6 % -4.8 % -2.5 % 2.5 %
SH1 Enthalpy -0.7 % -159 % -50.7 % 52.3 %
SH1 Pressure 6.2 % -0.1 % 0.1 % 0.3 %
SH2 Wall Temperature -2.0 % 3.0 % 0.7 % 1.4 %
SH2 Enthalpy -1.0 % -56.2 % -18.0 % 19.4 %
SH2 Pressure 6.1 % -0.2 % 0.09 % 0.3 %
SH3 Wall Temperature 12.0 % 1.8 % 1.0 % 1.1 %
SH3 Enthalpy 4.8 % -0.5 % 2.3 % 3.0 %
SH3 Pressure 6.1 % 0.06 % 0.2 % 0.3 %
SH4 Wall Temperature 6.5 % -0.07 % 0.3 % 0.4 %
SH4 Enthalpy 2.4 % -0.5 % -0.2 % 0.4 %
SH4 Pressure 6.0 % 0.3 % 0.4 % 0.4 %
Header SH4 Wall Temperature 2.4 % 0.003 % 0.08 % 0.09 %
Header SH4 Enthalpy 2.3 % -0.4 % -0.2 % 0.4 %
Header SH4 Pressure 6.0 % 0.5 % 0.6 % 0.6 %
Header RH2 Wall Temperature 6.6 % 0.03 % 0.3 % 0.3 %
Header RH2 Enthalpy 3.0 % 0.7 % 0.7 % 0.7 %
Header RH2 Pressure 2.8 % 2.4 % 3.1 % 3.0 %
Evaporator Wall Temperature -1.0 % 0.6 % 0.6 % 0.7 %
Evaporator Enthalpy -1.2 % 2.4 % 2.4 % 2.5 %
Evaporator Pressure 17.0 % -0.0007 % 0.6 % 0.6 %
Separator Mixture Enthalpy 1.6 % 0.2 % 0.7 % 1.3 %
Separator Mixture Pressure 6.0 % -0.4 % 0.02 % 0.4 %

Table A.5 Results from the UKF estimation in experiment B.1 (10 s sampling interval).
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -4.6 % 0.03 % -0.09 % 0.2 %
RH1B Wall Temperature -3.8 % 0.02 % -0.08 % 0.1 %
RH2 Wall Temperature 8.3 % -0.03 % -0.1 % 0.1 %
SHS Wall Temperature -0.3 % -0.5 % -0.6 % 0.7 %
SH1 Wall Temperature -11.9 % -0.006 % -0.01 % 0.1 %
SH2 Wall Temperature -4.8 % -0.04 % -0.04 % 0.1 %
SH3 Wall Temperature 13.2 % -0.02 % -0.03 % 0.1 %
SH4 Wall Temperature 6.7 % -0.02 % 0.004 % 0.09 %
Header SH4 Wall Temperature 2.6 % 0.005 % -0.001 % 0.1 %
Header RH2 Wall Temperature 7.8 % 0.05 % 0.02 % 0.1 %
Evaporator Wall Temperature 1.1 % 0.4 % 0.5 % 0.5 %

Table A.6 Results from the UKF estimation in experiment B.3 (modified optimization
model and 10 s sampling interval). Since the steam relations are static in B.3 only wall tem-
peratures are estimated in the UKF.
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Appendix A. Estimation Results

