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Abstract The adoption of Graphic Processors Units (GPU) in high-performance
computing (HPC) infrastructures is determining, in many cases, the energy
consumption of those facilities. For this reason, an efficient management and
administration of the GPU-enabled clusters is crucial for the optimum opera-
tion of the cluster. The main aim of this work is to study and design efficient
mechanisms of job scheduling across GPU-enabled clusters by leveraging pro-
cess malleability techniques, able to reconfigure running jobs, depending on
the cluster status. This paper presents a model that improves the energy ef-
ficiency when processing a batch of jobs in an HPC cluster. The model is
validated through the MPDATA algorithm, as a representative example of
stencil computation used in numerical weather prediction. The proposed so-
lution applies the efficiency metrics obtained in a new reconfiguration policy
aimed at job arrays. This solution allows the reduction of the processing time
of workloads up to 4.8 times and reduction of the energy consumption up to
2.4 times the cluster compared to the traditional job management, where jobs
are not reconfigured during their execution.
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1 Introduction

The current trend in high-performance computing (HPC) facilities is towards
the centralization of large amounts of resources in a data center, which, in
turn, are shared by thousands of users. Users submit their applications to the
system as jobs that request computational resources. In production systems,
it is easy to find a wide variety of jobs with different resource requirements:
from single-node jobs that may even share the same host, to massive jobs
running exclusively over significant portions of the data center. Jobs request
resources to the system in order to be initiated. Those requests are defined
by users who know the characteristics of their jobs. Furthermore, jobs are
not homogeneously submitted across time [15]. Some users can sporadically
submit jobs to the system, while others periodically submit bursts of jobs. This
latter case, for example, can be easily caused by a job which, at each iteration,
spawns a new set of independent jobs with different input data but with the
same resources requirements. This specific kind of bursts of jobs are viewed as
job arrays by many resource manager systems (RMS) such as Slurm1, SGE2,
MOAB3, etc.

This research aims to realize a highly efficient management of the cluster re-
sources in order to improve the global productivity, in terms of completed jobs
per unit of time, when a collection of similar jobs is submitted to the system
in burst mode. For this purpose, malleability methods are leveraged in order
to reconfigure jobs during their execution. In other words, these techniques
dynamically reallocate the assigned resources as well as change the number
of processes in charge of executing the job. Although process malleability has
been integrated into different types of applications such as: master-worker [4],
non-iterative [10] or benchmarks [17], the main target of malleability are iter-
ative applications [7] since they present clear processes synchronization points
where job reconfigurations can be easily triggered [5,11,16,26]. Malleability
has been also implemented with different approaches and frameworks, such as:
non-standard MPI with ULFM [14], Checkpoint-restart [6], CHARM++ [8],
Java virtual machine [25], etc. Concretely, this research relies on the dynamic
management of resources (DMR) process malleability framework [12], a stan-
dard MPI-based solution which provides a modular design that allows its in-
tegration with other programming models, such as CUDA. Indeed, this is the
crucial difference that distinguishes DMR from other malleability solutions
that present a very high level of coupling among their components or are
bound to an ad-hoc programming model.

1 https://slurm.schedmd.com/job array.html
2 http://wiki.gridengine.info/wiki/index.php/Simple-Job-Array-Howto
3 http://docs.adaptivecomputing.com/mwm/7-0/Content/topics/jobAdministration/jobarrays.html
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This paper presents a malleable version of the multidimensional positive
definite advection transport algorithm (MPDATA), which is one of the main
parts of the dynamic core of the Eulerian/semi-Lagrangian fluid solver (EU-
LAG). Following the architecture of systolic procurement [13], EULAG sub-
mits MPDATA job arrays during its execution, making this an ideal candi-
date to study the efficiency of the resource manager in the event of a burst
of jobs [19,27]. As DMR is based on the Slurm workload manager [28], it has
been possible to design a novel job reconfiguration policy that extends Slurm
in order to improve the productivity and energy efficiency for job arrays.

In summary, this paper reports MPDATA as the first GPU-capable mal-
leable application developed and evaluated [22]. The proposed solution is a
systematic procedure to balance the jobs across all the nodes. Moreover, it
also demonstrates that the DMR malleability framework can be efficiently
adapted to heterogeneous programming models, such as CUDA;

The rest of the paper is structured as follows: Section 2 briefly describes
the MPDATA application and the DMR framework. Section 3 develops a the-
oretical study of an energy-efficient scheduling policy for executing job arrays
on a GPU-based cluster and details on its practical implementation. Section 4
explains the design, deploy, and evaluation of the first GPU-capable malleable
application, MPDATA. Section 5 presents strong experimental evidence that
the proposed policy outperforms the productivity results obtained by a tra-
ditional rigid workload that has been evaluated in two GPU-enabled clusters.
Finally, the conclusions of this work can be found in Section 6.

