
MOBILE COMPUTING ALGORITHMS AND SYSTEMS FOR USER-AWARE
OPTIMIZATION OF ENTERPRISE APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

By

Uma Parthavi Moravapalle

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2019

Copyright c© Uma Parthavi Moravapalle 2019

MOBILE COMPUTING ALGORITHMS AND SYSTEMS FOR USER-AWARE
OPTIMIZATION OF ENTERPRISE APPLICATIONS

Approved by:

Prof. Raghupathy Sivakumar,
Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Faramarz Fekri
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Prof. Douglas Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Karthik Ramachandran
Scheller College of Business
Georgia Institute of Technology

Dr. Shruti Sanadhya
Connectivity
Facebook

Date Approved: March 7th 2019

All the power is within you. You can do anything.

Swami Vivekananda

To Amma and Nanna ...

ACKNOWLEDGEMENTS

I would like to express my appreciation to all the people who directly and indirectly

helped me over the course of my PhD.

I want to start this list by thanking my advisor Prof. Raghupathy Sivakumar. Siva was

an amazing mentor and a great role model to me. Without his guidance, this dissertation

would not have been possible. His breadth of knowledge and the clarity on research that

comes with this will always inspire me. I learnt to emphasize practicality and relevance of

solutions from him. He encouraged me to believe in myself and instilled confidence when I

was unsure. Most importantly, he is a kind and patient person who recognized my strengths

and weaknesses and created the bandwidth for me to grow. I am extremely lucky to have

Siva as an advisor.

I want to express my gratitude to Shruti Sanadhya for her mentorship. She was always

available for advice when I needed it. I also want to thank my other labmates - Chao-

fang Shih, Bhuvana Krishnaswamy, Yubing Jian, Mohit Agarwal, and Shruti Lall for their

support over the years with their encouragement, brainstorming, feedback and friendship.

Lonely lunchtimes and boring weekends were rarely an issue.

Even the tiniest success I have seen would not have been possible if not for my family’s

whole-hearted and unwavering support. I would like to thank my father (Mohan Reddy),

my mother (Rajani), my brother (Nanda Kishore), my sister-in-law (Harshita) and my hus-

band (Anirrudh) for their constant prayers and encouragement.

I would like to thank my committee members - Prof. Umakishore Ramachandran,

Prof. Faramarz Fekri, Prof. Karthik Ramachandran, Prof. Dough Blough, and Dr. Shruti

Sanadhya for their valuable comments and feedback in shaping this dissertation.

Finally, I would like to thank the lord almighty for making it possible.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Summary . xvi

Chapter 1: Introduction . 1

1.1 Enterprise Application Mobilization . 3

1.1.1 User-Aware enterprise mobility . 5

1.1.2 Enterprise Mobility Architecture and Mobilization Challenges . . . 6

1.2 Research Focus . 8

1.3 Thesis statement . 12

1.4 Thesis Organization . 12

Chapter 2: Literature Survey . 14

2.1 Content Sharing . 14

2.1.1 Commercial Solutions: . 14

2.1.2 Research Solutions: . 14

2.2 Workflow Mobilization . 16

vi

2.2.1 Commercial Solutions . 16

2.2.2 Research Solutions . 17

2.3 Front-end APIfication . 18

2.4 Collaboration . 19

Chapter 3: Dejavu: Assisted Email Replies For Reduction Of Reply Burden On
Smartphones . 20

3.1 Motivation . 22

3.1.1 Datasets . 22

3.1.2 Processing . 24

3.1.3 Methodology . 25

3.1.4 Metrics: . 25

3.1.5 Analysis . 28

3.1.6 Insights . 29

3.2 The DejaVu Solution . 30

3.2.1 Problem Definition and Scope . 30

3.2.2 The DejaVu solution . 31

3.3 Dejavu++: Optimizations to Dejavu . 38

3.3.1 Reduction of Computation Complexity With Topic Filters 39

3.3.2 Improving the relevancy of suggestions with user feedback 45

3.3.3 Expanding the sources of suggestions to the global network of mail-
boxes . 47

3.3.4 Architecture . 48

3.3.5 Prototype . 50

vii

3.4 Evaluation . 52

3.4.1 Methodology . 52

3.4.2 Macroscopic Results . 53

3.4.3 Microscopic Results . 55

3.4.4 User burden reduction . 56

3.4.5 Performance Comparison to Related Approaches 58

3.4.6 Performance of Dejavu++ . 60

Chapter 4: Taskr: Fast and Easy Mobilization of Spot Tasks in Enterprise Web
Application . 68

4.1 Introduction . 68

4.2 Mobilization and Spot Tasks . 70

4.2.1 Mobilization and Defeaturization 70

4.2.2 Spot Tasks . 73

4.3 Taskr: A Do-it-Yourself Approach to Spot Task Mobilization 76

4.3.1 Key Design Elements . 77

4.3.2 Challenges and Design Choices 81

4.4 Evaluation . 94

Chapter 5: Trackr: Reliable Tracking of UI Elements within Web Applications
to Enable Robust APIfication . 100

5.1 Introduction . 100

5.2 Background and Motivation . 103

5.2.1 Web Applications and DOM Trees: A Primer 103

5.2.2 Problem Definition, Scope, and Goals 106

viii

5.2.3 Problem Relevance and Significance 107

5.2.4 Related Approaches and Performance Analysis 109

5.3 Trackr: Fingerprinting Algorithm . 112

5.3.1 Architecture Overview . 112

5.3.2 Quorum Fingerprinting . 113

5.3.3 Fingerprinting Optimizations . 115

5.4 Evaluation . 121

5.4.1 Prototype: . 121

5.5 Use Cases . 128

5.5.1 Automation: . 128

5.6 Issues . 133

Chapter 6: Peek: A mobile-to-mobile remote computing protocol 135

6.1 Introduction . 135

6.2 Background and Motivation . 138

6.2.1 A Primer: . 138

6.2.2 A case for mobile-mobile remote computing 138

6.2.3 Key Challenges . 140

6.3 PEEK: A mobile-to-mobile remote computing protocol 144

6.3.1 Multi-touch Support and Context Association: 144

6.3.2 Multi-modal Compression: . 146

6.3.3 System Architecture . 148

6.4 Evaluation . 149

ix

Chapter 7: Integrated Operations . 154

7.0.1 At the enterprise . 154

7.0.2 At the smartphone . 156

Chapter 8: Future Work . 157

8.1 Automated reply suggestions . 157

8.2 Do-it-yourself application mobilization . 158

8.3 Robust front-end APIfication . 160

8.4 Mobile-to-Mobile Remote computing for smartphones 161

Chapter 9: Conclusions . 162

References . 176

x

LIST OF TABLES

3.1 The AVOCADO dataset . 23

3.2 ENRON dataset . 24

3.3 Example matching email snippets for a user in ENRON dataset 26

3.4 List of stopwords filtered by Dejavu . 35

3.5 Examples of email snippets . 57

4.1 Percentage of action elements with associated labels 86

4.2 Different UI frameworks used by enterprise applications 86

4.3 List of Worflows configured on enterprise applications 94

5.1 Default Experimental Parameters . 123

5.2 Effect of different optimizations on Trackr 125

6.1 Touch to mouse translation . 140

6.2 Non intuitive and non existent gestures . 141

6.3 VNC compression on smartphones . 142

6.4 Action descriptions . 149

xi

LIST OF FIGURES

1.1 Enterprise Mobility Strategies . 3

1.2 Enterprise Mobility Architecture . 6

1.3 Research Focus Landscape . 9

3.1 Reply redundancy in ENRON dataset and HILLARY dataset 27

3.2 Reply redundancy in AVOCADO dataset 27

3.3 Sensitivity analysis for ENRON . 27

3.4 An overview of De javuSIMPLE . 32

3.5 An overview of De javuSIMPLE2 . 32

3.6 Pre-processing pipeline in Dejavu . 35

3.7 An overview of De javu . 38

3.8 An overview of topic filtering in Dejavu++ 43

3.9 An overview of partial reply matching in Dejavu++ 47

3.10 System architecture of Dejavu . 49

3.11 Prototype screenshots . 51

3.12 Integration with K-9 email client . 51

3.13 Hit rates for Dejavu on the ENRON dataset 53

3.14 Hit rates for Dejavu on the AVOCADO dataset 54

xii

3.15 Sensitivity analysis for Dejavu on the ENRON dataset 54

3.16 Sensitivity to various parameters for Dejavu on the ENRON dataset 55

3.17 Reduction in User Burden . 57

3.18 Average similarity between suggestions and reply for user Causholli-M
from the ENRON dataset . 58

3.19 Reduction in the complexity of search for suggestions for Dejavu++ com-
pared to baseline Dejavu . 61

3.20 Hitrates for different values of εT for the AVOCADO dataset 62

3.21 Hitrates for different values of εL for the AVOCADO dataset 63

3.22 Hitrates with expected sender/reciever email-set filter for AVOCADO dataset 63

3.23 Performance of Dejavu++ with user feedback 64

3.24 Impact of the number of suggestions on hitrate for Dejavu++ on the AVO-
CADO dataset . 65

3.25 Impact of number of times suggestions are refreshed on the hitrate for De-
javu++ on the AVOCADO dataset . 65

3.26 Hitrate with the inclusion of global network of mailboxes for AVOCADO
dataset . 67

4.1 Complexity of the Salesforce desktop application 71

4.2 Taskr Architecture . 76

4.3 Remote Computing . 77

4.4 Overview of configuration with Taskr . 83

4.5 Performance of different fingerprint candidates 83

4.6 Overview of Trackr’s usage in Taskr . 86

4.7 UI element from an external UI framework . 87

4.8 Overview of Taskr’s data extraction . 88

xiii

4.9 Overview of UI element translation in Taskr 89

4.10 Overview of delivery and presentation in Taskr 91

4.11 Taskr prototype for a test workflow on Oracle Peoplesoft 98

4.12 Number of actions taken to perform workflows on enterprise applications . 99

4.13 Mean Opinion Score from volunteers . 99

5.1 Possible changes in a web application . 103

5.2 DOM Tree . 104

5.3 HTML Source . 104

5.4 Performance of existing fingerprints . 110

5.5 Changed DOM Tree . 112

5.6 Quorum Tree of a5 . 112

5.7 Overview of Trackr with Quorum Fingerprinting 115

5.8 Overview of Trackr with Path Resiliency 117

5.9 Overview of Trackr with Weighted Paths 118

5.10 Overview of Trackr with Progressive Path Patching 120

5.11 Performance of Trackr compared to Graphical (Coordinates), Path From
Root, and Path From ID . 121

5.12 Dashboard App . 122

5.13 Sensitivity to % of nodes changing in DOM 126

5.14 Sensitivity to the number of rounds of changes 126

5.15 Sensitivity to types of changes . 127

5.16 Integration of Trackr with a mobilization service 133

xiv

6.1 Peek usage . 137

6.2 Average consecutive frame size difference of different applications 142

6.3 Different screen layouts of BBC . 143

6.4 Message format in Peek . 145

6.5 Multi-modal compression . 147

6.6 System architecture of Peek . 148

6.7 Action times . 150

6.8 Peek multi-modal compression . 152

7.1 Enterprise Mobility Architecture . 155

7.2 Integrated Architecture . 155

xv

SUMMARY

The adoption of mobile devices, particularly smartphones, has grown steadily over the

last decade, also permeating the enterprise sector. Enterprises are investing heavily in mo-

bilization to improve employee productivity and perform business workflows, including

smartphones and tablets. Enterprise mobility is expected to be more than a $250 billion

market in 2019. Strategies to achieve mobilization range from building native apps, using

mobile enterprise application platforms (MEAPS), developing with a mobile backend as a

service (mBaaS), relying on application virtualization, and employing application refactor-

ing.

Enterprises are not yet experiencing the many benefits of mobilization, even though

there is great promise. Email and browsing are used heavily, but the practical adoption of

enterprise mobility to deliver value beyond these applications is in its infancy and faces

barriers. Enterprises deploy few business workflows (<5 percent). Barriers include the

heavy task burden in executing workflows on mobile devices, the irrelevance of available

mobile features, non-availability of necessary business functions, the high cost of network

access, increased security risks associated with smartphones, and increased complexity of

mobile application development.

This dissertation identifies key barriers to user productivity on smartphones and inves-

tigates user-aware solutions that leverage redundancies in user behavior to reduce burden,

focusing on the following mobility aspects:

(1) Workflow Mobilization: For an employee to successfully perform workflows on a

smartphone, a mobile app must be available, and the specific workflow must survive the

defeaturization process necessary for mobilization. While typical mobilization strategies

offer mobile access to a few heavily-used features, there is a long-tail problem for enterprise

application mobilization, in that many application features are left unsupported or are too

difficult to access. We propose a do-it-yourself (DIY) platform, Taskr, that allows users

xvi

at all skill levels to mobilize workflows. Taskr uses remote computing with application

refactoring to achieve code-less mobilization of enterprise web applications. It allows for

flexible mobile delivery so that users can execute spot tasks through Twitter, email, or a

native mobile app. Taskr prototypes from 15 enterprise applications reduce the number of

user actions performing workflows by 40 percent compared to the desktop;

(2) Content sharing (enterprise email): An enterprise employee spends an inordinate

amount of time on email responding to queries and sharing information with co-workers.

This problem is further aggravated on smartphones due to smaller screen real estate. We

consider automated information suggestions to ease the burden of reply construction on

smartphones. The premise is that a significant portion of the information content in a reply

is likely present in prior emails. We first motivate this premise by analyzing both public

and private email datasets. We then present Dejavu, a system that relies on inverse docu-

ment frequency (IDF) and keyword matching to provide relevant suggestions for responses.

Evaluation of Dejavu over email datasets shows a 22 percent reduction in the users typing

burden;

(3) Collaboration: Even though many business processes within enterprises require

employees to work as a team and collaborate, few mobile apps allow two employees to

work on an object from two separate devices simultaneously. We present Peek, a mobile-to-

mobile remote computing protocol for collaboration that lets users remotely interact with an

application in a responsive manner. Unlike traditional desktop remote computing protocols,

Peek provides multi-touch support for ease of operation and a flexible frame compression

scheme that accounts for the resource constraints of a smartphone. An Android prototype

of Peek shows a 62 percent reduction in time to perform touchscreen actions.

xvii

CHAPTER 1

INTRODUCTION

Enterprises continually focus on boosting employee productivity. While they approach

this using several strategies, mobilization is seen as a game changer. Mobilization lets

an employee rely on mobile devices to perform business functions while away from the

desktop. This is inspired by two contemporary trends increasing reliance of enterprises

on software applications for essential business functions and the rising adoption of mobile

devices, in particular smartphones, among enterprise employees. Several studies show that

employees gain up to 81 minutes of work and personal time through mobilization [1–3].

Enterprise mobility is expected to be more than a $250 Billion market [4].

While the earliest versions of enterprise software were purely in-house ledger applica-

tions that supported a few business functions, enterprise software today is deeply integrated

within the day-to-day operations of an enterprise. A modern enterprise relies on several

software applications for essential business functions, such as customer relationship man-

agement [5–8], human resource management [9–12], enterprise resource planning [13–16],

business intelligence [17–20], content management [21–23], communication [24–26], ac-

counting [27, 28], enterprise asset management [29–31], supply chain management [32–

34], and product lifecycle management [35, 36], among others. Enterprise spending on

software applications is expected to reach $435 Billion by 2019 [37].

