27 research outputs found

    Introducing Singular-Vision and Community-First concepts to design and implement the next generation of TechClass Learning Environment

    Get PDF
    The Learning Environment is the heart of every Learning Management System since students are the most important stakeholder when it comes to implementing platforms to deliver educational content. Satisfying students, as the most important user-group, requires a significant effort in many diverse fields, which pushes services providers to overtake sizeable research to understand such diverse fields before starting the implementation process, and then aim for a proper and researched direction to assure the effort will get endorsed and welcomed by the students. Nowadays, in each field, students have various choices, which leads to making the industry more competitive than ever. Furthermore, knowing the fact, the students as the users of our platform do not have unlimited time makes service providers more responsible for assuring they are offering the students services, which are reliable, efficient, and enjoyable to use, which in many of the cases, the users are the younger generations. Observing current popular and trending social platforms, we realize that such services' providers considered the users' behavior and requirements essential points. In this thesis, first, I will look for essential fields, which are essential to pave the road to analyze such systems. I will discuss approaches, which can lead to implementing a system, which can be a successful case in reality. Finally, I aim to represent a new Learning Environment as the Future of Learning Environments named "TechClass next-gen Course Space", and propose methods to validate our result

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Architectures for integration of information systems under conditions of dynamic reconfiguration of virtual enterprises

    Get PDF
    Tese Doutoramento Programa Doutoral em Industrial and Systems EngineeringThe aim of this thesis is to explore Architectures of information systems Integration under conditions of dynamic reconfiguration of Virtual Enterprises. The main challenge that we identify and which formed the basis of the research is that information technologies alone cannot support efficiently and effectively the human knowledge and their natural way of interacting. Already from Sausurre (1916) it could be argued that part of knowledge resides in person, and the attempt to try to model it is sufficient for it to be misrepresented. And this is the motto of all this work. Enhance the capabilities of emerging technologies, but in the sense that allow humanto- human interaction, having the information system merely a means to make this possible. Thus we argue that a communicational architecture of information systems integration (where Pragmatics mechanisms are enabled) in virtual enterprises in dynamic reconfiguration scenarios, are better able than the existing transactional architectures. We propose a communicational architecture able to achieve an effective integration of information systems, as well as designing its logical and functional model. We also define the necessary semiotic framework in order to a communicational integration architecture could be efficient and effective. We implemented two prototypes to demonstrate the applicability of the proposed architecture. The demonstration of the research hypothesis was demonstrated with the realization of two experimentations where the ontologies have been unable to resolve disagreements or absences of opinion inherent in people who collaborated. This was overcome with the implementation of mechanisms that allow the co-creation between members of the group that participated in the trial.O objectivo desta tese é explorar Arquitecturas de Integração de Sistemas de Informação em condições de Reconfiguração Dinâmica de Empresas Virtuais. O principal desafio que identificamos e que serviu de base da pesquisa é que as tecnologias de informação por si só não conseguem suportar de forma eficiente e efectiva o conhecimento humano e a sua forma natural de interagir. Já Sausurre (1916) defendia que parte do conhecimento residirá sempre na pessoa, e a tentativa de o tentar modelar é suficiente para que seja deturpado. E esse é o mote de todo este trabalho. Enaltecer as capacidades das tecnologias emergentes mas no sentido de elas permitirem a interacção homem-to-homem, sendo o sistema de informação meramente um meio para que tal seja possível. Argumentamos por isso que uma arquitectura comunicacional de integração de sistemas de informação, onde Pragmatics mechanisms are enabled, em empresas virtuais em cenários de reconfiguração dinâmica, são mais capazes que as actuais arquitecturas transacionais. Propomos para isso uma arquitectura comunicacional capaz de conseguir uma integração efectiva de sistemas de informação, assim como desenhamos o seu modelo lógico e funcional. Definimos ainda o quadro semiótico necessário para que uma arquitectura comunicacional de integração seja eficiente e effectiva. Implementamos dois protótipos capazes de demonstrar a aplicabilidade da arquitectura proposta. A demonstração da hipótese de pesquisa ficou demonstrada com a realização de uma experimentação onde as ontologias se mostraram incapazes de resolver discordâncias ou ausências de opinião inerentes às pessoas que colaboram. Tal foi superado com a aplicação de mecanismos que permitiram a co-criação entre os membros do grupo que realizou a experimentação