2 Background

2.1 3D MPDATA Overview

The 3D MPDATA [18,24] application is an iterative algorithm that solves the
continuity equation describing the advection of a nondiffusive quantity Ψ . A
single iteration of MPDATA is called a time step and returns a single array.
The set of states of the Ψ array is obtained after each time step creating the
simulation of a studied phenomenon.

The algorithm is positive defined, and by appropriate flux correction can
also be monotonic, a desirable feature for advection of positive definite vari-
ables such as specific humidity, cloud water, cloud ice, rain, snow, aerosol
particles, and gaseous substances. The spatial discretization of MPDATA is
based on finite difference approximations. The algorithm is iterative and fast
convergent. In the first sub-step, advection of the Ψ field is computed with the
standard donor-cell approximation, which ensures the first-order of accuracy
only. In the subsequent time step, corrections are applied to make the scheme
more accurate (i.e., second-order in space and time). In the corrective sub-step,
the donor-cell approximation is used again but with new anti-diffusive veloc-
ities computed based on the advected fields. The procedure can be repeated
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many times; however, typically, after more than two corrections, no significant
improvements are observed.

In fact, to implement this algorithm, 11 arrays are allocated. The first six,
v1, v2, v3, v1P , v2P and v3P , represent velocities in each direction, where
v1P, v2P, and v3P are required to store intermediate results. The next two
correspond to scalar quantities, one for odd time steps and another for even
time steps. The array h represents the vector of density, while cp, cn store
intermediate results.

As most stencil-based applications, MPDATA belongs to a group of memory-
bound algorithms. To provide high efficient memory access [20], each row of
arrays is aligned to a size of 128B. For this purpose, it is required to add some
extra data at the beginning of each array to align the first element of the
data and an appropriate number of extra columns to provide data alignment
(padding) [21] for each row. This data reorganization allows the attainment
of GPU coalesced memory access [1]. The structure of the array is shown in
Figure 1.

Fig. 1 Data structure of each array of MPDATA.

The current GPU implementation consists of four GPU kernels that per-
form a sequence of stencil computations. In order to compute a single element
of the output array, it is required to perform around 343 flops (floating-point
operations) per each time step (with some differences at the borders of the
computational domain). After each time step, halo areas need to be exchanged
between adjacent subarrays of the output array. The communication requires
sending and receiving halo areas of size 3 on each side of a subarray.
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2.2 Dynamic Management of Resources

This work is based on the DMR malleability framework. This solution pro-
vides a series of tools to introduce process malleability into a message passing
interface (MPI) application easily. DMR includes two major components: On
the one hand, a resource management system (RMS) responsible for resource
allocation. Concretely, DMR relies on the Slurm Workload Manager and an
extension with a module for scheduling job processes reconfigurations. Fur-
thermore, thanks to its application programming interface (API), other com-
ponents can interact with it exploiting all its potential. On the other hand, a
parallel runtime that spawns and terminates MPI processes, handles the data
redistributions, and resumes the execution at the exact point where malleabil-
ity was triggered. Specifically, DMR is based on a version of the Nanos++
runtime [23] with support for detached offloading [11].

Figure 2 depicts how the DMR components communicate and how DMR
is linked with an application. The communication layer between the RMS and
the runtime, and an API for the users, enables job malleability. A typical
scenario for DMR malleability is the following:

– A job, periodically, sends a reconfiguration request to the RMS. The most
common case is in iterative applications, where each timestep represents
an ideal point for resizing.

– The RMS receives the request and checks the system. Although this process
depends on the selected reconfiguration policy, usually, the RMS takes into
account the resources utilization and the queue of jobs.

– If the system can be optimized (the reconfiguration policy determines this
optimization), the RMS will notify the runtime about the imminent recon-
figuration.

– The runtime retrieves the process communication pattern and the resuming
point. With this information, the runtime will perform the data redistri-
bution, according to the communication pattern. Once the data has been
redistributed, the runtime will resume the execution in the timestep where
it was left.

– Finally, the job continues with the remaining iterations but with a new
process layout.