In tandem with the rising dependence on software for business functions is the evolu-

tion of enterprise software applications within the enterprise. Smartphone growth has been

explosive during the last decade. By 2022, 81 percent of the United States population is

expected to own a smartphone [38]. Even traditionally conservative enterprise sectors are

adopting mobile devices at a blistering pace, driven by a clear return-on-investment in the

form of higher employee productivity, reduced paperwork, and increased revenue. With a

1

significant amount of business functions now occurring over enterprise software, the focus

of the enterprises to enable mobilization is inevitable. This can be attributed to the many

advantages of mobility-accessibility, convenience, and context-awareness. The ubiquity of

smartphones implies that employees now have access to a computing device for most of the

day 1. Therefore, if all business functions are made possible on a smartphone, the benefits

are clear critical business functions can be addressed faster, and work can be conveniently

be conducted from different locations. An added advantage to using smartphones for busi-

ness is the creation of a new generation of context-aware enterprise apps. All these drivers

of enterprise mobility directly translate into employee productivity benefits. Today, 98 per-

cent of enterprises allow their employees to use mobile apps for work either on enterprise

provisioned devices or on personal smartphones [40].

Despite the great promise of mobilization, many of its benefits are not fully realized.

The average global 2000 enterprise uses 1031 software applications for business processes

[40]. This includes on-premises applications such as SAP or Oracle; cloud-based appli-

cations such as Salesforce and Workday; and homegrown applications purpose-built using

web, .NET, Java, and even legacy green screen systems. However, 70 percent of enterprises

provide fewer than 10 mobile apps to their employees [41]. Also, more than a third of 500+

enterprises surveyed in [42] provide access only to basic mobile apps such as Email, Web

browser or Calendar on their employees’ smartphones. If these enterprises were to mobilize

several other applications, 15 percent productivity gains are expected [42]. This disserta-

tion’s primary focus is to investigate the reasons for the unrealized potential of enterprise

mobility and propose solutions to overcome them.

In the rest of this chapter, we contend that creating mobile apps from complex desktop

applications results in a long-tail problem, where the business functions for each individual

user are either not supported by the app or are difficult to accomplish. We then argue

that user-aware strategies to mobilize applications are necessary to overcome the long-

1A recent study shows that most users have access to their smartphones nearly 21 hours a day. In contrast,
they only have access to their Desktop for 8 hours in a day [39].

2

Figure 1.1: Enterprise Mobility Strategies

tail problem. Finally, we discuss our research focus and the specific contributions of this

dissertation toward three different aspects of enterprise mobility: content creation over

email, workflow mobilization, and collaboration on mobile apps.

1.1 Enterprise Application Mobilization

Application mobilization is the process of creating mobile apps and services that enable

users to perform their work tasks on a smartphone. Strategies to mobilize business func-

tions fall within three categories (see Figure 1.1: (i) A Mobile-Next strategy, where the

business functions within existing desktop applications are ported into a smartphone app.

Applications such as Salesforce, SAP, Peoplesoft, and Sharepoint were initially created

for the desktop and later ported to a variety of smartphone platforms; (ii) A Mobile-First

strategy, where a smartphone app and backend services (that support both smartphone and

desktop platforms) for the business functions are initially created and subsequently, ex-

tended to the desktop platforms. Evernote, Databox, and Rapid Value are some examples

of applications for which the smartphone app was created first and later extended to the

desktop; and, (iii) A Mobile-Only strategy, where only a smartphone app is created for the

business functions. IBM Dynamicbuy, APTTUS, Domo, and Workflow are some examples

of smartphone-only enterprise apps.

With the mobile-first and mobile-only strategies, a smartphone is the primary device

with which a user is assumed to execute business functions. Therefore, smartphone apps

and backend services are created ground-up and optimized for a smartphone user. On the

other hand, with a mobile-next strategy, enterprises transform existing desktop applications

3

that are already deeply integrated within their operations into smartphone apps. This strat-

egy seeks to leverage the user’s familiarity with performing the business functions on the

desktop application. Furthermore, as the enterprises can reuse existing infrastructure re-

sources (codebases and services), the cost of mobilization efforts and time to production

are relatively low. Therefore, among the three strategies, the mobile-next strategy is preva-

lent among enterprises. In this dissertation, we restrict our focus to application mobilization

using a mobile-next strategy.

Enterprise applications are complex in nature and contain thousands of features to sup-

port business functions across several functional roles within the enterprise. A single task

within an enterprise application often requires involvement from users across several differ-

ent functional roles. For example, consider employee business trip management within an

HR application (like Oracle Peoplesoft). A trip to a client location to close a sales deal in-

volves the following steps: (i) The employee submits a travel request providing a business

justification and preferences; (ii) An administrative assistant processes this request, pre-

pares a tentative itinerary and submits it for approval; (iii) An accounting manager cross-

checks this itinerary for funding and requests supervisor approval; (iv) The employee’s

manager checks the business justification and provides authorization; (v) The administra-

tive assistant hands this itinerary to a travel agent for booking; (vi) The employee completes

the trip and sends a few receipts to the administrative assistant for approval; (vii) The assis-

tant prepares a travel reimbursement form with the receipts; (viii) The accounting manager

approves this form and instructs the payroll department to reimburse the funds; and, finally,

(ix) The payroll department releases the funds to the employee’s bank account.To support a

simple use-case of employee business travel, an HR management application needs to sup-

port the different workflows involved in trip management for all functional roles involved in

this process: employee, administrative assistant, accounting manager, employee manager,

travel agent, and payroll. Given the feature-packed nature of enterprise applications, work-

flows are often complicated to execute and require the user to perform multiple actions.

4

Some of these applications have undergone several development cycles over time with new

features added within each cycle2. Moreover, the workflows within these applications are

primarily designed for the stationary user who views the application on a desktop with a

large screen.

To enable mobilization, the same complex workflows now have to be ported to the

smartphone. This is a non-trivial challenge because unlike desktops, smartphones are re-

source constrained. They have less on-screen real estate, fewer computation capabilities,

access unreliable wireless networks with lower speeds, rely on batteries with limited power,

and have low on-device storage capacities. Furthermore, smartphone users have shorter

attention spans and higher usability requirements [43]. With these constraints, a single

mobile app is likely to support only a subset of the features available in a desktop appli-

cation. These features have to be carefully chosen to maximize usability. We call this the

defeaturization of enterprise applications.

1.1.1 User-Aware enterprise mobility

Defeaturization must occur for successful mobilization. Defeaturization is done either by

the enterprise or the application vendor based on the needs of an average user for the appli-

cation. The result of defeaturization is a smartphone app which contains a carefully curated

subset of features from the original application. To serve a large user base, this subset is

tailored to include a few heavily-used features from the original desktop application. Recall

that enterprise applications contain features serving various functional roles in the enter-

prise. If the complex enterprise application is defeaturized into only one mobile app, it is

highly unlikely that this mobile app is optimized for all of the functional roles using the

application. Therefore, the inherent nature of the choice of features in the defeaturization

step excludes certain users from truly adopting mobile solutions for their work. This gener-

alized defeaturization approach results in a long-tail problem of application mobilization.

2The first version of Peoplesoft was released in 1989

5

Figure 1.2: Enterprise Mobility Architecture

If the smartphone apps are built for the average user (or one functional role), it is unavoid-

able that there are some users whose workflows are either not supported in the smartphone

app or are very burdensome to perform.

The long-tail problem can indeed be avoided by not defeaturizing the application at all.

However, given the resource-constrained nature of smartphones, including every feature

from the desktop application in the smartphone app would either not be possible or render

the app unusable. To solve the long-tail problem, the defeaturization has to be tailored

to the needs of each user. A trivial solution to this problem is for the enterprise to make

several mobile apps (customized for each user or each functional role). However, given that

a single mobile app costs roughly $250,000 to develop [44], it is an expensive proposition

for the enterprise to make several apps. This calls for an alternate approach to mobilization

where defeaturization is performed efficiently and in a user-aware manner.

1.1.2 Enterprise Mobility Architecture and Mobilization Challenges

Figure 1.2 shows a simplified version of a typical enterprise mobility architecture. Enter-

prise applications follow a client-server architecture with application servers hosted either

on-premise (within the secure enterprise network) or on the cloud connected to the en-

6

terprise network through a secure VPN gateway. These applications can be used by an

on-premise user with application clients that are either stand-alone software applications

or through a browser (web application clients). Off-premises users can also access the

applications through the secure VPN gateway. The enterprise supports mobile users who

may be off-premises by issuing them in house custom-made or vendor developed clients

in the form of mobile apps. The apps access the enterprise application backend servers

and data through either WiFi or cellular networks. For security and data protection pur-

poses, the enterprises require the apps to access enterprise data through secure VPN. For

managing and monitoring mobile clients, enterprises deploy mobility management suites

like VMWare Airwatch or Mobile Iron. With such mobility management solutions, enter-

prises can keep track of which mobile devices are active, what data is being accessed, and

configure policies suitable for these categories.

In the context of the enterprise mobility architecture shown in Figure 1.2, user-aware

application mobilization results in several challenges, some of which are outlined below.

• Complexity: Enterprise desktop applications have complex workflows involving

several user actions to accomplish a goal. These complex workflows, if implemented

as-is within a smartphone app so that the users expect to complete workflows within

a few taps, can result in poor usability.

• Availability3: The defeaturization process involves choosing a subset of workflows

from the desktop application to include in the smartphone app. This decision is made

either by the enterprise or the application vendor, based on the perceived needs of the

applications user base. This, however, means that some features will not be included

in the smartphone app.

• Network: Desktops are typically connected to wired networks that offer better

browsing speeds and are reliable, compared to wireless networks used by smart-

3Note that this definition of availability is different from the more traditional meaning associated with
availability in the context of distributed systems.

7

phones. Furthermore, the cost of wireless access is much higher ($10/1GB, cellular)

than wired access ($0.16/1GB). If the workflows originally designed on the desktop

with for high network speeds are performed on the smartphone, the user may end up

with poor app response times and expensive data usage bills

• Compatibility: Desktops use different platforms and operating systems than smart-

phones. When a desktop application is ported to a smartphone, some workflows may

break if they use APIs that are not yet available or incompatible on the smartphone

platform.

• Computation: Despite the advances in smartphone processors, they are still not as

fast as their desktop counterparts. If the workflows that need heavy computation

power (e.g., sorting, indexing, etc.) are to be preserved in the smartphone, usability

issues may arise (e.g., application hanging or an unresponsive screen).

• Security: As enterprises now allow users to use personal smartphones for work,

they must ensure that the mobile apps and data are secured when accessed outside

the enterprise networks. A recent survey of IT decision-makers revealed that more

than half of enterprises are concerned about data leakage, unauthorized access to

company data/systems, and downloading unsafe apps, content, and malware. With

these security fears, enterprises may decide against developing applications.

1.2 Research Focus

In this dissertation, we restrict our focus on the first two of the outlined challenges, i.e.,

complexity and availability. In this context, we investigate the following three different

aspects of mobility: (i) Content creation over email on smartphones, (ii) Workflow mo-

bilization, and (iii) Collaboration with smartphone apps. For a user intending to perform

specific tasks within these aspects (on a smartphone), we argue that existing smartphone

apps either do not support all the tasks the user intends to perform and/or the burden of

8

Figure 1.3: Research Focus Landscape

performing the tasks supported on the smartphone is high. We then propose user-aware

strategies and solutions to either reduce the complexity of performing tasks or increase the

availability of tasks on the smartphone.

1. Content Creation with Email

Email is a dominant form of information sharing within an enterprise. An enterprise em-

ployee spends an inordinate amount of time reading and responding to email. This email

overload results in the average enterprise employee spending 28 percent of their workweek

on email [45]. This is further aggravated because a large portion (up to 70 percent) of these

emails are opened on smartphones. Given that 30 percent of email replies are more than

100 words, it is burdensome to respond on a smartphone.

In this context, we consider automated information suggestions that can make reply-

ing easier. A significant portion of the information content of a reply is likely present in

prior emails. We first motivate this premise by analyzing different publicly available email

datasets and showing that nearly 60 percent of email responses are very similar to the infor-

mation contained within the past emails of that user. We then present Dejavu, a system that

9

leverages the previous emails within the users own mailbox to provide relevant suggestions

for responses. We show that Dejavu s simple keyword and Inverse Document Frequency

(IDF) approach can deliver effective suggestions for 1 in 3 responses. We propose sev-

eral optimizations to Dejavu, known as Dejavu++, to improve the efficiency of computing

suggestions and increase the relevancy of suggested responses.

On the landscape shown in Figure 1.3, the task of typing email responses on a smart-

phone is supported but is burdensome. Dejavu seeks to reduce the burden by offering

automated suggestions.

2a. Workflow Mobilization

An average global 2000 company uses more than 1000 applications for its business pro-

cesses. Fewer than one percent of these are made available on a smartphone. For an

enterprise employee to successfully perform workflows on a smartphone, not only does a

mobile app need to be available, but the specific workflow must be available despite the

defeaturization process necessary for mobilization. While typical mobilization strategies

offer mobile access to a few heavily-used features, there is a long-tail problem for enterprise

application mobilization. A large swathe of application features are either not supported or

are too difficult to access from the mobile.

In this context, we propose a do-it-yourself (DIY) framework, Taskr, which allows

users, irrespective of skill level, to mobilize the workflows themselves, without requiring

any support from either the application vendor or the enterprise. For such a solution, we

identify a category of workflows, called Spot Tasks within web-based enterprise appli-

cations, that are suited for robust DIY mobilization. These tasks are simple workflows

that allow users to interact with the desktop application, but only on a single page. Taskr

collects specifications of the workflow to be mobilized by observing the users workflows.

Taskr uses remote computing with application refactoring to allow codeless mobilization of

enterprise applications. Taskr then delivers these workflows to the user not only through a

10

custom client app, but also through Twitter, email, and texting. The Taskr prototype reduces

user burden by 40 percent when performing workflows from nine enterprise applications.

In the context of Figure 1.3, for the long-tail users, existing mobile apps either do not

support the workflows at all or have workflows that are burdensome to execute. Taskr em-

powers users to create tailored mobile apps, thereby both increasing the number of work-

flows on a smartphone and reducing the complexity of executing the workflows.

2b. Application APIfication for workflow mobilization

In application refactoring, the application is hosted as-is on the enterprise cloud. The user

interacts via a smartphone-optimized UI. These services require applications to provide

APIs to map the smartphone UI to the web application UI accurately. Of the strategies

available to APIfy applications, a front-end only approach, based on intelligent screen

scraping, is particularly attractive as it can APIfy a host of applications without support

from the applications themselves. Front-end strategies, however, must accurately and reli-

ably identify UI elements within the application. We show that simple approaches, which

depend on graphical coordinates or the position of an element with respect to a fixed anchor

in the application layout, are not robust enough for APIfication. Thus, we present Trackr,

an algorithm that uses quorum fingerprinting to track elements. We discuss several opti-

mizations to this baseline version. By analyzing changes to real-world web-applications,

Trackr improves the tracking accuracy of UI elements within enterprise applications by

55 percent compared to a related approach. We also demonstrate use of Trackr through a

dashboard smartphone app that monitors values throughout different websites within one

mobile app.