State Initial Error Final Error Mean Error Mean Absolute Error
RH1A Wall Temperature -0.6 % 0.1 % -0.008 % 0.05 %
RH1A Enthalpy -0.2 % 0.05 % -0.003 % 0.02 %
RH1A Pressure 0.4 % -0.03 % 0.02 % 0.05 %
RH1B Wall Temperature -0.3 % 0.09 % 0.001 % 0.03 %
RH1B Enthalpy -0.1 % 0.04 % 0.0009 % 0.01 %
RH1B Pressure 0.4 % -0.02 % 0.01 % 0.05 %
RH2 Wall Temperature -0.2 % 0.04 % 0.008 % 0.03 %
RH2 Enthalpy -0.07 % 0.02 % 0.004 % 0.01 %
RH2 Pressure 0.4 % -0.02 % 0.01 % 0.05 %
SHS Wall Temperature -0.2 % -0.0003 % -0.007 % 0.009 %
SHS Enthalpy -2.2 % 0.002 % -0.05 % 0.07 %
SHS Pressure -2.6 % -0.002 % -0.05 % 0.06 %
SH1 Wall Temperature -1.9 % 0.04 % -0.04 % 0.09 %
SH1 Enthalpy -0.7 % 0.04 % -0.02 % 0.05 %
SH1 Pressure -2.6 % -0.001 % -0.05 % 0.06 %
SH2 Wall Temperature -1.0 % 0.05 % -0.02 % 0.06 %
SH2 Enthalpy -0.4 % 0.05 % -0.004 % 0.03 %
SH2 Pressure -2.7 % -0.0009 % -0.05 % 0.06 %
SH3 Wall Temperature -0.5 % 0.05 % -0.008 % 0.05 %
SH3 Enthalpy -0.2 % 0.05 % -0.001 % 0.03 %
SH3 Pressure -2.7 % -0.0006 % -0.05 % 0.06 %
SH4 Wall Temperature -0.4 % 0.05 % -0.005 % 0.04 %
SH4 Enthalpy -0.1 % 0.04 % 0.00006 % 0.02 %
SH4 Pressure -2.7 % -0.0002 % -0.05 % 0.06 %
Header SH4 Wall Temperature -0.4 % 0.02 % -0.006 % 0.04 %
Header SH4 Enthalpy -0.1 % 0.04 % 0.005 % 0.02 %
Header SH4 Pressure -2.7 % 0.0001 % -0.05 % 0.06 %
Header RH2 Wall Temperature -0.2 % -0.002 % 0.004 % 0.04 %
Header RH2 Enthalpy -0.07 % 0.02 % 0.006 % 0.02 %
Header RH2 Pressure 0.3 % -0.02 % 0.01 % 0.05 %
Evaporator Wall Temperature -0.2 % -0.008 % -0.001 % 0.01 %
Evaporator Enthalpy -0.5 % -0.06 % -0.001 % 0.04 %
Evaporator Pressure -0.7 % -0.01 % -0.02 % 0.02 %
Level Controller Integral Error -0.7 % 3.4 % 0.1 % 0.5 %
Separator Mixture Enthalpy -0.7 % 0.02 % -0.01 % 0.03 %
Separator Mixture Pressure 2.6 % -0.002 % -0.05 % 0.06 %
HP-T Bypass Valve Disturbance 100 % -3.5 % 2.9 % 4.1 %
IP-T Bypass Valve Disturbance 100 % -9.8 % 3.1 % 5.4 %
Firing Power Disturbance 100 % -73.9 % 27.0 % 55.6 %

Table A.7 Results from the UKF estimation in the demonstrator run.
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The start-up has been optimized in regards to time and fuel usage. The thesis is done as a joint project 
between Vattenfall and Modelon. Both NMPC and UKF are nonlinear methods and require a model 
of the power plant. The model used in this thesis has been developed in the language Modelica in a 
previous master thesis and has been extended and improved upon during this thesis. The optimization 
and simulation of the model required by the NMPC and UKF was done within the framework of 
JModelica.org. Another, more detailed, model of the power plant, developed by Vattenfall, was 
originally planned to be used as the process to be controlled.
State estimation using the UKF has been successful, with a maximum mean absolute error of 0.7 % 

when estimating the states of the detailed model in a reference startup. When using the NMPC to 
control the optimization model itself, the simulated start-up time is 70 minutes faster compared to a 
reference start-up using the detailed model. This is more than half the time of the first phase of the 
start-up. The total firing power, which relates to the fuel amount, is also considerably less, with the
optimized value being about 40 % of that in the reference soft start with the detailed model.
Due to difficulties in initializing the detailed model, it was not possible to run it online together with 

the NMPC and UKF. Running the NMPC and UKF together on the optimization model worked, but 
the NMPC failed to find an optimal trajectory 8 out of 10 iterations. The conclusion is that the start-
up has potential for optimization, but requires more robust models to work with.
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