º

RMS Runtime

DMR App

Malleable Job

Fig. 2 DMR architecture and integration in an application.
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DMR allows applications to change the number of resources during the
execution of a job [11] by: i) expanding jobs, assigning more nodes to a job;
or ii) shrinking jobs, releasing resources from a job, setting them available to
be reassigned. Those decisions are made by Slurm, taking into account the
following information:

– The workload size. In other words, the number of jobs in the queue, pay-
ing special attention to the number of pending jobs and their resource
requirements.

– The scalability of each job and their lower and upper malleability limits.
– The number of available nodes within the cluster.

Summarizing, DMR expands and shrinks jobs on-the-fly by reassigning the
underlying resources, spawning new MPI processes, redistributing the data
among processes, and resuming the execution where it was left for reconfigur-
ing.

The integration of the DMR library in the user’s application allows the
attainment of consistency of the internal data processed by the application.
Reconfiguring a job with a new layout of nodes usually involves a reshape of
the computational domain of the application, where the domain needs to be
redistributed to the new set of nodes. It may affect the size of the domain,
topology of nodes, and communication among nodes.

3 Preliminary study on the energy efficiency

With an efficient management of resources, the goal is to increase the global
efficiency when executing job arrays, henceforth referred to as workload. The
efficiency of the workload is defined as the relation of speedup of an parallel al-
gorithm to the number of nodes used by the algorithm. Speedup is a multiplier
indicating how many times faster the parallel algorithm is than its sequential
version. The efficiency is expressed as Effn = Sn/n, where Sn = t1/tn is the
speedup of the job executed using n nodes in time tn over a job executed se-
quentially in time t1. The range of the efficiency is Eff ∈ [0..1]. In the MPDATA
application, the execution time using n nodes is expressed as the communi-
cation time (tc) of a single node (all nodes communicate in parallel) and a
serial time of computation (t1) over number of nodes tn = tc + t1/n. The
data transfer occurs between neighboring nodes and has a fixed size (the halo
area is of size 3), independent on the number of nodes. For this reason, the
communication time is assumed to be constant in the above equation.

By increasing the number of nodes, the size of the sub-domain is decreased,
and the communication between neighboring nodes is required. In an ideal sce-
nario, the communication would be at no temporal cost. In a real scenario,
communication results in overhead, so it is assumed that the efficiency of
MPDATA decreases when using more nodes. The communication overhead is
related to a smaller size of computation for a higher number of nodes. As a
result, the computation time decreases while the communication time is con-
stant. For this reason, the ratio of computation to communication decreases.
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To conclude the above discussion it is expected to achieve the highest
efficiency by:

– executing in parallel as many small jobs as possible, since lowering the
number of nodes per a single job increases the efficiency: Max(Effi) =
Effi(min(i)), where i ∈ [1..n];

– allocating in parallel all the available nodes by maximizing the number of
independent jobs (the most efficient scenario is to execute n jobs per n
nodes allocating one job per node).

The main idea behind the proposed solution is to minimize the resources
for a single job while keeping the utilization of the entire cluster. There are to
main scenarios to consider:

– the traditional scenario, based on allocating the maximum number of nodes
per a single job for which the algorithm is scalable;

– the proposed scenario, based on executing the maximum number of jobs
in parallel by reducing the number of nodes per a single job.

Let us consider the proposed scenario from the perspective of energy con-
sumption. Generally, the power consumption of current CPUs and GPUs can
be described as the sum of static power and dynamic power. Concretely, fo-
cusing on GPUs and considering n nodes, the power consumption generated
by all the GPUs used by an algorithm is given by:

P (n) = (PS + Pn
D) · n, (1)

where PS is the static power per node (dependent on-chip layout and circuit
technology and independent of the workload execution), Pn

D is the dynamic
power per node (dependent on transistors switching overhead). Since the static
power is independent on the resource utilization by an algorithm, the dynamic
power changes with the active state of GPUs. The active state is related to the
efficiency (Eff ), which is relatively determined by the number of nodes (n).
High scalable algorithms achieve the maximum efficiency when Eff(n) = 1
(the exception is a super scalability of algorithms that is not considered in
this paper). It is assumed that it is worth to analyze the algorithm when its
efficiency is higher than 1/n. The efficiency below 1/n suggests that it is more
efficient to reduce the number of nodes. So the lower limit of the efficiency
that is considered in this work is Eff(n) < 1/n. It is assumed that there is no
performance gain with a higher number of nodes. In summary, there are taken
into account the following assumptions:

Pn
D ∝ Eff(n); Eff ∈ [

1

n
...1]; E ≈ P · t. (2)