3. Collaboration:

Business processes within enterprises often require employees to collaborate as a team.

Few enterprise mobile apps are designed for collaboration, allowing two employees to work

11

on an object from two unique devices simultaneously. We argue that remote computing

can allow for collaboration even when the application itself doesnt support it. While there

are several desktop remote computing solutions available, they cannot be applied as-is for

mobile-to-mobile remote computing. In this context, we present Peek, a mobile-to-mobile

remote computing protocol for smartphones that allows users to interact with an application

remotely in a responsive manner with (i) multi-touch support, (ii) context association, and

(iii) multi-modal frame compression. An Android prototype of Peek shows a 62 percent

time reduction to perform some common touchscreen actions.

In the context of Figure 1.1, existing remote computing protocols, when applied to

smartphones, do not support many touch-screen gestures and are prohibitive due to high

resource costs. Peek’s multi-touch capability with resource efficient frame compression

aims to reduce the complexity of interaction and increases the availability of supported

touch-screen gestures.

1.3 Thesis statement

Complex enterprise applications when adapted for the resource-constrained mobile devices

result in complexity and availability issues. These issues can be effectively addressed by

user-aware strategies that leverage redundancies in user behavior.

1.4 Thesis Organization

This dissertation is organized as follows: In Chapter 2, we discuss work in the commercial

and research domains related to the problem statements. In Chapter 3, we discuss details of

our work on a user-aware automated reply suggestion, Dejavu. In Chapter 4, we present the

user-aware application mobilization platform, Taskr. In Chapter 5, we introduce Trackr,

a front-end APIfication approach to aid application mobilization services. In Chapter 6,

we discuss details of Peek, a mobile-to-mobile remote computing protocol. In Chapter 7,

we discuss how the four individual solutions can be integrated within enterprise mobility

12

architectures. Finally, in Chapter 8, we outline additional research directions, concluding

our arguments in Chapter 9.

13

CHAPTER 2

LITERATURE SURVEY

In this chapter we discuss commercial products and research works related to the three

mobilization aspects we consider in this proposal.

2.1 Content Sharing

2.1.1 Commercial Solutions:

Enterprise worker is typically exposed to several knowledge sources during his work day.

Information relating to his work is distributed in all these sources. Due to the diverse

nature of types of information (documents, emails, IM etc.) and the applications (Dropbox,

Gmail, local storage, Slack etc.), it is hard for the typical enterprise worker to quickly

retrieve relevant information. Companies like Coveo, Sinequa, Attivio, etc., provide an

unified index on these various sources of information and thereby helping the user retrieve

relevant information in a timely fashion. However, these solutions do not specifically focus

on automatically helping users construct email responses.

2.1.2 Research Solutions:

Email optimizations

The problem of information overload in email was first recognized in [46] in 1996. Several

solutions have since been proposed to optimize email to combat email overload. [47, 48]

suggest intelligent categorizing techniques to manage information efficiently. Few works

used content summarization techniques to extract summaries from email [49–51]. These

summaries could then be used for better presentation of email lists. [52–54] identify cer-

tain speech acts in email such as - statement, request, propose (meeting), amend, commit,

14

deliver .etc, to better help the user track the status of an ongoing task. Few other solutions

prioritize each email as being important or not to help user quickly deal with and respond

to a large inbox [55, 56] Just like the semantic web, semantic email has been proposed by

[57] where in each email is tagged with certain semantic information that can be leveraged

at a later stage for context specific applications. The semantic information can then be used

to easily achieve tasks such as event planning, information dissemination, report genera-

tion, auction/giveaway, etc. Apart from these solutions, all email clients provide a search

feature to retrieve relevant information easily in an overloaded inbox. There are about a

900+ startups working on optimizing various aspects of email and providing new features

for increasing productivity.

Reply Prediction

[51] explored the idea of predicting whether the email needs a reply or needs an attach-

ment. However, they do not predict the content of the reply or which attachment to include.

Some works [58, 59] have explored identifying experts through email conversations. This

information is very useful and can be used to direct the conversation on a topic towards the

expert and elicit responses. However, these works do not provide a way to lookup infor-

mation that is potentially available in the user’s own inbox and construct responses from

there.

Question-answering systems are another class of research works that can be adapted to

provide automated response suggestions. Of particular interest are the systems trained to

answer natural language questions using the unstructured information within the corpus.

These systems can be broadly classified into two categories [60]- (i) Information Retrieval

based systems[61–66], and (ii) Knowledge based systems[67, 68]. Given a question, infor-

mation retrieval systems find portions of text within the large corpus that may contain the

answer to the question. On the other hand, knowledge-based systems process the corpus

to extract facts and then allow queries on these facts. Most of these question answering

15

systems only consider factoid questions, where the answers are expected to be short and

expressed using a word or a phrase. Enterprise email queries are mostly non-factoid requir-

ing long informational responses. For example, the Avocado IT enterprise email dataset

has an average response length of four sentences.

Some retrieval systems can be adapted for automated response suggestions. Watson

Discovery [62] is one such popular commercial information retrieval system. Given a col-

lection of documents, Watson Discovery can extracts information from these documents

such as sentiment, named entities, concepts, semantic roles, etc. A user can retrieve pas-

sages or whole documents using queries on the extracted information in natural language or

in a proprietary query language. While discovery works well for documents such as news

articles, Wikipedia pages, etc., it is not optimized for a conversational corpus like email.

The closest related works to automated response suggestions for email are Smart Reply

[69], Quick Type [70] and Outlook’s suggestions [71]. These systems encode an Inbox

email through a recurrent neural network and extract context. This context is then used

to predict either coherent responses from another recurrent neural network [69, 71] or next

probable word in the current response [70]. The recurrent neural networks are trained on the

user’s inbox. However, these solutions only construct generic non-informational phrases.

2.2 Workflow Mobilization

2.2.1 Commercial Solutions

(i) Custom homegrown solutions: Some enterprises develop custom native apps for a tar-

get smartphone platform. Eg., SupportCentral from General Electric; The limitations with

this approach include rewriting of code for all (or partial) functionality for the application,

and separate development effort for different smartphone platforms and hence can be pro-

hibitive in terms of developer time/effort required and cost of app development. (ii) Vendor

applications: The enterprise can use existing vendor native apps available on the app mar-

ket if one is available. However, the functionality available in the app cannot be controlled

16

by the enterprise and most applications available in the app markets have a very reduced

functionality when compared to their desktop counterparts. Eg., Salesforce1,Oracle BI,

SAP Fiori Client, etc; (iii) Mobile Backend as a Service (mBaaS): Enterprises can build

rich mobile applications by using mobile-specific backend features available as libraries.

These features include authentication services, data storage, file storage, integration with

third-party cloud services, analytics etc. and can be used to develop applications using

any target platform SDK of choice. Eg: AnyPresence [72], etc; However, these solutions

still require manual development effort from the enterprises. Also, once the mobile app

is built, it remains the same for all users irrespective of their preference and usage be-

havior. (iv) Mobile Enterprise Application Platform (MEAPs): Enterprises can develop

mobile applications using custom application development platforms wherein apps need to

be developed once and can be deployed on all target platforms. Since mobilization through

MEAPs requires custom development platforms, they require training effort on the part of

developers to learn the platform. Further more, the features available in the final product

are limited by the features provided by the MEAP platform. Eg:Appcelerator [73], etc.

2.2.2 Research Solutions

Mobilizing workflows for the mobile device has been explored by several research works

in the past. PageTailor[74] is a system that transforms web pages that have been designed

for the Desktop into smartphone friendly views. The users adapt the webpage by moving,

resizing or repositioning the UI elements. This new custom organization is remembered

and applied to the webpage and similar ones on subsequent visits. Page Tailor is specific

to commercial content based web pages. On the other hand enterprise applications are

far more complex. Modeap [75] transforms PC applications to mobile web browser based

applications by deconstructing the applications to graphical primitives on the PC end, and

reconstructing them on the browser end. However, they do not defeaturize of the complex

PC applications, and is specific to PC based applications and not web based applications.

17

Merlion [76] uses remote computing to allow users to access a Desktop application features

from a smartphone. Defeaturization is done by allowing the user to define a subset of UI

elements to be visible. However, this requires a complex configuration process by the user.

Feedcircuit[77], Highlight [78] and Flashproxy [79] are solutions that allow users to access

web applications from mobile phones that lack certain capabilities, such as JavaScript and

Flash.

Forms2Dialog [80] is a solution that converts web based forms to speech dialogs, that

can be accessible over the smartphone. W3Touch [81] is a webpage instrumentation toolkit

that allows developers to find potential problems on their websites when used on the mo-

bile browser (particularly touch screen problems). The developers can later on fix these

problems. However, this solution fixes issues on existing pages and does not mobilize

web pages. [82] presents a method to display HTML tables with a mobile friendly for-

mat. [83] dynamically transforms web pages for mobile browsing and suggests a speech

interface for better navigation and usability. [84] proposes a control extraction method that

can efficiently extract part of the web pages. Mobitran [85] refactors the original desk-

top application for mobile user by splitting the page into blocks, rearranging blocks and

displaying only the content relevant while preserving javascript and css behaviors. Each of

these works are either very specific to a certain class of web pages (forms, tables, etc.) or do

not defeaturize making them ineffective to be utilized for mobilizing complex applications

in the enterprise scenario.

2.3 Front-end APIfication

The problem of reliably fingerprinting UI elements within a web application has been ex-

plored in the past in different contexts. XPath[86] is a widely adopted standard with syntax

to describe elements within an XML/DOM tree. Using XPath syntax, a path for traversal

within a DOM tree can be specified between two elements. For example, //html//body[1]

is the XPath expression to reach body by traversing to html’s second child. However, XPath

18

only provides a syntax and it is upto the developer to create a fingerprint with it. Several

optimizations[87, 88] have been proposed to interpret XPath. In [89], an element’s path

from the root of the DOM tree is used as one of its features, but in the context of enhanc-

ing mining. [90] uses the shortest path from the nearest ancestor in the DOM tree with

an HTML attribute ID as a fingerprint. Here, the context is to record user actions. [91]

uses path from the root in conjunction with parent and immediate siblings to identify an

element for information extraction. In [92], the authors propose using subtree information

for each element in a DOM path. These fingerprints assume a consistent DOM for the

web application, which does not hold true in reality. We later show that these single-path

based fingerprints do not perform well in dynamic scenarios. [93, 94], use visual features

of the page to learn and extract templates for elements. This layout structure can then be

leveraged to create fingerprints. However, generating fingerprints based on visual features

is not feasible for a majority of secondary services as it not only requires a large amount of

annotated training data but also takes a lot of time.

2.4 Collaboration

There are several remote computing protocols for desktops in use today. For example, RDP

(Microsoft)[95],RFB (VNC)[96], ICA (Citrix)[97], etc. For mobile thin clients, some op-

timizations have been proposed in related literature. SmartVNC[98] reduces the burden of

doing tasks in a remote computing session from smartphone to a desktop, by identifying

macros. Mobidesk[99] proposes WAN traffic optimization for mobile thin clients. Mod-

eap[75] uses translation between graphical primitives of desktop and those of a mobile web

browser. [100] and [101] are other solutions that target gaming and multimedia delivery on

smartphones, respectively. Yavnc [102] is a VNC based solution that presents a view of the

desktop applications on the smartphone. However, all these solutions assume the server is

a desktop and are not applicable to a mobile-to-mobile remote computing scenario.

19

CHAPTER 3

DEJAVU: ASSISTED EMAIL REPLIES FOR REDUCTION OF REPLY BURDEN

ON SMARTPHONES

Enterprises today are investing heavily in their mobile workforce with an eye toward boost-

ing productivity and customer service. 91% of mobile workers in enterprises use a smart-

phone for their work. On the other hand, with information now ubiquitously accessible,

job functions of enterprise employees increasingly involve handling, using, or analyzing

information. The juxtaposition of these two trends: increasing reliance on access to in-

formation, and ubiquitous mobile connectivity — forms the context for this chapter. We

specifically focus on one dominant form of information sharing within enterprises – Email.

The average enterprise employee sent/received 126 emails per day in 2015 [103]. This

deluge of emails results in an average enterprise worker spending 28% of her work time in

reading and responding to emails [45]. A large portion (70%) of these emails are opened

on a mobile device.

The challenge we explore in this chapter is the burdensome experience of typing replies

to emails using the smartphone’s small on-screen keyboard. A recent study has indicated

that over 30% of all email replies are over 100 words long [104]. Assuming the typing

speed of an average user on a smartphone to be 20 words a minute, it takes more than 5

minutes to type a 100-word email response on a smartphone. This directly translates to

productivity-related costs for enterprises.

One approach to reducing this burden is to automatically generate suggestions for the

content of email replies, which the user can select, modify and send. The content of a typ-

ical email response can be classified into two categories: non-informational (e.g., generic

words and phrases such as ‘okay for a meeting’, ‘sure’, etc.) alternatively, informational

(specific responses such as an address, a budget proposal, etc.). There are existing so-

20

lutions that perform email reply assistance by suggesting appropriate non-informational

content (Google’s Smart Reply [69], Outlook’s suggestions[71] and Apple’s Quick Type

[70]).

In this chapter, we explore if such assistance is achievable for the informational con-

tent of the replies. Specifically, we ask the following question: For a mobile user, if the

information required for a reply to an incoming email is available in past emails within the

inbox/sent-box/other-folders of that user, could that information be identified, retrieved,

and presented to the user in a fashion that eases the burden for the reply construction?

The goal of such an informational email reply suggestion solution is not to replace the ex-

isting non-informational suggestion solutions but to compliment them with informational

content1.

In answering the above question, we make the following key contributions: (1) We use

publicly available email datasets (Enron Corporation email dataset [105], Avocado IT email

dataset [106] and Hillary Clinton email dataset) to analyze the potential for retrieving infor-

mation from existing emails to help in response construction; In total, we analyze 364,135

emails belonging to 36 different users, and show that the results are quite promising with the

percentage of responses that have a 60% similarity match with past emails being 60.41%

for three past emails; (2) We demonstrate the feasibility of suggesting informational replies

through a simple algorithm Dejavu that is based on a keyword match between the email

being responded to and past emails. Using a prototype, we show that this simple approach

is capable of providing effective suggestions nearly 27.3% of the time; (3) We propose

Dejavu++, an optimization of Dejavu’s keyword matching algorithm. Dejavu++ reduces

the computation complexity of finding suggestions through topic filtering and improves

the relevance of suggested replies by utilizing the implicit user feedback available through

partially typed responses. (4) Finally, we expand the sources of informational suggestions

1It is worth noting that this question is easily extensible to include not just past emails but also other
sources of content such as stored files, IM history, online content repositories, the public web, etc., but we
restrict the focus of this paper only to past emails.

21

to other user’s email mailboxes and demonstrate that some emails can indeed benefit with

suggestions using information outside the user’s mailbox.

Through evaluation of Dejavu and Dejavu++, we show that is tremendous scope in re-

ducing the user burden through informational reply suggestions. Given the recent advances

in natural language processing and information retrieval, we hope that this work opens the

doors for algorithms that provide more tailored suggestions in the future.

