212 research outputs found

    An study of the effect of process malleability in the energy efficiency on GPU‑based clusters

    Get PDF
    The adoption of graphic processor units (GPU) in high-performance computing (HPC) infrastructures determines, in many cases, the energy consumption of those facilities. For this reason, an efficient management and administration of the GPU-enabled clusters is crucial for the optimum operation of the cluster. The main aim of this work is to study and design efficient mechanisms of job scheduling across GPU-enabled clusters by leveraging process malleability techniques, able to reconfigure running jobs, depending on the cluster status. This paper presents a model that improves the energy efficiency when processing a batch of jobs in an HPC cluster. The model is validated through the MPDATA algorithm, as a representative example of stencil computation used in numerical weather prediction. The proposed solution applies the efficiency metrics obtained in a new reconfiguration policy aimed at job arrays. This solution allows the reduction in the processing time of workloads up to 4.8 times and reduction in the energy consumption up to 2.4 times the cluster compared to the traditional job management, where jobs are not reconfigured during their execution

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions

    Get PDF
    This paper reviews thermal management challenges encountered in a wide range of electronics cooling applications from large-scale (data center and telecommunication) to smallscale systems (personal, portable/wearable, and automotive). This paper identifies drivers for progress and immediate and future challenges based on discussions at the 3rd Workshop on Thermal Management in Telecommunication Systems and Data Centers held in Redwood City, CA, USA, on November 4–5, 2015. Participants in this workshop represented industry and academia, with backgrounds ranging from data center thermal management and energy efficiency to high-performance computing and liquid cooling, thermal management in wearable and mobile devices, and acoustic noise management. By considering a wide range of electronics cooling applications with different lengths and time scales, this paper identifies both common themes and diverging views in the thermal management community

    3D Polarized Light Imaging Portrayed: Visualization of Fiber Architecture Derived from 3D-PLI

    Get PDF
    3D polarized light imaging (3D-PLI) is a neuroimaging technique that has recently opened up new avenues to study the complex architecture of nerve fibers in postmortem brains at microscopic scales. In a specific voxel-based analysis, each voxel is assigned a single 3D fiber orientation vector. This leads to comprehensive 3D vector fields. In order to inspect and analyze such high-resolution fiber orientation vector field, also in combination with complementary microscopy measurements, appropriate visualization techniques are essential to overcome several challenges, such as the massive data sizes, the large amount of both unique and redundant information at different scales, or the occlusion issues of inner structures by outer layers. Here, we introduce a comprehensive software tool that is able to visualize all information of a typical 3D-PLI dataset in an adequate and sophisticated manner. This includes the visualization of (i) anatomic structural and fiber architectonic data in one representation, (ii) a large-scale fiber orientation vector field, and (iii) a clustered version of the field. Alignment of a 3D-PLI dataset to an appropriate brain atlas provides expert-based delineation, segmentation, and, ultimately, visualization of selected anatomical structures. By means of these techniques, a detailed analysis of the complex fiber architecture in 3D is feasible
    • …
    corecore