In accordance with the above assumptions, the execution time of an algorithm
executed using n+ 1 nodes is within the following range:

tn+1 ∈ [tn ·
n

n+ 1
...tn]. (3)
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Assuming a high limit of efficiency (Eff = 1), the active state of GPUs is
constant and Pn+1

D = Pn
D, as well as tn+1 = tn ·n/(n+ 1). In this scenario, the

energy reduction from using less number of nodes is lost by a higher execution
time of a job. Then the energy reduction from utilizing the proposed scenario
of allocating the lower number of nodes per job is insignificant:

E(n+ 1)− E(n) ≈ n · tn · (Pn+1
D − Pn

D) ≈ 0 (4)

Considering a low limit of efficiency (Eff(n) = 1/n), the dynamic power
per node is decreasing with a higher number of nodes per job (Pn+1

D < Pn
D)

and the execution time is tn+1 = tn. In this scenario, there is a possibility to
observe the energy reduction whether the dynamic power per node meets the
following condition:

E(n+ 1)− E(n) > 0 =⇒ Pn+1
D > Pn

D ·
n

n+ 1
− PS

n+ 1
(5)

In the MPDATA algorithm, in accordance to the assumptions (2), the for-
mula (5) is equivalent to:

E(n+ 1)− E(n) > 0 =⇒ 1

n+ 1
· Pn

D >
1

n+ 1
· Pn

D −
PS

n+ 1
, (6)

which is true when PS > 0. Based on the above considerations, it is expected
that the proposed scenario provides maximization of the efficiency and im-
proves the performance. It is also expected that the energy consumption will
be reduced, or in the worst scenario it will not be lost.

In order to discuss the proposed approach to process job arrays, we briefly
review our method by an example. Let us consider an example when a 3-job
workload is distributed across a 6-node cluster. Assume that each job scales
up to 4 nodes. The execution time of each job consists of the computation
and communication time among nodes, where the number of nodes is greater
than one (a single node execution does not require communication). In this
regard, the computation time can be reduced by half when the number of
nodes is doubled. With a single dimension mesh decomposition, the size of data
transfers between nodes is the same, so the communication time is expected
to be constant. This assumption is confirmed [20] for a group of iterative
algorithms, such as MPDATA, where the halo area size is unchanged with the
number of nodes greater than 1 and the size of sub-domain per node greater
than the size of halo area. Figure 3 depicts this example. The blue arrows indict
neighboring nodes that communicate with each other. White boxes indict the
communication part, while grey boxes indict the computation part of jobs.

Traditionally, jobs are submitted to the system with the resource config-
uration that maximizes performance to complete the execution earlier (the
traditional scenario). However, this is not what usually happens when many
jobs compete for the same resources [9]. This argument is illustrated via an
example that describes this scenario. Concretely, in this example, each job is
executed in 4 nodes. Since there are only 6 available nodes, the Slurm manager
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Fig. 3 Reduction of execution time depending on number of nodes.

enqueues the jobs and executes them one by one. Although this approach pro-
vides the highest performance, it also has side effects such as: (i) some nodes
will remain idle; (ii) the efficiency of the allocated nodes is not maximized;
and (iii) the global productivity is completely ignored. This working mode is
illustrated in Figure 4, where jobs are executed one by one.

Fig. 4 Traditional distribution of nodes among jobs executed at their maximum perfor-
mance.

Adopting more flexible strategies, which take into account the system sta-
tus regarding jobs and resources, improves the efficiency. In particular, the
process malleability via DMR has been leveraged, which will resize jobs on–
the–fly depending on the cluster status. DMR originally is equipped with a job
reconfiguration policy that allows users to define the malleability boundaries
for each job. This policy accommodates heterogeneous workloads where jobs
instantiate distinct applications with different scalability configurations [12].
In an effort to improve the efficiency of job arrays submitted to a queue, a
new malleability scheduling strategy has been designed. For this purpose, the
proposed strategy analyzes the entire workload and dynamically adapts the
jobs to the platform’s available resources. As a result, the policy maximizes
the efficiency of each node. In this approach, all the jobs are resized in order to
(i) minimize the communication between nodes; (ii) allocate all the available
resources and reduce the idle time of the nodes; (iii) execute as many jobs
in parallel as possible; and (iv) increase the global throughput by completing
more jobs in less time. The proposed scenario is represented in Figure 5.