3.1 Motivation

The goal of this section is to establish the potential for effective automated suggestions in

assisting email response construction. We do this by analyzing multiple publicly available

datasets- ENRON is an email dataset comprising of emails made public during the US

SEC investigation of Enron Corportation for fraud; HILLARY is an email dataset made

public during the recent investigation into the user of a private email server by former

Secretary of State and Senator Hillary Clinton; AVOCADO is an email dataset comprising

of mailboxes of employees within a defunct Information Technology company; At a high

level, the analysis is performed using a custom-built python tool that for every reply in the

users Sent folder determines how much the non-trivial keywords and content in that email

matches with any prior email(s) in the Inbox, Sent, and other folders of the user 2.

3.1.1 Datasets

Specific details of the three datasets are as follows:

ENRON:

The Enron email corpus [105] is one of the largest available email datasets and consists of

150 email accounts (approximately 500,000 emails) of high-level executives of the Enron

corporation. This dataset was made public by the Federal Energy Regulation Commission

2We refer to email responses as replies in the rest of this chapter in keeping with common usage standards.

22

Table 3.1: The AVOCADO dataset

User Dataset ID #emails User Dataset ID #emails
1 55 33931 11 277 13261
2 173 18592 12 57 12969
3 216 18211 13 8 12957
4 144 16309 14 107 12861
5 196 15824 15 233 10809
6 178 15743 16 80 9517
7 84 14666 17 117 9216
8 63 14455 18 206 9162
9 7 13317 19 245 9155

10 167 13265 20 281 7963

during its investigation into financial irregularities and insider trading allegations. In this

chapter, we restrict our focus to a subset of 15 users with a total of 74007 emails. The dis-

tribution of emails is presented in Table 3.23. The dataset by default consists of raw email

dumps separated into several folders such as Inbox, Sent, Draft, etc., and also any other

user-created subfolders. Multiple copies of some emails were stored across different fold-

ers. Empirically, we determined that some folders such as sent mail, sent, all documents,

deleted items, discussion threads almost always contained duplicate emails and excluded

them. We categorize all the email dumps in any folder whose name contains ‘sent’ as sent

emails and all the other emails as received emails4.

HILLARY:

This dataset contains the publicly released emails belonging to former Secretary of State

and Senator Hillary Clinton. The emails were initially released as raw a PDF file with many

lines redacted. These emails, belonging to Ms. Clinton’s private email server during her

tenure as the U.S. secretary of state were released to the public following a controversy,

wherein Ms. Clinton was alleged to have violated federal government rules by using her

3Note that this subset includes controversial names such as Skilling, former president, and C.O.O. of
Enron, who was convicted of federal felony charges for Enrons financial collapse. More details on specific
roles of the employees can be found at [107].

4Different users used different email clients. The folder structure for each of these users was hence
different.

23

Table 3.2: ENRON dataset

ID Employee # emails ID Employee # emails
1 Hayslett, R 2554 9 Sanders, R 7329
2 Arnold, J 4898 10 Neal, S 3268
3 Kitchen, L 5546 11 Lokey, T 1156
4 Farmer, D 13032 12 Steffes, J 3331
5 Kaminski, V 12363 13 Derrick, J 1766
6 Skilling, J 4139 14 Causholli, M 943
7 Maggi, M 1991 15 Geaccone, T 1592

private email server for communication instead of email accounts hosted on federal gov-

ernment servers. These emails have been subsequently cleaned up for analysis and released

in the form of a CSV document. This dataset has a total of 7945 emails.

AVOCADO:

This public dataset (released in 2015) contains complete Personal Storage Table (PST)

dumps of mailboxes (containing both emails and attachments) from 279 users of a now-

defunct information technology company[106]. The name of the company is anonymized

and referred to as ‘AVOCADO IT’ within this dataset. While the original dataset consists

of 279 users, we focus on a subset of 20 users (details shown in Table 3.1) with the largest

mailbox sizes within the company. This subset of 20 users has 282,183 emails in total.

3.1.2 Processing

The three datasets consist of raw email data and are pre-processed for further analysis. A

raw email starts with header data, followed by body content and any attachments. If the

email is a reply, the email clients quote the original message (to which this email is a reply)

along with the email body. The format of these quotes differs for different clients. Some-

times the quoted text is marked with ‘<’. In other cases, the quoted text follows lines such

as ‘—–Original Message——’. Through heuristic rules made from careful observation of

the datasets, we scrub the quoted text from the reply text. At this stage, we also add an

‘Is-Reply’ field to the header to indicate if the email contained quoted text. As signatures

24

are present in a large number of emails and do not carry any special significance from an

information standpoint, we also remove user signatures from the dataset using Talon, a

popular library with classifiers to identify signature lines [108].

3.1.3 Methodology

Using a custom-built python tool, we analyze the replies in all three datasets and compute

the amount of information in the replies that is already present in one or many past emails.

A large amount of repeated content in the replies indicates the potential for an effective

suggestion mechanism in reply construction. We use a custom-built python tool for the

analysis of all three datasets. For each email account, the tool calculates the similarity

between every reply and every other email with a timestamp earlier than that of the reply.

The tool first converts the email text to lower case and removes any punctuation. Then,

it deconstructs each email into a vector of words. Stopwords, i.e., words that commonly

occur in English but do not have any special meaning like ‘a’, ‘an’, ‘the’, etc. are filtered

out from this vector of words. 5 Each word in the vector of words is stemmed to its root.

For example: ‘presenting’ and ‘presented are stemmed to ‘present’. A concept in English

can be expressed using different sentences. For example, ‘When is your presentation?’,

‘When are you presenting?’ carry the same meaning, even though the concept is expressed

in different words. In this example, after stemming and filtering the stopwords, both the

sentences will have the same words. The tool also maintains the number of emails in which

a particular stemmed word occurs.

3.1.4 Metrics:

A metric that measures the amount of information in one email (say em1) that is repeated

in another email (say em2) should be - (a) high if a large portion of information in em1 is

present in em2 and vice versa; (b) independent of any other information present in em2; (c)

5We use the list of popular stopwords in English from Natural Language Tool Kit. [109]

25

Table 3.3: Example matching email snippets for a user in ENRON dataset

Similarity Matches
0.9 reply: Ken Lay has approved the attached expense report for Rosalee Fleming

match: I have approved the attached expense report for Rosalee Fleming
0.65 reply: As was earlier announced, we will be bringing all Managing Directors

together on a quarterly basis. Please note on your calendars the first
Monday of every quarter from 8:30 a.m. to 12:00 noon for this purpose.
The first meeting will take place on Monday October 1st. If you have any
questions, please call Joannie Williamson.
match: As announced earlier, we will be bringing all Managing Directors
together, on a quarterly basis. Please hold open the first Monday of every
quarter (from 8:30 a.m. to 12:00 p.m.) for this purpose. However, our first meeting
will be on Tuesday, October 2nd.

consider the relative importance of information, i.e. the effect of words that are repeated

frequently in several emails should be less than that of special words that occur infrequently.

Based on the desired properties stated above, we define the similarity between two emails

em1 and em2 as follows6:

similarity(em1,em2) =
∑w∈WV1∩WV2 IDF(w)

∑w∈WV1 IDF(w)
; IDF(w) = 1+ log(

N
C(w)

) (3.1)

where WV1 and WV2 are lists containing the stemmed words in em1 and em2, respec-

tively. N is the total number of emails and C(w) is the number of emails containing word

w. In other words, the similarity between two emails is defined as the weighted ratio of the

number of words common to both the emails to the number of words present in the first

email. Each word’s weight is a function of the number of emails it occurs in, called the in-

verse document frequency function IDF . The value of IDF for frequently occurring words

is less than that of words that are relatively less common. This metric is also independent

of the size of em2.

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
	(Hillary)

R
e

d
u
n

d
a

n
c
y
 R

a
ti
o

User

1 match
3 matches
5 matches

Figure 3.1: Reply redundancy in ENRON dataset and HILLARY dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

d
u

n
d

a
n

c
y
 R

a
ti
o

User

1 match
3 matches
5 matches

Figure 3.2: Reply redundancy in AVOCADO dataset

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

Similarity Threshold

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) τ

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

of suggestions

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

(b) Suggestions

Figure 3.3: Sensitivity analysis for ENRON

27

3.1.5 Analysis

Using the tool described in the previous section, we first compute the similarities between

every reply and every other email with a timestamp earlier than that of the reply and ex-

tract 1/3/5 matching emails having the highest similarity with the reply. The amount of

redundancy in the reply is defined as similarity(em,∑M
i=1 mi) , where mi, ∀i = 1 : M are

the top M matches for em. We then compute RedundancyRatio(ρ) as the ratio of replies

with redundancy > α. We choose a threshold (α) of 0.6 as the goal of these experiments

is not to find identical matches for the replies, but to find emails that match a considerable

portion of the reply. We evaluate the effect of threshold α later in this section.

Figure 3.1 and Figure 3.2 show the ρ for the ENRON and AVOCADO datasets for

1/3/5 matches. The ρ for HILLARY is included in Figure 3.1 as user 16.7 For the EN-

RON dataset, the average percentage of replies with high redundancy (>0.6) was 33.84%,

47.37%, and 57.43%, respectively, for the top one, three and five prior email matches. For

the AVOCADO dataset, the average percentage of replies with high redundancy (> 0.6)

was 45.80%, 73.46% and 79.87%, respectively, for one, three and five matches. These

results indicate that there is a considerable amount of repeated content in all the email

accounts.

Table 3.3 shows two examples of replies and their corresponding top match from the

mailbox of one user in the ENRON dataset. In the first example, the reply, and the matched

email contained the approval responses to different expense reports for an employee. In the

second example, the information that Kenneth Lay is the chairman and CEO of Enron Corp.

is present in both the reply and the matched email. The reply from the second example

has a meeting announcement that matched with a similar meeting announcement sent out

in the past. These examples illustrate ways in which content is repeated in emails.

6Note that the traditional TF-IDF metric does not satisfy (b)
7Since the HILLARY dataset is preprocessed without headers or quoted text, there was no way of deter-

mining which email was a reply. Here, we computed the redundancy values for all sent emails. The presented
results will thus be a lower bound.

28

Figures 3.2a and 3.2b show the effect of changing the similarity threshold α and num-

ber of suggestions, respectively, on the ρ for 15 users in the ENRON dataset. The results

for the AVOCADO dataset are similar. As similarity threshold α is increased, the ρ falls

for all the users. This is because when α is increased, the threshold at which we decide

whether suggestions are useful or not increases. On an average, increasing α from 0.6 to

0.7 decreases the ρ by 15.48%. On the other hand, decreasing α from 0.6 to 0.5 increases

the ρ by 18.01%. Also, as expected, as the number of suggestions increases, the ρ in-

creases. Initially ρ increases rapidly, then it saturates. This indicates, the text in the reply

is only concentrated in a few emails in the mailbox and is not spread out across a large

number of emails. Specifically, as the number of suggestions is increased from 3 to 5, the

ρ increases by 31.26% for the ENRON dataset. On the other hand, decreasing the number

of suggestions from 3 to 1 decreases the ρ by 26.72%. Increasing the suggestions beyond

10 has little effect on the ρ. From this figure, it can be observed that three would be an

ideal number of suggestions as it is around the midpoint of the knee of the curve. We also

measured the sensitivity of ρ to the inbox size, sent box size and the number of lines in

the reply and found that as the inbox/sent box sizes or the number of lines increases, the ρ

increases. The results are omitted in the interest of brevity.

On a Quadcore 3.4GHz Linux computer, finding top 3 matches in a database of approx-

imately 15K emails took 43.7 seconds on average. This indicates that for larger email ac-

counts, finding matches solely on a resource-constrained smartphone might be prohibitive.

This motivates an architecture wherein heavy computation related to matching and text

processing is done on a cloud and the results pushed back to the email client.

3.1.6 Insights

The analysis has led us to the following key insights - (a) The high degree of redundancies

in the replies show that the information in the reply is most likely present in the email

account in some form and this can be leveraged to reduce user effort on email and hence

29

increase productivity; (b) As the number of suggestions increases, the chances of finding

the email with similar content increases. If the content of a reply exists in previous emails,

it is concentrated in just a few emails. (c) The ideal number of suggestions and the ideal

similarity threshold are 0.6 and 3, respectively; (d) Text processing involved with mining

the database is computationally intensive and cannot be done only on the mobile device.

It would take a lot of effort for the user to manually search her Inbox and retrieve

relevant information, copy it and send a response out. The high degree of redundancies

in the replies show that the information in the reply is most likely present in the Inbox in

some form and that this can be leveraged to reduce user effort on email and hence increase

productivity. For a mobile enterprise user, typing emails on her smartphone is especially

cumbersome due to the small real estate on the screen.

3.2 The DejaVu Solution

In this section we present details of Dejavu, an automated approach to generation of sug-

gestions to assist in reply construction.

3.2.1 Problem Definition and Scope

We define the informational reply suggestion problem as follows - For an email user, given

that a reply to an Inbox email may consist of content that is present in a prior email, can

appropriate information be retrieved from earlier emails and provided as suggestions to

the user while the reply is being constructed?8. Specifically, the reply suggestion solution

should - (1) suggest relevant content and should have high similarity to the intended reply;

(2) be presented unobtrusively on a smartphone; (3) should not place a severe burden on the

smartphone’s constrained resources; (4) be user-friendly and easy to learn; The previous

section illustrates that there is considerable amount of redundancy in the content of the sent

email.
8We do not consider email attachments, something that would be of obvious use to consider. We defer

such consideration to future work

30

Solution Scope

An intuitive way of approaching the problem of generating informational suggestions is to

consider the Inbox email as a proxy for the reply, find other emails in the user’s mailbox

with a large number of words in common as the Inbox email and present them as sugges-

tions. Such a simple solution (De javuSIMPLE shown in Figure 3.4) does not consider the

fact that emails are unstructured and non-standardized. Several email servers and clients

represent the email header and body in their own proprietary formats. Our analysis of the

datasets revealed the following issues with email data - (i) Some email clients do not crit-

ical fields in email headers like the ‘In−Reply− To′; (ii) Some email clients duplicate

the message in different encodings (HTML, Plaintext); (iii) Original text of the email is

appended to the reply in non-standard formats; (iv) Users add signatures in different for-

mats. These issues can be solved with the addition of a preprocessing pipeline described

in Section 3.2.2. An overview of the simple approach (called De javuSIMPLE2 with a pre-

processing pipeline is shown in Figure 3.5. De javuSIMPLE2 also suffers from several issues

resulting from the usage of natural language in emails: (i) There are noise words in sen-

tences that do not carry any significance (E.g., the, an, at, etc.); (ii) Words of the same

semantic meaning are represented in different formats due to inflexion (E.g., meeting and

meet); (iii) All words are given equal importance in a sentence. In the rest of this section,

we describe Dejavu, an automated informational reply suggestion system that overcomes

these challenges.