    MODELING HYPERBARIC CHAMBER ENVIRONMENT AND CONTROL SYSTEM

    Get PDF
    Deep water activities are essential for many industrial fields, for instance in repairing and installation of underwater cables, pipes and constructions, marine salvage and rescue opera- tions. In some cases, these activities must be performed in deep water and hence require special equipment and prepared and experienced personnel. In some critical situations, re- motely controlled vehicles (ROVs) can't be used and a human diver intervention is required. In the last case, divers are required to perform work at high depths, which could be as low as 300m below the water surface. Usually, this is the limit depth for commercial diving and when operations must be carried out even deeper, ROVs remain only possibility to perform them. In the past, the safety regulations were less strict and numerous operations on depth of 300-350 meters of seawater were conducted. However, in the beginning of the 90s gov- ernments and companies started to impose limits on depths of operation; for instance, in Norway maximum operational depth for saturation divers is limited to 180 meters of sea- water (Imbert et al., 2019). Obviously, harsh environmental conditions impose various limitations on performed activi- ties; indeed, low temperature, poor visibility and high pressure make it difficult not only to operate at depth, but even to achieve the point of intervention. One of the main problems is related to elevated pressure, which rises for about 1 bar for each 10 meters of water depth and could achieve up to 20-25 bars at required depth, while pressure inside divers\u2019 atmospheric diving suites must be nearly the same. Considering this, there are several evident limitations. First is related to the fact that at high atmospheric pressure oxy- gen becomes poisonous for human body and special breath gas mixtures are required to avoid health issues. The second one is maximum pressure variation rate which would not cause damage for the human body; indeed, fast compression or decompression could easily cause severe damages and even death of divers. Furthermore, surveys found that circa 1/3 of divers experience headache during decompression which usually last for at least several hours and up to several days (Imbert et al., 2019). The same study indicates that majority of the divers experience fatigue after saturation and it lasts on average more than 4 days before return to normal. Obviously, risk of accidents increases with high number of compression- decompression cycles. To address these issues, in commercial deep water diving the common practice is to perform pressurization only one time before the start of the work activity which typically lasts 20-30 days and consequent depressurization after its end. Hence, divers are living for several weeks in isolated pressurized environments, typically placed on board of a Dive Support Vessel (DSV), usually barge or a ship, and go up and down to the workplace using submersible decompression chamber also known as the bell. While long-term work shifts provide numerous advantages, there is still necessity to perform life support supervision of the plant, the bell and the diving suits, which require presence of well qualified personnel. Currently, most of training activities are performed on empty plant during idle time, but obviously this approach is low efficient and costly, as well as accom- panied by the risk to broke equipment. To address such issues, this research project proposes utilization of simulator of plant and its life support system, devoted to train future Life-Support Supervisors (LSS), taking into account gas dynamics, human behaviour and physiology as well as various aspect of opera- tion of saturation diving plants

    Mobile computing algorithms and systems for user-aware optimization of enterprise applications

    Get PDF
    The adoption of mobile devices, particularly smartphones, has grown steadily over the last decade, also permeating the enterprise sector. Enterprises are investing heavily in mobilization to improve employee productivity and perform business workflows, including smartphones and tablets. Enterprise mobility is expected to be more than a $250 billion market in 2019. Strategies to achieve mobilization range from building native apps, using mobile enterprise application platforms (MEAPS), developing with a mobile backend as a service (mBaaS), relying on application virtualization, and employing application refactoring. Enterprises are not yet experiencing the many benefits of mobilization, even though there is great promise. Email and browsing are used heavily, but the practical adoption of enterprise mobility to deliver value beyond these applications is in its infancy and faces barriers. Enterprises deploy few business workflows (<5 percent). Barriers include the heavy task burden in executing workflows on mobile devices, the irrelevance of available mobile features, non-availability of necessary business functions, the high cost of network access, increased security risks associated with smartphones, and increased complexity of mobile application development. This dissertation identifies key barriers to user productivity on smartphones and investigates user-aware solutions that leverage redundancies in user behavior to reduce burden, focusing on the following mobility aspects: (1) Workflow Mobilization: For an employee to successfully perform workflows on a smartphone, a mobile app must be available, and the specific workflow must survive the defeaturization process necessary for mobilization. While typical mobilization strategies offer mobile access to a few heavily-used features, there is a long-tail problem for enterprise application mobilization, in that many application features are left unsupported or are too difficult to access. We propose a do-it-yourself (DIY) platform, Taskr, that allows users at all skill levels to mobilize workflows. Taskr uses remote computing with application refactoring to achieve code-less mobilization of enterprise web applications. It allows for flexible mobile delivery so that users can execute spot tasks through Twitter, email, or a native mobile app. Taskr prototypes from 15 enterprise applications reduce the number of user actions performing workflows by 40 percent compared to the desktop; (2) Content sharing (enterprise email): An enterprise employee spends an inordinate amount of time on email responding to queries and sharing information with co-workers. This problem is further aggravated on smartphones due to smaller screen real estate. We consider automated information suggestions to ease the burden of reply construction on smartphones. The premise is that a significant portion of the information content in a reply is likely present in prior emails. We first motivate this premise by analyzing both public and private email datasets. We then present Dejavu, a system that relies on inverse document frequency (IDF) and keyword matching to provide relevant suggestions for responses. Evaluation of Dejavu over email datasets shows a 22 percent reduction in the user’s typing burden; (3) Collaboration: Even though many business processes within enterprises require employees to work as a team and collaborate, few mobile apps allow two employees to work on an object from two separate devices simultaneously. We present Peek, a mobile-to-mobile remote computing protocol for collaboration that lets users remotely interact with an application in a responsive manner. Unlike traditional desktop remote computing protocols, Peek provides multi-touch support for ease of operation and a flexible frame compression scheme that accounts for the resource constraints of a smartphone. An Android prototype of Peek shows a 62 percent reduction in time to perform touchscreen actions.Ph.D

    A framework for automated heart and lung sound analysis using a mobile telemedicine platform

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 246-261).Many resource-poor communities across the globe lack access to quality healthcare,due to shortages in medical expertise and poor availability of medical diagnostic devices. In recent years, mobile phones have become increasingly complex and ubiquitous. These devices present a tremendous opportunity to provide low-cost diagnostics to under-served populations and to connect non-experts with experts. This thesis explores the capture of cardiac and respiratory sounds on a mobile phone for analysis, with the long-term aim of developing intelligent algorithms for the detection of heart and respiratory-related problems. Using standard labeled databases, existing and novel algorithms are developed to analyze cardiac and respiratory audio data. In order to assess the algorithms' performance under field conditions, a low-cost stethoscope attachment is constructed and data is collected using a mobile phone. Finally, a telemedicine infrastructure and work-flow is described, in which these algorithms can be deployed and trained in a large-scale deployment.by Katherine L. Kuan.M.Eng

    Building the knowledge base for environmental action and sustainability

    Get PDF

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems
    corecore