The potential gain in performance of the proposed scenario over the tra-
ditional ones is depicted in Figure 6. Considering a job array, it is expected
that the execution of 3 jobs using 4 nodes per job (Figure 4) offers a lower
performance than executing 3 jobs with 2 nodes per job (Figure 5) for a clus-
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Fig. 5 Distribution of nodes among jobs by analyzing the current workload and the available
resources.

ter equipped with 6 nodes. The proposed scenario is more efficient due to the
following reasons:

– the traditional scenario includes 3 jobs, each of them uses 4 nodes that
require to execute nine bidirectional data transfers (Figure 4);

– the proposed scenario uses 6 nodes simultaneously, but only 2 nodes need
to be synchronized per job that gives three bidirectional data transfers
(Figure 5);

– the efficiency decreases with the higher number of nodes per a single job;
– the proposed scenario has lower granularity, so it is more adaptable to a

cluster with 6 available nodes (6 is divisible by 2) than the traditional
scenario, where there are 2 idle nodes (the number of available nodes need
to be divisible by 4).

Fig. 6 Comparison of the traditional (when jobs are evaluated as individual) and the job
arrays aware policies.

Furthermore, different working modes are provided for efficient job recon-
figuration that, in some cases, can be less restrictive and, in consequence, can
provide higher performance of some applications. Those modes are dedicated
to the applications, where the parallelization model design is too complex
to provide the most flexible management of application resources. Here, four
reconfiguration working modes can be selected by a user:

– fixed - the job is launched with a determined number of processes, and they
stay invariable during the whole execution. This mode is the traditional
working mode in production clusters.
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– moldable - the job can be initiated with different number of processes, but
once it is initiated, the number of processes will remain invariable during
the whole execution;

– malleable - the job is launched with a determined number of processes, but
during the execution, the job can be resized;

– flexible - the job can be initiated with a different number of processes, and
during the execution, the job can be resized.

The idea of each policy is depicted in Figure 7.

Fig. 7 Different policies of the proposed scheduler.

4 Dynamic Reconfiguration of the Computational Domain of
MPDATA

. The data structure of MPDATA is decomposed in order to provide GPU coa-
lesced memory access. In the proposed solution, the data allocation is evaluated
by a data manager. This evaluation determines a set of input parameters with
the most appropriate data organization. Finally, the data manager returns the
array that is allocated both on the host and device. This array stores one
chunk of the computational domain of MPDATA that is distributed across a
set of nodes. The list of input parameters of the proposed data manager is:
3D computational domain (N ×M ×L) that represents the size of MPDATA
task, number of nodes (n), topology (TN ) of nodes defined as [n/TN × TN ],
data alignment (see Figure 1) expressed in bytes (A), number of GPUs per
node (G), topology (TG) of GPUs per node defined as [G/TG × TG], sizes of
CUDA blocks [1] for each of four GPU kernels (Kx

i ×K
y
i , where i ∈ [1, 2, 3, 4]),

and halo area size (H) for data transfers (the MPDATA algorithm requires to
keep halo area of size H = 3, expressed in a number of rows/columns). The
topology parameters characterize the number of rows and columns within a
mesh of GPUs per node (G) or nodes (n). For example, the algorithm config-
ured with n = 16 number of nodes and TN = 2 topology of nodes creates a
2D mesh of size 8× 2.
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The data manager uses a 2D decomposition over a 3D computational do-
main. The decomposition is performed across the N and M dimensions. The
CUDA blocks are organized into 2D blocks across the N and M dimensions.
Each GPU kernel then computes a single loop iterating across the third dimen-
sion. The memory organization is designed in the following order: the memory
is continuous across the M dimension, then across the L dimension, and fi-
nally across the N dimension. To prepare the data structures, the proposed
solution to calculates the number of rows (T y) that represents the topology of
the domain decomposition and the size of each sub-domain (DN ×DM ):

T y = G · TN ; DN = dN/(n/TN )e; DM = dM/TNe. (7)

Then, the maximum size of a CUDA block for all the kernels are calculated:

mxx = max(Kx
i ); mxy = max(Ky

i ); i ∈ [1, 2, 3, 4]. (8)

The size Sn of a sub-array is obtained based on the following equation:

Sn = 2 ·H + rndT (rndT (dDN/T
ye,mxy), T y), (9)

while the size Sm is calculated as:

Sm = rndT (rndT (rndT (dDM/TGe,mxx), TG) + 2 ·H,A), (10)

where the function rndT (x, y) returns the x value rounded up to y: rndT (x, y) =
dx/ye · y. The number of threads (Thn × Thm) that should be created follow-
ing the CUDA programming model, organized into two-dimensional blocks is
computed based on the following equations:

Thn = rndT (dDN/T
ye,mxy), and Thm = rndT (dDM/TGe,mxx). (11)