3.2.2 The DejaVu solution

At a high level, Dejavu consists of a Information-Curator that constructs an Information

Database with the user’s mailbox and indexes it. When the user wants suggestions for

constructing a reply to an email, the Information-Curator extracts context from this email,

computes suggestions from the information database using the context. When the user

wishes to construct a reply to an email em in her inbox using the Dejavu system, the

31

Figure 3.4: An overview of De javuSIMPLE

Figure 3.5: An overview of De javuSIMPLE2

32

following sequence of events takes place. A user with Dejavu client hits reply to an email

em in her inbox through her email client, the following sequence of operations take place:

• The user selects reply button on the client for the email;

• The Information database is queried by the Information-Curator using the context

extracted from email and the best matches are retrieved

• The text from these matches is presented to the user at a sentence level granularity as

suggestions for the reply to email.

• When the user selects one or more of the suggested sentences, they are pasted on to

the reply.

• The user can finish constructing the reply by editing the suggested sentences and

sends out the reply.

In the rest of this section, we describe the key design elements of Dejavu.

What is the granularity of suggestions?

Dejavu considers a full email to contain the lowest granularity of stand-alone information,

independent of other emails. Information-Curator parses emails in their entirety and stores

them in the Information Database. Therefore, the granularity of suggestions is also full

emails. We make this design choice as opposed to other granularities such as sentences

because the amount of information (keywords) present in a sentence is low. A sentence is

usually not independent but depends on other sentences around it. By considering just a

sentence, we may lose out on the surrounding context of that sentence, thus compromising

on the appropriateness of the suggestions presented to the user.

What information is stored in the database?

Information-Curator of the Dejavu system parses each email from the user’s mailbox irre-

spective of the folder it is in. It separates the email header from the MIME message and

33

filters out any content that is not plain text, such as attachments, pictures, HTML, etc. Any

quoted text (original email attached to a reply) is then removed from the from the email

body using a set of rules described in Algorithm 1. Email clients do not follow a fixed

standard for attaching quoted text. Therefore, we define these set of rules by extensively

observing the format of emails from different clients. The parser for the quoted text looks

for specific text patterns indicative of the quoted text and filters out these lines. The resul-

tant email is then scrubbed of any signature lines. Many users set up their email client to

attach signatures at the end of every sent email. The format and the content of these sig-

natures vary among different users and sometimes, for the same user. We, therefore, use a

signature extraction tool called Talon [108], which determines whether a line is a signature

line or not by extracting a set of features from that line (for example, the presence of words

such as ‘best’, ‘thanks’, ‘regards’, etc.) and passing it through a Support Vector Machine

(SVM). This SVM is pre-trained on a large annotated email corpus.

Apart from the email body, the date the email was sent/ received, the ID and the sub ject

are also extracted from the email. Modern email headers have an ‘In-Reply-To’ field for

replies that contains the ID of the (parent) email to which the current email is the reply.

Information-Curator collects this parent email message ID from the header. Any remaining

lines that do not have any quoted text or signatures are added to the Information Database

along with the ID, the parent email ID (if any), the date and the sub ject.

How is the content indexed?

Each entry in the Information Database i is indexed by a set of keywords extracted from it.

The text of an entry in the Information Database is initially converted to lowercase and then

split into constituent words W (i). Any punctuations are removed from these words. The

most common words in English, also called ‘stopwords’ are then filtered and removed from

W (i), as the presence or the absence of stopwords does not carry any lexical significance

when it comes to the extracting the core context of an email. Table 3.4 shows a list of the

34

Table 3.4: List of stopwords filtered by Dejavu

i, me, my, myself, we, our, ours, ourselves, you, your, yours,
yourself, yourselves, he, him, his, himself, she, her, hers, herself,

it, its, itself, they, them, their, theirs, themselves, what, which,
who, whom, this, these, those, am, is, are, was, were, be, been, being,

have, has, had, having, do, does, did, doing, a, an, the, and, but, if,
or, because, as, until, while, of, at, by, for, with, about, against,

between, into, through, during, before, after, above, below, to, from,
up, down, in, out, on, off, over, under, again, further, then, once, here,

where, why, how, all, any, both, each, few, more, most, other, some, such,
no, nor, not, only, own, same, so, than, too, very, s, t, can, will, just,

there, when, that, don, should, now

Figure 3.6: Pre-processing pipeline in Dejavu

stopwords that are filtered by the Information-Curator.

The remaining words in W (i) are then stemmed to their roots. Several words in English

are derived from the same root by the annexation of suffixes and prefixes. For example,

the words ‘addition’, ‘additive’, ‘adding’ are derived from the root ‘add’ through suffixes

‘-ition’, ‘-itive’, ‘-ing’, respectively. All of these words have a meaning close to that of

‘add’. To capture the core context of the text in the index and to avoid duplicates of words

that are close in meaning to each other, we trim every word in W (i) to its root. Each entry

in the Information Database is then indexed on the set of roots of words in W (i). Figure 3.6

summarizes the preprocessing pipeline of Dejavu.

35

How are suggestions extracted?

In Dejavu, the suggestions are extracted using a keyword matching algorithm. The email

whose suggestions are to be extracted (em) is parsed, and the core context in the form of

a list of keywords KW (em) is extracted from it. The Information-Curator then matches

KW (em) with the index of entries in the Information Database. An obvious solution for

finding suggestions would be to match KW (em) with just the keywords in the index of an

entry in the Information Database. However, this simplistic solution will most likely not

work well in the context of emails. This is because email, apart from being a method for

information sharing, is primarily an asynchronous medium of communication between two

parties. This is because email is primarily designed as a medium of asynchronous com-

munication between two parties. Most of the emails are conversations between individuals

and the context of one conversation might not be contained entirely within one email and

can span multiple emails. Consider the following example of an email - Where do you

live? and the corresponding reply - On Mars. For this example, the information contained

in the reply does not hold much significance on its own. The email provides context for

the reply. Therefore, an email and the reply when considered together carry significance,

and not separately. Also, given the rising trends in the usage of email on mobile devices,

users often resort to shorter replies and informal sentence construction (like the reply in

the example above). In this case, without the parent email’s index, it would be hard to

retrieve any information relating to the conversation, just from the child email’s context.

Therefore, Dejavu combines the keywords in the indices of an entry and its parent (if any)

to find matches i.e. KW (em) is matched with index(i)∪ index(parent(i)).

The degree of match (similarity) between a set of keywords KW and the combined

index cindex(i) = index(i)∪ index(parent(i)) is computed as ∑w∈KW∩cindex(i) IDF(w)
∑v∈KW IDF(v) , where

IDF is the inverse document frequency function defined in Equation 3.19. In other words,

similarity is the ratio of the sum of IDF for words that are present in both the set of key-

9This is the same as the right hand side of Equation 3.1

36

words KW and the combined index cindex(i) to the sum of IDF for all the keywords in KW .

Using IDF as weights in the ratio for keyword matching ensures that the presence/absence

of keywords that occur less frequently in the user’s mailbox carries a higher weight in

computing the similarity, compared to keywords that are relatively more common. This is

based on the intuition that keywords that occur with less frequency carry more importance.

The weight is a function of the inverse of the frequency at which the keyword occurs in the

database. We choose a bag-of-words similarity metric over other neural metrics like word

mover’s distance, paragraph2vec similarity to remain immune to lower volume of training

data and the possibility of out of vocabulary words.

After computing the similarity between KW and every other entry i in the Information

Database , Information-Curator then returns a set of information entries with the highest

similarities to em as suggestions to the email 10.

When are the suggestions retrieved?

The Dejavu client uses a hybrid push/pull model for retrieving suggestions. Upon receiving

a new email em in any folder of the mailbox, the Information-Curator computes sugges-

tions S(em) and stores them in a Suggestion Database. S(em) is pushed to the Dejavu client

on the smartphone, who stores it in a local database. This database on the smartphone only

stores the suggestions for a small fixed number of recent emails (say 100). When the smart-

phone user hits ‘reply’ to an email, the suggestions are retrieved from the local database by

the Dejavu client and presented to the user. If the suggestions for the email are not already

present on the local database, the Dejavu client pulls them from the Information-Curator.

Storing a copy of suggestions on the Dejavu client enables the smartphone user to retrieve

suggestions even when she is offline and not connected to the Information-Curator.

10Note that while the combined index of an entry and its parent is used in matching, only the text of the
entry is included in the suggestions.

37

Figure 3.7: An overview of De javu

How are the suggestions presented?

When the user selects ‘reply’, a list of constituent sentences in a suggestion grouped by their

sub ject lines are shown to the user. The user can select any number of these sentences.

Upon selection, these sentences are automatically copied onto the clipboard and pasted

during reply construction.

An overview of Dejavu’s keyword matching algorithm is shown in Figure 3.7.

3.3 Dejavu++: Optimizations to Dejavu

The baseline Dejavu algorithm uses keyword matching with Inverse Document Frequency

(IDF) weights to find suggestions for an inbox email. We later show in Section 3.4 that

the baseline algorithm succeeds in presenting useful suggestions to an email 27% of the

time on average. Recall that replies in a user’s mailbox have a significant redundancy

ratio - 60.4%. Baseline Dejavu is only able to leverage 45% of this redundancy through

suggestions. In this section, we identify the following issues with Dejavu that prevent it

from leveraging the considerable redundancy present in a user’s replies. We later propose

Dejavu++, a suite of optimizations to the baseline Dejavu to overcome these issues.

38

• For every Inbox email, the baseline algorithm searches the entire database for pos-

sible suggestions. A degree of match (similarity) is computed for each entry in the

Information Database having at least one keyword in common with the Inbox email.

For heavy email users with large mailboxes, this simple search results in a heavy

computational burden. For these users, it is possible that the suggestions for an email

may not be presented at the smartphone in time for the user to include them in her

replies.

• Dejavu’s baseline algorithm does not leverage any other information within the user’s

past email history beyond email body keyword matching. The algorithm misses cru-

cial information such as past matching performance, the sender/receiver characteris-

tics, the timing characteristics, etc.

• For every email, baseline Dejavu computes the suggestions only once when it arrives

at the user’s Inbox. Dejavu does not refresh these suggestions when new information

becomes available as the user types the reply.

• Baseline Dejavu relies on user’s own mailbox for computing suggestions. As em-

ployees communicate with other employees within the enterprise, crucial informa-

tion relating to their job functions may be located with other employees’ mailboxes

within the enterprise. Baseline Dejavu misses out on the information outside the

user’s mailbox.

In the rest of this section, we present Dejavu++, an optimized version of Dejavu’s au-

tomated response suggestion system. Dejavu++ retains the core of the matching algorithm

of Dejavu but includes several enhancements to address the issues outlined earlier.

3.3.1 Reduction of Computation Complexity With Topic Filters

Most enterprise employees responsibilities involve several different functional roles at the

same time. For these employees, the content of email correspondence related to one job

39

function will be different from the content related to other job functions. It is unlikely that

the replies corresponding to one job function have any content in common with replies cor-

responding to other job functions. For example, consider the case of an account manager

at a mid-size retail company whose responsibilities include three different business func-

tions - handling stock purchases from vendors, running employee payroll and approving

travel expenditures. Her emails to clients relating to stock purchases would be different na-

ture compared to emails to her colleagues regarding payroll inquiries. Dejavu++ uses this

insight to reduce the complexity of retrieving suggestions. Dejavu++ groups the emails

present in a user’s mailbox into several categories and computes suggestions for an Inbox

email by matching the keywords of the email only to entries from the information database

grouped within the same categories as the email. By reducing the set of possible candidates

for suggestions, Dejavu++ improves the speed at which suggestions are computed.

We now present the details of category-wise filtering of the information database as a

series of challenges and design choices:

How are the categories defined for a user?

Dejavu++ automatically obtains the hidden categories within a user’s mailbox through

topic modeling. Topic modeling refers to a class of supervised natural language process-

ing techniques to discover hidden topics within a large corpus of unstructured data [110–

112]. These techniques observe word co-occurrences within documents of the corpus and

group words into topics. Given a new document, the words of this document indicate the

topics present in that document. For example, given a corpus of documents containing

only academic papers on mobile computing and news articles on politics, topic modeling

of this corpus would infer that words such as ’abstract’ or ’wireless networks’ belong to a

topic (say topic1) that is different than words such as ’Senate’, or ’President’ (say topic2).

Given a new news article on the Senate elections, these techniques can infer that the article

belongs to topic2.

40

Specifically, Dejavu++ uses Latent Dirichlet Allocation (LDA) [110] topic models and

Gibbs sampling to automatically extract the latent set of topics (or categories) from a user’s

mailbox. Keeping in line with the document generation process of LDA, Dejavu++ as-

sumes that each entry in the information database, i, is generated with the following story:

• Each entry, i, contains a probabilistic combination of K topics. The value of K is

empirically fixed for the user.

• Each one of the K topics is a probability distribution φk over the set of words in the

vocabulary V . φk for each topic k is a vector of |V | probabilities that sum to 1. The

probability distribution φk has a Dirichlet prior λ. The probabilities for words more

likely to be associated with the topic k are higher in φk than others.

φk ∼ Dirichlet(λ)

• Each entry, i, is a distribution θi over the K topics. θi is a vector of K probabilities

that sum to 1. The probability distribution θi has a Dirichlet prior α. In θi, the

probabilities for topics associated with the entry i are higher than other topics.

θi ∼ Dirichlet(α)

• If the entry i has ni words, the topic assignment zn,i, for the word wn,i, is obtained

from θi.

zn,i ∼Multinomial(θi)

• Finally, the nth word in the entry i is selected from the vocabulary according to the

probability distribution φzn,i .

By assuming this generative story and observing the result of the generative process,

i.e., words wn within each entry i, Dejavu++ infers the topic-word probability distribution

41

φk and the document-topic probability distribution θi using techniques like Gibbs sampling

[113]. This estimation occurs periodically once every few days at the Information-Curator.

How to categorize the Information Database?

Dejavu++ trains on a user’s information database to obtain the topic-word probability dis-

tribution φk for all of the K topics and the document-topic probability distribution θi for

all of the entries i. Within the document-topic distribution of an entry i, the probabilities

corresponding to topics most likely to be present in the entry i are higher than other topics.

Dejavu++ sorts the distribution θi in decreasing order of probabilities and obtains L topics,

Ti, having the highest probabilities.

Ti = k|θ(k)i ≥ X−L, X−L = max(t|#{k ∈ K|θ(k)i ≥ t}= L)

Dejavu++ assumes the entry i contains these Ti categories and labels it with the topics Ti.

For easy retrieval using the topic labels, Dejavu++ also creates an index for the database

on these labels.

How to use the categories to compute suggestions efficiently?

To compute suggestions for an email em, Dejavu++ analyzes the words in the email em

and estimates the posterior document-topic probability distribution θem for em. From this

distribution, Dejavu++ obtains the top L topics (with highest probabilities), Tem. Dejavu++

matches the keywords present in the email, KW (em), with the combined index of each

entry, cindex(i), in the information database, labeled with at least one of the topics present

in the set Tem. The combined index cindex is defined in Section 3.2.2. The top few entries

with the highest degree of match are presented as suggestions to the user.

By matching the keywords of an email with only those entries having the same la-

tent topics as the email, Dejavu++ reduces the complexity of retrieving suggestions. An

42

Figure 3.8: An overview of topic filtering in Dejavu++

overview of Dejavu with Topic filtering is shown in Figure 3.8.

