9,380 research outputs found

    State Amplification Subject To Masking Constraints

    Full text link
    This paper considers a state dependent broadcast channel with one transmitter, Alice, and two receivers, Bob and Eve. The problem is to effectively convey ("amplify") the channel state sequence to Bob while "masking" it from Eve. The extent to which the state sequence cannot be masked from Eve is referred to as leakage. This can be viewed as a secrecy problem, where we desire that the channel state itself be minimally leaked to Eve while being communicated to Bob. The paper is aimed at characterizing the trade-off region between amplification and leakage rates for such a system. An achievable coding scheme is presented, wherein the transmitter transmits a partial state information over the channel to facilitate the amplification process. For the case when Bob observes a stronger signal than Eve, the achievable coding scheme is enhanced with secure refinement. Outer bounds on the trade-off region are also derived, and used in characterizing some special case results. In particular, the optimal amplification-leakage rate difference, called as differential amplification capacity, is characterized for the reversely degraded discrete memoryless channel, the degraded binary, and the degraded Gaussian channels. In addition, for the degraded Gaussian model, the extremal corner points of the trade-off region are characterized, and the gap between the outer bound and achievable rate-regions is shown to be less than half a bit for a wide set of channel parameters.Comment: Revised versio

    Information Masking and Amplification: The Source Coding Setting

    Full text link
    The complementary problems of masking and amplifying channel state information in the Gel'fand-Pinsker channel have recently been solved by Merhav and Shamai, and Kim et al., respectively. In this paper, we study a related source coding problem. Specifically, we consider the two-encoder source coding setting where one source is to be amplified, while the other source is to be masked. In general, there is a tension between these two objectives which is characterized by the amplification-masking tradeoff. In this paper, we give a single-letter description of this tradeoff. We apply this result, together with a recent theorem by Courtade and Weissman on multiterminal source coding, to solve a fundamental entropy characterization problem.Comment: 6 pages, 1 figure, to appear at the IEEE 2012 International Symposium on Information Theory (ISIT 2012

    State Leakage and Coordination of Actions: Core of the Receiver's Knowledge

    Full text link
    We revisit the problems of state masking and state amplification through the lens of empirical coordination by considering a state-dependent channel in which the encoder has causal and strictly causal state knowledge. We show that the problem of empirical coordination provides a natural framework in which to jointly study the problems of reliable communication, state masking, and state amplification. We characterize the regions of rate-equivocation-coordination trade-offs for several channel models with causal and strictly causal state knowledge. We introduce the notion of `core of the receiver's knowledge' to capture what the decoder can infer about all the signals involved in the model. We exploit this result to solve a channel state estimation zero-sum game in which the encoder prevents the decoder to estimate the channel state accurately.Comment: preliminary draf

    Sound and noise

    Get PDF
    Sound and noise problems in space environment and human tolerance criteria at varying frequencies and intensitie

    Dynamics of internetwork chromospheric fibrils: Basic properties and MHD kink waves

    Get PDF
    Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα\alpha in the internetwork. We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as Magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides. We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα\alpha wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120120~s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfv\'en speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of the IN fibril.Comment: Accepted Astronomy & Astrophysic
    corecore