Finally, the data manager returns the array size that is organized as it is shown
in Figure 1:

size = Sn · Sm · (L+ 2 ·H) +A. (12)

This corresponds to the number of asynchronous streams that needs to be
created is equal to the number G - GPUs per node. The size of CUDA grid
expressed in number of CUDA blocks per GPU kernel is equal to:

SB = dTm/Kx
i e × dTn/K

y
i e, i ∈ [1, 2, 3, 4]. (13)

Developing a malleable version of MPDATA requires the preparation of two
procedures within the MPDATA application leveraged by the scheduler. The
first one is executed when the number of nodes needs to be increased and,
therefore, can be regarded as an expanding procedure. The second one is re-
sponsible for releasing the cluster resources and is referred to as a shrinking
procedure. The MPDATA application design is based on the PCAM model [2],
where the parallelization of the code is performed in four stages, namely Par-
tition, Communication, Agglomeration, and Map (Figure 8), discussed later
in this section.
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Fig. 8 Design methodology of MPDATA based on PCAM model.

Both the procedures (expanding and shrinking) are responsible for rebuild-
ing the computational domain of the application and modifying the number
of computing nodes. The procedures start with the partition stage. Here, the
scheduler modifies the following parameters: number of nodes n and topol-
ogy TN . By default, each time the application is requested to be expanded
or shrunk, the number of nodes n is doubled or reduced by a half. The new
topology of nodes (TN ) is recalculated in accordance with the following for-
mula: TN = bsqrt(n)c. This formula provides the same number of rows as
columns if possible; otherwise, the number of rows is greater than number
columns. Then the data manager returns new sub-arrays for each node based
on Equations 1− 8.

The second stage, called communication, is responsible for estimating the
halo areas between neighbor nodes within the new computational domain. The
MPI rank of the right/left neighboring node is calculated by adding/subtracting
the value n/Tn to/from the current MPI rank. The top/bottom neighboring
node is obtained by adding/subtracting 1 value to/from the current MPI rank.
In a third step, called agglomeration, the communication is performed. The
data exchange is organized in the following sequence of data transfers in or-
der to improve the performance of communications between neighbor nodes:
(i) transfer data between left and right neighbors simultaneously - here the
columns of the sub-matrices are copied without its top and bottom halo areas;
(ii) communicate the top and bottom neighbors simultaneously with their halo
areas. With this mechanism, it is not necessary performing diagonal updates of
data located at the corners of the computational domain. Furthermore, it re-
duces the maximum number of data transfers to four (left/right/top/bottom)
instead of nine (all-around nodes). The last stage, map, is responsible for send-
ing data from the host memory to the GPU global memory, where it is further
processed by the GPU kernels in a CUDA blocks fashion [1]. All the data
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transfers between host and device are performed using asynchronous CUDA
streams.

5 Experimental Evaluation

5.1 Testing Environment

The effectiveness of the proposed scheduler is validated using the GPU-based
cluster Minotauro at the Barcelona Supercomputing Center (BSC). This clus-
ter has two different configurations for which the following scenarios have been
deployed:

– 41 nodes equipped with an NVIDIA Tesla M2090 GPUs (512 CUDA cores
and 6 GB of GDDR5 memory). Each node comprises 2 Intel E5649 sockets
(6 cores at 2.53 GHz each) for a total of 12 cores with 24 GB of main
memory. The nodes are interconnected through a 40 Gbit/s Infiniband
QDR network.

– 21 nodes equipped with an NVIDIA Tesla K80 GPUs (4992 CUDA cores
and 2 x 12 GB of GDDR5 memory). Besides, nodes contain 2 Intel Xeon
E5-2630 v3 sockets (8 cores at 2.4 GHz each) for a total of 16 cores with
128 GB of main memory. The nodes are interconnected through a 56 Gbit/s
Infiniband FDR network.

The software stack was composed of CUDA 8.0, MPICH 3.2, OmpSs 15.06,
and Slurm 15.08. Slurm was configured with the following plug-ins:

– Job scheduling: sched/backfill with 10-second interval time among schedul-
ing attempts.

– Job priority: priority/multifactor without wall time duration of jobs.
– Resource selection: select/linear.

One node of each scenario hosted the Slurm management daemon, while the
remaining ones were used as compute nodes.