Improving the accuracy of suggestions with scoping

The baseline Dejavu algorithm matches the keywords of an Inbox email em with the in-

dices of every candidate entry (with at least one matching keyword) within the information

database to retrieve suggestions. During matching, each entry in the database is equally

likely to be a relevant suggestion. However, user’s email habits are subject to certain pat-

terns which the naive matching algorithm doesn’t take into account for finding suggestions.

Consider the case of an enterprise user Alice, who is a field sales representative at a

large global 500 company. Alice’s mailbox contains email correspondence relating to sales

with her team, monthly budget reports to her manager, travel arrangements to client loca-

tions with the travel team, miscellaneous other work-related and personal topics. Alice’s

responses will have different characteristics depending on the query within the email, the

person she is responding to, the time of the day, the subject matter of the conversation,

etc. For example, Alice’s responses will usually be longer if it is a monthly budget report

to be sent to her manager, than a response to the travel team approving her expenses for

the recent client visit. She may type longer responses at her desk during early hours of

43

a day than when she is at a client location mid-day. She may respond faster to a critical

work-related query from a client than a personal query. In addition to patterns within Al-

ice’s response construction, there will also be patterns in the redundancy (as explored in

Section 3.1) within these responses. For example, A query from Alice’s colleague asking

for the monthly budget report will be redundant with the response containing the budget

report sent out her manager earlier. Responses to queries from her manager on the status of

a sales contract might have content already present within the email correspondence with

the client of the sales contract. Responses to work-related queries might have significant

redundancies with email correspondence during the day (as opposed to the night). Dejavu’s

matching algorithm doesn’t take into account the email behavior of Alice when computing

suggestions.

Dejavu++ utilizes these patterns to retrieve more relevant suggestions for an Inbox

email em. Dejavu++ assumes that the features of an email em are related to certain features

of it’s response rem. While the relationships between these features can exist across multiple

dimensions, we limit our focus to three major features of a response - (i) The length of the

response (Lrem), (ii) The time to respond since the email em was received (Trem), and (iii) the

senders/recipients of emails with significant redundancy to the response (Erem). To retrieve

suggestions for an Inbox email em, Dejavu + estimates three features Lp
rem , T p

rem and E p
rem

using em. Specifically, to estimate the length and the time to respond, Dejavu++ uses em,

rem pairs within the user’s mailbox to train a regression model with input features of the

input email em such as the length Lem, the time of day of arrival T d
em, the day of week of

arrival T w
em, the senders/recipients Eem, the subject keywords KW S

em and the keywords within

the email body KWem to output a target Lrem and Trem . To estimate the sender/recipient set,

Dejavu++ uses the same set of input features to train a classifier to output ’1’ if a particular

email address is present in Erem and 0 otherwise.

It matches the keywords of em with those entries in the Information Database within

a margin of error of the predicted features. If εL, εT and εE the margins for the length of

44

response and time to respond, Dejavu + matches keywords of em - KW (em) with all entries

em′ in the database whole length Lem′ , timestamp Tem′ and sender/receiver set Eem′ satisfies

the following conditions - (i) Lp
rem − εL < Lem′ < Lp

rem + εL; (ii) Tem + T p
rem − εT < Tem′ <

Tem +T p
rem + εT ; and (iii) |E p

rem ∩Eem′|= εE

3.3.2 Improving the relevancy of suggestions with user feedback

Baseline Dejavu computes suggestions for an Inbox email only once when it is received

in the user’s mailbox, using only the keywords present in the email. While this strategy

can indeed reduce the burden of typing replies if the user uses the suggestions, it fails to

consider any potential user feedback that becomes available if the user does not incorporate

the suggestions when constructing a reply. User feedback can either be (i) explicit when

the user performs an action to inform the system that the suggested replies are not useful;

or (ii) implicit, when the user pulls up suggestions but does not incorporate them in the

reply. Dejavu++ improves upon Dejavuby provisioning for both implicit and explicit user

feedback to recompute suggestions when the initial set of suggestions are deemed irrelevant

by the user.

We now present the details of how Dejavu++ leverages the implicit and explicit user

feedback to enhance the relevancy of suggestions.

When are the suggestions recomputed?

Dejavu++ updates the initially computed suggestions when it receives new information on

the usefulness of the presented suggestions through feedback from the user. Dejavu++

infers that the presented suggestions were not relevant if the user looks at the sugges-

tions (by clicking on the suggestions option from the email menu) and proceeds to type

the reply without incorporating the suggestions. In addition to monitoring user’s behavior

for implicit feedback, Dejavu++ also allows the user to explicitly mark the given sugges-

tions as irrelevant and ask for new suggestions with a refresh button. Dejavu++ recom-

45

putes the suggestions for an email under the following circumstances: (i) the user clicks

the refresh button on the suggestion panel; (ii) the user has types a portion of the reply

without using suggestions even after looking at the suggestions panel , and (iii) the user

types a portion of the reply without looking at the suggestions panel. Under the circum-

stances as mentioned above, the Dejavu++ email client on the user’s smartphone triggers

the Information-Curator to refresh the suggestions.

What feedback is collected from the user?

To compute more relevant suggestions (than the ones initially presented), the Information-

Curator needs to use additional information beyond just the keywords of the email. Note

that for usability reasons, the user cannot be prompted to provide any further input to aid

the recomputing process. This information has to be inferred from the natural sequence

of actions taken to respond to the email. Given that the presented suggestions Sold(em)

are already passively marked as irrelevant by the user under certain circumstances, De-

javu++ leverages them recompute new suggestions. In the case when the user starts to

type the response with or without looking at the presented suggestions, the content of the

partially typed reply itself provides useful clues to recompute the suggestions. Therefore,

Dejavu++ email client collects the partially typed reply r(p) in addition to the old irrelevant

suggestions S(em) and sends them to the Information-Curator to recompute suggestions.

How to utilize feedback to improve the relevancy of suggestions?

Upon receiving a trigger to recompute suggestions for an email em, Information-Curator

first identifies the circumstance under which the suggestions are to be recomputed. When

the user either explicitly taps the refresh button or starts typing a reply from scratch after

looking at the initial set of suggestions, Dejavu++ concludes that the suggestions were not

useful. These entries comprising the suggestions Sold(em) are marked as irrelevant in the

information database to exclude them from being considered as potential suggestion candi-

46

Figure 3.9: An overview of partial reply matching in Dejavu++

dates during any future suggestion refreshes. The relevancy of an entry i in the information

database is indicated by a temporary bit flag ireli set to 1 ∀iinSold(em). If a partially typed

reply is received from the email client, the Information-Curator extracts the keywords from

it KW (r(p)), and matches these keywords to the combined index of every entry i in the in-

formation database with the flag ireli set to 1. In the case where the user has not typed

a reply yet, the keywords of the Inbox email em are instead matched to the entries in the

database with an unset relevancy flag. Similar to Dejavu, the top few entries with the high-

est degree of match score with the keywords (of the partial reply or the email) are presented

to the user as suggestions. An overview of Dejavu++’s partial reply matching is shown in

Figure 3.9.

3.3.3 Expanding the sources of suggestions to the global network of mailboxes

Email is the most popular medium of asynchronous communication within enterprises.

The combined set of mailboxes of all the users in the enterprise contains a large amount of

information on various business functions within that enterprise. Consider the case of four

enterprise employees Alice, Bob, Christy, and Derek. Assume that Christy has compiled a

quarterly sales report and sent it over email to Derek (emc). Let’s say Alice sends an email

47

to Bob asking for the same quarterly sales performance numbers (ema). Even though the

response for ema is present in within the enterprise network of mailboxes (in emc), baseline

Dejavu will not be able to present it as a suggested reply, as it only searches for suggestions

within a user’s own mailbox.

To leverage the vast amount of information present across the enterprise, Dejavu++

includes the entire enterprise’s network of mailboxes in the search for relevant suggestions.

When a user U receives an inbox email em, Dejavu++ initially matches the keywords of

em with the combined indices of entries within the user’s own Information Database DBU .

If the magnitudes of degree of match scores between the top few database entries with the

highest similarity to KW (em) are less than a threshold τnw, Dejavu++ proceeds to match

KW (em) with entries from other user’s information databases DB(U ′)∀U ′ ∈ enterprise. To

respect user privacy, users are given an option to exclude their mailbox from the search for

suggestions for other users. They can also selectively configure the visibility of their mail-

boxes individually for users in the enterprise. Dejavu++ restricts the search to only those

mailboxes that are pre-configured to be visible by the user U during suggestion retrieval.

3.3.4 Architecture

Figure 3.10 shows the system architecture of Dejavu. There are two main components to

Dejavu: The Information-Curator and the Dejavu client.

Information-Curator:

The Information-Curator of a Dejavu system is responsible for maintaining all the relevant

databases and for retrieving suggestions from them. It resides in an elastic cloud such as

the Amazon EC2 [114] and accepts connections from a Dejavu client. It consists of five

modules:

• IMAP Polling: This module is responsible for frequently polling the user’s mail

server and downloading any new email content using the IMAP protocol. It acts like

48

Figure 3.10: System architecture of Dejavu

an email client for the user’s mail server. The new emails are passed to the Parser

module for further processing.

• Parser: This module receives emails from the IMAP Polling module, parses them

to extract relevant information and adds them the database. As discussed earlier, for

each email, the body content is filtered to remove quoted text and signature lines.

Other information such as date, ID, parent’s ID (if any) are also extracted. The

parser then computes the index for this email and sends the text, date, parent’s ID,

the index and the folder to the Suggestion Generator.

• Suggestion Generator: If the email does not belong to any ‘Sent’ folder of the user,

the suggestion generator retrieves suggestions for this email. The information ex-

tracted from an email by the parser along with the suggestions (if any) is added to the

database. If the email has suggestions, these suggestions are also sent to the Mobile

sync module. If the Dejavu client requests suggestions, the Suggestion Generator is

retrieves them and sends them back.

• Mobile sync: This module is responsible for handling communications to and from

the Dejavu client. It forwards any new suggestions generated by the Suggestion

49

Generator to the Dejavu client and handles any requests for suggestions from the

Dejavu client.

• Information Database: This is the core module of Information-Curator that stores

all the information content of the mailbox. It consists of three databases: Information

store, suggestion database, and a word frequency database.

Dejavu Client:

The Dejavu client is located on the user’s smartphone and interacts with the Information-

Curator on the cloud. The Dejavu client consists of four modules:

• Cloud Sync: This module receives suggestions from the Information-Curator and

forwards suggestion requests to the Information-Curator.

• Suggestion Database: This database stores the suggestions for a fixed number of

latest emails from the user’s mailbox.

• Suggestion Handler: This module is responsible for retrieving the suggestions for

an email that the Email client requests from the suggestion database. If a suggestion

is not present, it is requested from the Information-Curator through the Cloud Sync

module. Any suggestions pushed to the Dejavu client from the Information-Curator

are added to the Suggestion Database.

• Email Client: This is the component that a user directly interacts with. It has all

the functionalities of a typical email client in addition to the suggestion presentation

feature. When the user wants to reply to an email, the email client requests the

Suggestion Handler for any suggestions to that email and presents them.

3.3.5 Prototype

We developed a prototype for the Dejavu client on Android OS and Information-Curator

on a Linux machine (in Python). We modified the source code of K-9 mail client [115],

50

(a) Suggestions option (b) List of suggestion
emails (c) List of snippets (d) Reply with se-

lected text

Figure 3.11: Prototype screenshots

Figure 3.12: Integration with K-9 email client

51

a popular open source email client application for Android to act as a Dejavu client. K-9

mail is a full-fledged email client with functionalities such as search, IMAP push, folder

sync, filing, signatures, etc. and supports email access through IMAP, POP3 and Exchange

servers. Figure 3.12 shows the modules added or modified within K-9’s architecture. The

modifications made to the application have a minimal footprint: less than 200 lines of code.

We add a ‘Suggestions’ options to the UI of an email (see figure 3.11a. When the user

selects this option, a list of suggestions for that email, retrieved with options to select them

(see figure 3.11c). from a database in the external storage directory, are displayed (figure

3.11b. The subject line of the suggestion is displayed on the list. When the user selects one

of these suggestions, another dialog box with a list of constituent sentences is displayed on

the screen (see figure 3.11c) with options to select any number of these sentences. When

the user hits ‘copy’, a reply is constructed with the selected sentences. The user can edit

the reply before sending it out (see figure 3.11d).

3.4 Evaluation

3.4.1 Methodology

We evaluated Dejavu on 15 users from ENRON dataset and 20 users from the AVOCADO

dataset (Section 3.1.1). For each user, the emails in the dataset are processed and sorted in

the increasing order of their timestamp.

For the AVOCADO dataset, 75% of the emails from the sorted list of emails are used

to populate the Information Database in Information-Curator. All other emails are then

accessed in order. If the email is not a reply (no quoted text has been encountered during

initial parsing), it is added to the Information Database. If the email has a reply, the

matching algorithm is used to retrieve suggestions. These suggestions are stored in the

suggestions database, and the email is added to the Information Database. The reply text

for the emails for this dataset was extracted by looking up reply id in the database. The

similarity (equation 3.1) between the reply text, and the union of suggestions is calculated.

52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it
 R

a
te

User

1 suggestion
3 suggestions
5 suggestions

Figure 3.13: Hit rates for Dejavu on the ENRON dataset

We process the ENRON dataset differently from the AVOCADO dataset due to the

absence of ‘In-Reply-To’ field in the header. In this case, the reply to a specific email

cannot be identified by simply parsing email header. To overcome this problem, we keep

track of which emails have quoted text. The presence of quoted text implies that these

emails are replies to some other email. We further process the quoted text for these emails

using the same rules as in Section 3.2 to obtain the text of the parent email. The emails

are then accessed in increasing order of their timestamp. If the email is not a reply, it is

added to the database. If the email is a reply, the text of the parent email extracted from

the quotes is used to lookup the database for suggestions. The similarity between the email

text and the union of suggestions (retrieved from the quoted text) is then computed.

To evaluate the suggestion retrieval algorithm, we define a metric HitRate(τ) for a

similarity threshold τ to be the ratio of the number of emails whose reply has a similarity

greater than τ with the suggestions (n high) to the total number of emails with replies. A

high value of HitRate indicates that the suggestions were useful in writing replies.

3.4.2 Macroscopic Results

We evaluated HitRate for at threshold τ = 0.6 for the 20 users in AVOCADO dataset

(shown in figure 3.14) and 15 users in the ENRON dataset (shown in figure 3.13), for

1, 3 and 5 suggestions. For the AVOCADO dataset, the average HitRate for 1, 3 and 5

53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

1 suggestion
3 suggestions
5 suggestions

Figure 3.14: Hit rates for Dejavu on the AVOCADO dataset

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
e

d
u

n
d

a
n

c
y
 R

a
ti
o

Similarity Threshold

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Similarity Threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

of suggestions

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

(b) Number of Suggestions

Figure 3.15: Sensitivity analysis for Dejavu on the ENRON dataset

suggestions was 0.08, 0.20 and 0.29 respectively. For the ENRON dataset, the average

HitRates for 1, 3 and 5 suggestions were 0.31, 0.42 and 0.51, respectively. In other words

for the case of 3 suggestions, on an average Dejavu was able to retrieve useful suggestions

for one in 5 replies for the AVOCADO dataset and 1 in 3 emails in the ENRON dataset.