5.2 Experimental Results

This work relies on power profiles [3], to provide an accurate energy measure-
ment. All the energy estimations are based on the power dissipation of GPU
devices. The power consumption of communication/networking is not mea-
sured. In more detail, nvidia-smi tool is leveraged to query GPU sensors and
capture the current power draw of the GPU and time stamps. Based on them,
the energy consumption of MPDATA is obtained by integrating power curves
over the corresponding executions. All the experiments include workloads of
9 MPDATA jobs with a grid of size 2048 × 1024 × 64 and 10.000 time steps.
The power profiles of MPDATA obtained in the first cluster, equipped with
NVIDIA Tesla M2090 GPUs, are shown in Figure 9. The power profiles are
estimated for the algorithm executed using from 2 to 32 nodes. Experiments
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were repeated ten times to validate their correctness and diminish the effect
of noise. The result reported next corresponds to the median. Repeatability is
examined through the calculation of the maximum root mean squared error
(RMSE) that is below 2.8 for all the achieved results. These results allow the

Fig. 9 Power profiles of MPDATA achieved on the cluster equipped with NVIDIA Tesla
M2090 GPUs.

formulation of the following conclusions: (i) The average power dissipation de-
creases with the number of nodes. This is due to the increase in the number
of nodes reduces the efficiency. (ii) Using more nodes generates a less smooth
power curve than the one visualized when fewer nodes are involved. This re-
sults from the fact of a higher impact of the communications in the algorithm
execution that is not included in the power measurements. A high number of
nodes reduces the number of computations per node within a single time step
of MPDATA, increasing the communication overhead. (iii) The average power
dissipation is lower when more nodes are used. This supports the hypothesis
that the efficiency of the algorithm is higher when the number of nodes is
reduced.
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Figure 10 shows the power profiles of MPDATA on the K80-GPU based
cluster. The method for evaluating power curves is the same as in the first
configuration. The power profiles are estimated based on MPDATA executions
in 2 to 16 nodes. The maximum RMSE of results is 1.8. The achieved results
confirm the assumptions that the highest power dissipation is obtained when
using the lowest number of nodes. The increased communication overhead is
observed with idle states of GPUs, where a higher number of nodes is used.

Fig. 10 Power profiles of MPDATA achieved on the cluster equipped with NVIDIA Tesla
K80 GPUs.

The scalability of the algorithm executed on the first cluster is shown in
Table 1. The second column contains the execution time for each node con-
figuration. The third column shows the average power dissipation of a single
GPU, while the fourth column shows the energy consumed by a single GPU,
estimated based on the power profiles. The total energy column shows the en-
ergy consumed by all GPUs used in the experiment. The last column reports
the ratio between the execution time using a single node and the execution
time achieved for each experiment. The highest performance is observed using
32 nodes, while the lowest energy consumption corresponds to the execution
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with a single node. The energy consumption is more than 5× higher compared
with that on a single node. However, the execution time is reduced by a factor
of 3. This confirms the assumption that the highest efficiency is achieved using
a single node.

Table 1 Execution times and energy results of MPDATA achieved on the cluster equipped
with NVIDIA Tesla M2090 GPUs.

#n time [s] avg. P [W] E/n [kJ] Tot. E[kJ] t1/tn

1 2355 198.5 467.47 467.47 1.00
2 1970 168.3 331.60 663.19 1.20
4 1192 141.6 168.84 675.35 1.98
8 855 123.6 105.69 845.54 2.75
16 831 100.4 83.41 1334.57 2.83
32 796 94.0 74.81 2393.92 2.96

Table 2 shows the execution times and energy results of MPDATA on the
cluster equipped with NVIDIA Tesla K80 GPUs. The execution time com-
pared to the M2090-based cluster is reduced varying from a factor of 1.3 in
a single node to 1.9 on 16 nodes. This is a result of using more advanced ar-
chitecture but also more efficient network in the K80-based cluster. A faster
intercommunication network allows achieving higher speedup and reducing the
communication overhead compared with the previous cluster. In accordance
with the initial assumptions, the power dissipation per GPU is inversely pro-
portional to the number of nodes. For this reason, the highest efficiency is
achieved using a single node.

Table 2 Execution times and energy results of MPDATA achieved on the cluster equipped
with NVIDIA Tesla K80 GPUs.

#n time [s] avg. P [W] E/n [kJ] Tot. E[kJ] t1/tn

1 1705 135.2 230.55 230.55 1.00
2 1248 131.3 163.82 327.65 1.37
4 808 116.4 94.07 376.29 2.11
8 528 101.0 53.32 426.56 3.23
16 433 73.0 31.58 505.32 3.94

The next experiments compare the different working modes: fixed, mold-
able, malleable, and flexible. In those experiments the following measurements
are taken: (i) the execution time, (ii) energy consumption of busy nodes (nodes
where the jobs are running), (iii) energy consumption of idle nodes (during the
execution of the experiment), (iv) energy consumed by the cluster expressed
as a sum of the energy consumed both by the busy and idle nodes, and (v)
resource allocation expressed as a percentage of busy nodes with respect to all
the nodes in the cluster. All the experiments measure the malleability over-
head due to rebuilding the computational domain for each job. The overhead
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varies in the range from 1.1% to 3.5% of the application execution time. This
overhead does not apply to the fixed working mode neither the moldable one,
as in those two cases, the computation domain is not modified during runtime.

The results of the first experiment performed on the cluster equipped with
NVIDIA Tesla M2090 GPUs are shown in Table 3. The flexible mode allows
the reduction of the workload execution time by a factor of 4.8 compared with
that of the fixed mode. The energy consumption is reduced by a factor of
2.4. Here, using the fixed mode, all the jobs are executed sequentially, and
each of them allocates 32 nodes because jobs are launched at their maximum
performance. The flexible mode shrinks all the jobs, and in consequence, it
executes nine jobs in parallel, where each of them allocates 4 nodes. There is
no significant difference between the moldable and malleable working modes
in terms of performance and energy consumption. Both of them reduce the
performance and energy consumption compared with the fixed one, but they
are at about 3× slower and about 1.6× more energy consuming than the
flexible configuration.

Table 3 Comparison of performance results of different malleability working modes for a
workload of 9 jobs on the cluster equipped with NVIDIA Tesla M2090 GPUs.

Mode Time [s] Busy E [kJ] Idle E [kJ] Cluster E [kJ] Res. Alloc. [%]

Fixed 7112 21389 853 22242 88.89
Moldable 4608 14178 731 14909 86.46
Malleable 4440 13681 1475 15156 69.25
Flexible 1472 8887 248 9135 84.43

Table 4 compares the working modes for a cluster equipped with NVIDIA
Tesla K80 GPUs. The highest performance is achieved using the flexible mode,
which resulted in the performance increase of a workload by a factor of 2.5 over
the traditional working mode. The final jobs distribution within the flexible
mode is to use 2 nodes per job that allocates 18 nodes per 9 jobs simultane-
ously. The proposed reconfiguration policy allows the reduction of the energy
consumption by a factor of 1.4 compared with the results obtained using the
fixed mode. Similarly to the results achieved on the Fermi-based cluster, there
are no significant differences between the moldable and malleable modes. Both
of them yield a reduction of 1.44× in execution time and 1.14× in energy
reduction compared with the results achieved using the flexible.

6 Conclusion

The presented work has studied the effect of malleability when GPU-capable
jobs are submitted in burst mode. For this purpose, the 3D MPDATA ap-
plication has been redesigned to support MPI process malleability. For this
purpose, the project has leveraged the DMR malleability framework, which
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Table 4 Comparison of performance results of different malleability working modes for a
workload of 9 jobs on the cluster equipped with NVIDIA Tesla K80 GPUs.

Mode Time [s] Busy E [kJ] Idle E [kJ] Cluster E [kJ] Res. Alloc. [%]

Fixed 3826 4466 459 4925 80.00
Moldable 2652 3856 446 4302 98.99
Malleable 2653 3858 446 4303 93.50
Flexible 1536 3274 173 3448 81.21

eased the adoption of malleability during the coding stage. At the same time,
this study has demonstrated the versatility of DMR and its readiness to be
used together with other programming models like CUDA.

The theoretical study presented in this work shows that the best malleabil-
ity strategy for this kind of application is to fairly share the resources among
all the jobs in the queue to increase job concurrency, at the expense of reduc-
ing the number of allocated nodes per job. For this reason, a new malleability
plug-in for the DMR was designed to implement the policy that followed the
deliberate strategy.

Furthermore, this paper unveils the first CUDA application with support
for MPI malleability through the integration of DMR in MPDATA. The pro-
posed solution presents a very low overhead which varies from 1.1% to 3.5%
in the execution time, since the implementation takes into account a set of
factors that keep the high performance of the application including the data
alignment and padding, while preserving the CUDA block sizes of the compu-
tational domain.

The experiments performed on two GPU-enabled HPC clusters, expose im-
pressive results not only in throughput (executed jobs per second) but also in
energy consumption when comparing the flexible working mode with the tradi-
tional job management mode (fixed). To sum up, the proposed solution allows
the significant reduction of the energy consumption of the application and in-
crease the system productivity. The experiments confirm the assumptions of
the scheduling strategy for job arrays, which benefit from higher concurrency
and smaller resource allocation.
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