We also compute the HitRate for a fictional suggestion that contains all the keywords

seen in the past for that user, and found that it is greater than 0.9 for all the users in both

the datasets. This indicates that the replies rarely contain new keywords. These numbers

indicate the efficiency of the Dejavu’s suggestion algorithm in retrieving useful suggestions

for a user.

54

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2000 5000 8000 11000

H
it
 r

a
te

of Emails in the inbox

(a) Inbox size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 500 1500 2500 3500 4500

H
it
 r

a
te

of Emails in the sentbox

(b) Sentbox size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

H
it
 r

a
te

Average # lines in a reply

(c) Reply size

Figure 3.16: Sensitivity to various parameters for Dejavu on the ENRON dataset

3.4.3 Microscopic Results

In this section, we evaluate the sensitivity of HitRate to various parameters. Figure 3.15a

shows the effect of changing the similarity threshold τ on the HitRate for 15 users in EN-

RON. As the similarity threshold, τ is increased, the HitRate falls for all users. This is

because as τ increases, the threshold at which we decide whether suggestions are useful

or not increases. On average, increasing the similarity threshold from τ = 0.6 to τ = 0.7

decreases the HitRate by 15.48% for users in ENRON dataset. On the other hand, decreas-

ing the similarity threshold from τ = 0.6 to τ = 0.5 increases the HitRate by 18.01% for

ENRON users.

Figure 3.15b shows the variation of HitRate to changes in the number of suggestions

for 15 users in ENRON. In general, as the number of suggestions is increased, the HitRate

increases. Initially the HitRate increases rapidly and then it saturates. This indicates that

the text in the reply is only concentrated in a few emails in the mailbox and is not spread

out across a large number of emails. Specifically, as the number of suggestions is increased

from 3 to 5, the HitRate increases by 31.26% for ENRON users. On the other hand, as

the number of suggestions is decreased from 3 to 1, the HitRate decreases by 26.72% for

ENRON. Increasing the number of suggestions beyond 10 has little effect on the HitRate.

From these figures, it can be observed that three would be an ideal number of suggestions

as it is around the midpoint of the knee of the curve.

We also evaluate the sensitivity of HitRate to the size of the Inbox, size of the sentbox

55

and the average number of lines in the reply for the ENRON (shown in Figure 3.16) dataset.

However, we only present the results for the ENRON datasets in this chapter. As the inbox

size increases, the HitRate increases for the ENRON dataset. With larger inbox sizes, there

is more information available in the database for lookup, and hence a higher chance of

finding the right suggestions for the replies. Also, as the number of emails in the sentbox

increases, the HitRate increases.

As the replies become longer (number of sentences in the replies increases), HitRate

generally increases (if a few outlier points are ignored). This is probably because for a

more extensive reply there is more scope for a suggestion to be useful. To conclude, in

general, larger inbox size, larger sent box size, and larger reply size tends to correlate with

a larger HitRate. As more and more content is encountered in the mailboxes, the HitRate

is expected to improve for any user. Table 3.5 shows two examples Dejavu’s suggestions.

For both these cases, the content of suggestion is very close to the reply The first example

is a meeting scheduling email sent to an executive, to which the reply is a confirmation

email. One of the suggestion snippets for this was a sentence from a confirmation email

from another meeting scheduling email from the past, wherein the same executive asks the

meeting be put on the calendar. The second example is an email requesting information

on the time of a conference call. In this case Dejavu was able to pull up an email in the

past which contained information on the time of this call successfully. thereby reducing the

burden on the user in typing these replies.

3.4.4 User burden reduction

Figures 3.17 shows the user burden, expressed as the average time taken to type a reply for

the 15 users in the ENRON dataset using a plain keyboard, Swype[116], Google’s Smart-

Reply system [69] and baseline Dejavu. User burden is defined as follows for each of the

four media:

• User Burden with Keyboard = Response Length
Typing speed(words per minute)

56

Table 3.5: Examples of email snippets

Similarity Email snippets
0.69 Email: Carol St. Clair asked me to schedule a meeting regarding the review of

pulp and paper’s confidentiality agreements. I have tentatively set it for
Friday, September 10 at 10 AM. Let me know if this day and time works for you?
Reply: works fine for me.
Suggestion: Please put on my calendar

0.68 Email: I can’t remember if your call is at 9 or 10 Houston time.
Please let me know.
Reply: 9 am Houston
Suggestion: I am not sure I will be able to (or even should) speak on
Friday for our 9 am (Houston) conference

Figure 3.17: Reduction in User Burden

57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Watson
Passages

Watson
Emails

Outlook
Suggestions

Dejavu

A
v
e
ra

g
e
 S

im
ila

ri
ty

Figure 3.18: Average similarity between suggestions and reply for user Causholli-M
from the ENRON dataset

• User Burden with Swype = Response Length
Tracing Speed(words per minute)

• User Burden for Smart-Reply and Dejavu = Response Length(1−similarity(suggestions,response))
Typing Speed(words per minute) ,

if the suggestion was used in creating the response; Lr
(Typing Speed(words per minute) if the

suggestion was not used

For all of the users, the burden with Dejavu is the lowest to type a reply. Also, for these

users, the burden with Swype is consistently the highest. In particular, Dejavu reduces

the user burden by 21% compared to the keyboard, 35% compared to Swype and 16%

compared to Smart-Reply. While Dejavu and Smart-Reply both suggest replies to ease

user burden, the responses suggested by Smart-Reply are non-informational in nature and

are short phrases. In contrast, Dejavu’s suggestions are longer and informational in nature.

Hence, user burden with Dejavu is lower than that of Smart-Reply.

3.4.5 Performance Comparison to Related Approaches

In this section, we compare the relevance of Dejavu’s reply suggestions with an Informa-

tion Retrieval based related approach (IBM Watson Discovery[62]) and a Smart-Reply sys-

tem (Outloolk Suggestions [71]). While there are several other systems that can be adapted

for automated suggestions in practice, we contend that Watson Discovery and Outlook Sug-

gestions present a representative sample for information retrieval and deep recurrent neural

58

network based systems, respectively.

To obtain suggestions using IBM Watson Discovery, we upload the body content for

all emails for a user into a collection and annotate them with information from email head-

ers like the message ID, subject, senders/receivers, folder (Inbox or Sent), reply content,

and the timestamps at which the emails were sent/received. The uploaded content is in-

dexed and stored using proprietary indexing algorithms by Watson. We then query the

collection using text from an Inbox email em requesting 3 passages (p1, p2, p3) and 3

emails (e1,e2,e3) having a timestamp less than the timestamp of the email. We compute

the average similarity between the retrieved passages/emails to reply of em as if the pas-

sages/emails were suggestions.

For each email in a User’s Inbox, Outlook determines if it requires a reply and presents

3 short non-informational phrases as reply suggestions. These phrases are displayed by

default at the bottom of the text of the email. As there is no API by which we can obtain

these suggestions automatically, we adopt the following procedure to get suggestions. We

create two email accounts, one corresponding to the email account of the user (USER),

and one corresponding to email senders for the user (SENDER). We initally preload the

USER account’s Inbox and Sent folders with all emails in the user’s mailbox. We then send

each email that has a reply from the SENDER account to the USER account and manually

note the three suggestions presented from the Outlook web client on a browser. We then

compute the average similarity between these suggestions and the actual reply typed by

the user. Note that the average similarity computed this way will be a upper bound on the

performance of Outlook suggestions in practice, as we preload the email account with all

emails (including the ones for which we obtain the suggestions later) in advance.

Figure 3.18 shows the average similarity for one user ‘Causholli M.’ from the ENRON

dataset, for the suggestions from Dejavu, Outlook and Watson (for both passage retrieval

and email retrieval). For this user, we can observe that Dejavu outperforms all the related

approaches. Dejavu’s suggestions are 3.6X, 2.95X and 1.56X more similar to the actual

59

replies than Outlook Suggestions, Watson’s passage retrieval and Watson’s email retrieval,

respectively.

3.4.6 Performance of Dejavu++

In this section, we evaluate the impact of the optimizations proposed in Section 3.3, namely,

topic filtering, including user feedback, and extending to the global network of mailboxes.

We evaluate each of these optimizations individually on the 20 users from the AVOCADO

dataset and compare it to the performance of Dejavu.

Dejavu++ with Topic Filtering

For each user in the dataset, we first sort the emails in the mailbox by their arrival timestamp

and use the first 75% of the dataset to populate the Information Database. After that, we

compute suggestions using baseline Dejavu and Dejavu++ with topic filtering. We evaluate

the hitrate of these suggestions on a testing dataset comprised of the other 25% of the user’s

mailbox. For the information database containing 75% of the user’s mailbox, we extract

the topic-word and document-topic probability distributions using the LDA model from

Scikit-learn[117]. We set the number of topics K to 20 and the number of labels L to 3.

For each entry from the database, we obtain the top 3 topics (using the document-topic

probability distribution) and label the entry with these topics. For each email in the testing

dataset with a reply, we also obtain the top 3 topics and match the keywords of this email

with entries in the database labeled with the 3 topics.

To study the effect of Dejavu++’s topic filtering optimization on improving the sug-

gestion computation time, we calculate the average number of entries an email is matched

to when computing the suggestions. Figure 3.19 shows the average ratio of entries ex-

cluded from the search to the total number of entries in the information database for the

20 users in the AVOCADO dataset. We can observe that topic filtering indeed reduces the

complexity of computing suggestions by reducing the search space by 30%, on average

60

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

d
u

d
u

c
ti
o

n
 i
n

 S
e

a
rc

h
 S

p
a

c
e

User

Figure 3.19: Reduction in the complexity of search for suggestions for Dejavu++ com-
pared to baseline Dejavu

across all users. With the reduction in search space due to topic filtering, there is a chance

that some entries in the database are wrongly excluded from being a candidate for a sug-

gestion. This happens because we only label the entries with the top L = 3 topics. To

measure the impact of excluding some entries with topic filtering, we also calculated the

hitrate for one suggestion for the AVOCADO dataset and found that the decrease in the

hitrate is negligible (only 2.5% of the hitrate without topic filtering). Therefore, the topic

filtering optimization of Dejavu++ is effective in reducing the complexity of suggestion

computation without compromising on the performance.

Dejavu++ with scoping

Given an email em with a response rem in the testing dataset, we extract the entry em′

from the Information Database with the highest similarity to the response rem. We set the

predicted length (L(p)
em), time to respond (T (p)

em) and sender/receiver email set (E(p)
em) to the

length (Lem′) of em′, the time difference between the timestamp of em′ and em (Tem′−Tem)

and the set of senders and receivers of em′ (Eem′). We set the margins for length (εL),

time to respond (εT) and the sender/receiver email set (εE) to be 20 words, 1 week and

1 email address, respectively. Note that even though we do not predict the length, time to

respond and email-set and choose an ideal fixed value for these parameters, we choose high

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

User1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu Baseline
+/- 10 days

+/- 7 days
+/- 3 days
+/- 1 days

Figure 3.20: Hitrates for different values of εT for the AVOCADO dataset

margins for the length and time and a low margin for the email-set to account for any errors

in prediction. The prediction of these parameters is beyond the scope of this work.

Figure 3.20 shows the performance of Dejavu++ when only the expected time to

respond is considered when matching the email em with the entries of the Information

Database. We set the expected time to respond to be equal to (Tem′−Tem), where Tem is the

timestamp of the email and Tem′ is the time stamp of the best possible match (em′) to the

response of em. We calculate the hitrate as we vary the value of εT from 1 day to 10 days.

We can observe that as the margin εT increases, the hitrate also increases for most users.

The average hitrate across 20 users is 0.17, 0.14, 0.12 and 0.11 for εT values of 1day, 3

days, 7 days and 10 days, respectively. The expected time filter optimization improves the

hitrate by 112.5%, 75%, 50% and 37.5% respectively for εT values of 1 day, 3 days, 7 days

and 10 days, respectively.

Figure 3.21 shows the hitrates of Dejavu++ for the 20 users in the AVOCADO dataset

when the matching algorithm filters only by the expected length of the suggestion. We set

the expected length of the suggestion to length of the best possible match of the response

and vary the margin εL from 0 to 50 words. We can observe that as the margin increases,

the hitrate decreases. The average hitrates (across 20 users) are 0.27, 0.17, 0.16, 0.15, 0.15

and 0.13, respectively, for εL values of 0, 10, 20, 30, 40 and 50, respectively. As the εL

value increases from 0 to 50, the improvement in the hitrate (compared to baseline Dejavu)

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

User1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu Baseline
+/- 50 words
+/- 40 words
+/- 30 words
+/- 20 words
+/- 10 words

Exact

Figure 3.21: Hitrates for different values of εL for the AVOCADO dataset

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu Baseline
Email Filter

Figure 3.22: Hitrates with expected sender/reciever email-set filter for AVOCADO
dataset

decreases from 237.5% to 62.5%.

Figure 3.22 shows the hitrates of Dejavu++ for the AVOCADO dataset when only

the expected senders/receivers are considered when computing suggestions. We match

each email em in the testing dataset with a response to every entry from the Information

Database with atleast one sender/receiver in common with the best possible match (em′) of

the response to the email em. We can observe that filtering on expected sender/receivers

improves the hitrate by 87.5%.

Dejavu++ with User Feedback

In this section, we evaluate the performance of Dejavu++ on the 20 users in the AVOCADO

dataset with user feedback optimization. Unless otherwise mentioned, we set the hitrate

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu
Dejavu++, 10% reply
Dejavu++, 20% reply
Dejavu++, 50% reply

Figure 3.23: Performance of Dejavu++ with user feedback

threshold τ to 0.6, and the number of suggestions to 1.

Figure 3.23 shows the performance of Dejavu++ for the scenario where the user looks

at the initial suggestions, uses them if relevant, or types the reply from scratch otherwise.

For each email em, we classify the suggested response s(em) as relevant, if the degree of

match (as defined in Equation 3.1) between the response and the suggestion is greater than

0.6. Initially, the keywords of the email em are matched with the information database to

compute suggestions s(em). If s(em) is irrelevant to em, we recompute the suggestions after

setting the relevancy flag irels(em) to 0, thereby marking the old suggestion as irrelevant in

the database. We then use keywords from the partially typed reply to find a new suggestion

snew(em) for the email. The hitrate for Dejavu++ is the ratio of emails with similarity

with snew(em) is greater than the threshold τ. The hitrates for Dejavu and Dejavu++

with suggestions recomputed when the user has typed 10%, 20% and 50% of the actual

reply are shown in Figure 3.23. We can observe that as the percentage of partial reply

available to Dejavu++ at the time of refreshing the suggestions increases from 10% to

50%, the hitrate improves. Specifically, compared to baseline Dejavu, the inclusion of user

feedback improves the average hitrate across the 20 users by 37.5%, 62.5%, and 187.5%,

respectively, when at 10%, 20% and 50% of the actual reply, respectively. While the hitrate

increases for all users with user feedback, the magnitude of improvement varies. For some

users (e.g., user 18), the improvement in hitrate is close to zero, even with the inclusion

64

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu++, 1 suggestion
Dejavu++, 3 suggestions
Dejavu++, 5 suggestions

Figure 3.24: Impact of the number of suggestions on hitrate for Dejavu++ on the AV-
OCADO dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu
Dejavu++, refresh at 20% reply

Dejavu++, refresh at 20%, 50% reply

Figure 3.25: Impact of number of times suggestions are refreshed on the hitrate for
Dejavu++ on the AVOCADO dataset

of 20% of the reply. For these users, the majority of keywords with high IDF scores occur

in the later portion of the reply. Therefore the suggestions computed with the first few

keywords of the reply may not have the higher weight keywords of the reply within them.

Figure 3.24 shows the hitrate for Dejavu and Dejavu++ for 1, 3, and 5 suggestions,

for a scenario when the user does not find the initial suggestions relevant and has already

typed 20% of the response. We can observe that as the number of suggestions increases,

the hitrate improves. On average, the hitrate improves by 1.46X for three suggestions

and 2.38X for five suggestions. This can be attributed to the increase in the information

available from suggestions to include in responses.

Figure 3.25 shows the impact of hitrate on the number of times suggestions are recom-

65

puted in Dejavu++. For this experiment, we assume a scenario where the user looks at

the suggestions (i) initially (shown as Dejavu on the figure), (ii) after typing 20% of the

response (shown as Dejavu++, refresh at 20% reply on the figure), and (iii) after typing

50% of the response (shown as Dejavu++, refresh at 20% and 50% reply in the figure).

With an increase in the number of times suggestions are refreshed, the hitrate improves.

Specifically, compared to baseline Dejavu, refreshing suggestions at 20% reply improves

the hitrate by 62.5%. Subsequent refresh when the user has typed 50% reply further im-

proves the hitrate by 212% compared to baseline Dejavu. Note that the hitrate for a re-

fresh at 20% reply and 50% reply is higher than the hitrate for refresh only at 50% (see

Figure 3.23. With more refreshes, Dejavu++ excludes more irrelevant entries from being

considered as suggestions.

Dejavu++ with the global network of mailboxes

Figure 3.26 shows the hitrate of 20 users of the AVOCADO dataset when only the global

network mailbox optimization is turned on. On average, this optimization results in an

average hitrate of 7%. The average hitrate of Dejavu++ with global network optimization

is lower compared to baseline Dejavu. We can observe that optimization does not benefit

all users and reduces the hitrate (compared to baseline Dejavu) for some users. For this

subset of users, even though an email em may be more similar to entries from other users’

information databases, than the entries within the user’s database, the actual response may

not be close to these entries. Therefore, with the global network mailbox optimization,

Dejavu++ can provide relevant suggestions to only a fraction of emails.

66

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it
 R

a
te

User

Dejavu Baseline
Global Network

Figure 3.26: Hitrate with the inclusion of global network of mailboxes for AVOCADO
dataset

67

CHAPTER 4

TASKR: FAST AND EASY MOBILIZATION OF SPOT TASKS IN ENTERPRISE

WEB APPLICATION

4.1 Introduction

The adoption of mobile devices, and in particular smartphones, has grown steadily over

the last decade. Fifty-one percent of enterprise workers today use mandated apps for their

business on their phones [118]. Seventy-seven percent of the workers rely on their personal

smartphones to perform their work [119]. One of the key drivers of the adoption and

use of smartphones is the self-perceived increase in productivity. Employees self-reported

getting an hour of time back by relying on smartphone apps for their work. Intriguingly,

employees were relying as much on company-issued mobile apps as they were on bring

your own application apps [120].

Consider an enterprise worker, Alice, who is a field salesperson. An average enter-

prise runs 400+ applications for its business operations. Alice is likely to interact with

many of these applications, with examples ranging from Oracle HR, SAP ERP, Microsoft

Sharepoint, and Salesforce CRM. If Alice desires to do some of her Salesforce tasks on her

smartphone when she is away from her desk, she currently has to be dependent on either

Salesforce releasing a mobile app or her employer building a custom mobile app that taps

into the Salesforce APIs. In both cases, not only does the mobile app for Salesforce need

to exist, but her specific task also has to make the cut through the de-featurization process

necessary for mobilization, and has to be achievable with minimal burden within the design

of the mobile app.

Interestingly, in spite of the increasing adoption of mobility in enterprises, over eighty

percent of enterprise mobile apps are abandoned after the first use [121]. In this context,

68

we identify a category of tasks called Spot Tasks within enterprise web applications, and

present a strategy wherein Alice can perform the desired mobilization herself and without

requiring any support from either the application vendor or the enterprise. We define

spot tasks as tasks that can be accomplished by the users interacting substantively with the

desktop application only on a single page. The interaction on that page could be in the form

of read, act, and navigate actions. Also, that specific page could be arbitrarily anywhere

within the applications navigation tree. While we relax these definitions in subtle ways

later in the chapter, we also show how even such a constrained definition can support a

wide variety of enterprise task profiles.

For example, consider a purchase approval task on a typical SAP SRM (supplier rela-

tionship management) application. This could require the user to login and authenticate

herself, navigate to My Work, navigate to Purchase Management, navigate to Requisition

Approvals, see a list of approval requests, check on those requests that need to be approved,

click on the Approve button, and finally logout of the application. In this example, the first

sequence of pages visited is for navigational purposes while the purchase request review

and approval are done on a single page. Thus, we categorize such a task as a spot task.

Spot tasks are limited in capabilities, but have several critical advantages that make

them an interesting candidate for a mobilization strategy. We present a mobilization so-

lution called Taskr to mobilize spot tasks that exploits these advantages and delivers the

following properties:

• Configuration by doing: Taskr allows the user to perform the mobilization herself re-

gardless of the users technical skills. All Taskr requires for the mobilization of a spot

task is for the user to be able to perform the spot task on the desktop application;

• Programmatic APIfication: Once the user configures what needs to be mobilized, Taskr

programmatically creates the necessary APIs using purely a front-end strategy 1 that

requires no access to source code from the application vendor, or even special provisions

1We elaborate later in the chapter, but at a high level this involves relying on a remote-computing based
approach to create the APIs.

69

by the enterprise;

• Guard-rails: Since SpotTasks are restricted to purely navigational actions till the final

interaction page is reached, and no further navigations are allowed, the workflow is by

design simple. This allows Taskr to be avoid configuration-time versus run-time errors.

• Flexible mobile delivery: Since spot tasks are restricted to a single interaction page, and

Taskr further imposes limits on the amount of content and actions mobilized on the inter-

action page, it allows for flexible delivery mechanisms on the smartphone. Taskr allows

the user to consume the mobilized tasks through Twitter (direct messaging), Email, and

a Native Mobile App.

We implement Taskr on an AWS backend and an Android frontend, and conduct pre-

liminary user experiments to evaluate its performance. The results are promising and show

that not only does Taskr reduce the actions required to complete tasks (by over 35%) but

also that users are more satisfied completing spot tasks with Taskr compared to the desktop

or the mobile browser (by over 7x). The rest of the chapter is organized as follows: We de-

fine spot tasks in Section 4.2 and introduce Taskr’s design in Section 4.3. We then evaluate

it in Section 4.3.2. Finally, we discuss some issues with Taskr in Section 5.6

4.2 Mobilization and Spot Tasks

4.2.1 Mobilization and Defeaturization

Application mobilization is the process of adapting applications originally built for desk-

top environments for use on mobile devices. Enterprises typically mobilize applications by

(i) building native apps from scratch [122], (ii) using vendor applications [5], (iii) using

mobile-specific backend libraries (mBaaS) [123] and (iv) with custom app development

platforms (MEAPs) [73].

Enterprise desktop applications are complex and allow a wide variety of business func-

tions. These applications support a large number of workflows - wherein each workflow

70

Figure 4.1: Complexity of the Salesforce desktop application

represents a goal-oriented series of actions taken by the user2. Considering the constraints

of the smartphone, it is not feasible for a mobile app to support all the desktop applica-

tion workflows. Therefore, the desktop application has to be defeaturized before it can be

mobilized.

To quantify the complexity of enterprise applications, we recursively crawled the Sales-

force CRM web application and observed that there are over 180K workflows for just 4

levels. In Figure 4.1, each circle shows the number of possible workflows (along with ex-

amples) that a user can perform starting from the landing page. We observed that there

are over 180K workflows for just 4 levels 3. It is impossible for a mobile app to support

all of these workflows, and provide a good user experience at the same time. On the other

hand, in Salesforce1 mobile app (the mobile version of Salesforce CRM), there are only 48

navigational workflows at the first level (as opposed to 117 in the desktop version). When

a complex enterprise application such as Salesforce CRM with thousands of workflows

needs to be mobilized, one of the key problems to be addressed is what workflows are

made available on the mobile app. This critical step in application mobilization is called

defeaturization - wherein the number of features exposed on the mobile app is reduced

to a fraction of what the original desktop version supports. The defeaturization decision

today is taken either by the enterprise (if custom mobile app development is done), or by

the application vendor (if it is an off the shelf or a SaaS app).

2For example, Salesforce has about 180K navigational workflows with just 4 navigational steps
3Note that in this example, we only consider workflows involving links that lead to a new URL, and

therefore Figure 4.1 is only a subset of the total number of possible workflows (with 4 stages).

71

The granularity of defeaturization i.e. the number of features retained in the mobile

app, typically lies in the following spectrum:

• The entire web application along with all the features are retained in the mobile app.

Considering the desktop application as a large collection of pages, the structure of the

pages within the application is largely maintained. This granularity is chosen when all

the features within the application are heavily used;

• A subset of features from the original application, carefully chosen either by the enter-

prise or the vendor, are mobilized. Given that enterprise web applications are complex,

and that the mobile device cannot support all the features, a subset of features from the

original application is carefully chosen either by the vendor or the enterprise itself. The

features to be mobilized are chosen based on how heavily they are used and the require-

ments of the user’s job functions. Here, a subset of the pages of the original application,

and a subset of the features on those pages are mobilized. With this strategy, the structure

of the pages among the application is largely maintained, while reducing the number of

features on any given page;

• A mobile-first approach that uses APIs provided by the application to build the mobile

app ground up. Many applications expose some of their features through APIs that can

be leveraged for different purposes. This approach can only mobilize those features

that have been exposed as APIs; This is a mobile-first approach where in the mobile

app is built ground up using these APIs, independent of the structure of the original

application; The structure of the resultant mobile app need not be the similar as the

original application.

• A sequence of features that constitute different steps of a single workflow are mobilized.

In this case, once the user starts the workflow on the mobile device, only the features

relating to this workflow are presented, thereby decreasing the effort of finding a feature.

72

4.2.2 Spot Tasks

In this chapter, we identify another potential defeaturization granularity - Spot Tasks. A

spot task is a simple linear workflow within an enterprise application where-in all the user

interactions are only performed on one page of the application. These user interactions

constitute the last stage of the workflow. However, this page can be buried deep within the

complex application and the navigational effort required to reach that particular page may

be high. Spot tasks can also be paused and resumed at a later point of time as long as the

current session is maintained on the browser4.

UI elements within an application page can be classified as: (i) READ: elements that

carry content that is only consumed by the user (e.g., text content of an article); (ii) ACT:

elements through which the user writes some parameters in the web application (e.g., text

boxes to enter values, dropdown lists, etc.); and (iii) NAV: elements that progress the work-

flow to the next stage (e.g., links, submit buttons, etc.); The next stage of a workflow can

depend on the user’s actions on the ACT and NAV elements of the current stage.

For a spot task, each stage of the workflow, except the last stage, has only one NAV

element and the final stage of the workflow can have READ/ACT/NAV elements. In other

words, if the presence of READ, ACT, and NAV elements in a stage is denoted as R, A,

and N, respectively, and the end of a stage is denoted as X, the spot task can be described

using a regular expression as follows:

ST = [NX]∗R?A?N?X

Note that even such a constraining definition of spot tasks still covers a substantial number

of workflows within enterprise applications. We identify 45 spot tasks within 9 enterprise

applications in Section 3.3. For example, checking the revenue on Salesforce, adding a

vendor on Quickbooks, and viewing the available vacation days on Oracle Peoplesoft are

4Note that the pause and resume needs to happen on the same device and the same browser instance.

73

all spot tasks (assuming the user is logged in).

Spot task variations: In this chapter, we further expand the definition of spot tasks to also

account for workflows with fixed (non-variable) inputs along all the stages except the last

stage. In other words, for every instance the spot task is executed, every stage except the

last stage always has a fixed value for ACT elements and a fixed NAV element. The non-

variable inputs allow for the hard coding of the ACT actions needed to reach the final screen

where the user actions are performed. If the presence of fixed ACT values is indicated by

F, the spot tasks can be expressed as - [F?NX]*R?A?N?X. If the user is required to enter

a username and password before executing a workflow, then all of the previous examples

are still spot tasks under this definition (username and password are fixed values) 5. The

requirement of non-variable inputs except at the last stage of the workflow is further relaxed

for login parameters like username, password, and domain. The values can change with

different runs of the spot tasks, but the result of the workflow after the variable-parameter

login stage needs to be fixed across each run of the spot task.

Mobilizing Spot Tasks: The simplicity of spot tasks empowers the users in a signifi-

cant fashion wherein the users can drive the mobilization efforts themselves, regardless of

their individual skills. The granularity at which mobilization has traditionally been per-

formed necessitate the enterprises to invest significant resources and employ developers

with specialized skill sets. Further, the resultant enterprise mobile apps are constructed in a

one-size-fits-all fashion and are unlikely to address the needs of all required business func-

tions performed by the entire user base within an enterprise. Thus, for many users, there

will exist workflows that the resultant mobile app (i) will not support at all; or (ii) have a

considerably increased task burden to perform.

However, if there exists a mobilization solution that the users themselves rely on to cre-

ate an app that is custom built for their workflows, these issues could indeed be addressed.

The challenge though is how to enable such configuration of the mobile app regardless of

5We provide more examples of spot tasks in Section 4.3.2

74

the skills possessed by the user, and also, how the resultant mobile app can be made user-

friendly. In this work, the only skill that we assume from the user is the ability to perform

the workflows (to be mobilized) on the desktop. Since the user performs the workflows on

the desktop anyway, this is a valid assumption.

The simplicity of the spot tasks allows for the design of such a mobilization solution

to be possible. Since the spot tasks have a limited number of UI elements from within

only one screen of the application, easy configuration of the apps (and the layouts) can

be achieved, without requiring the user to have coding and design skills. Also, the linear

non-parametric nature of spot tasks allows for the creation of robust mobile apps. Since

the value of ACT and NAV elements are fixed for spot tasks, the sequence of stages in

the workflow will always be the same. This eliminates the need for the user to anticipate

any branches that may depend on the value of ACT/NAV elements and configure them. For

workflows with variable ACT elements, it is possible that the value of ACT element entered

influences the next stage of the workflow. This can result in the complex branched work-

flows. It is not feasible to assume that the user has skills to anticipate all such branches and

configure them. If the user fails to configure a branch, it can result in errors and unfinished

workflows. The inherent simplicity of spot tasks makes them ideal candidates for mobiliza-

tion. Furthermore, even if these tasks are already mobilized under other granularities, the

users still might have to experience navigational burden just to perform these simple tasks.

Scope and Goals: The scope of our work is limited to the mobilization of spot tasks

within enterprise web applications. We primarily consider HTML/JS compatible web ap-

plications due to their dominance [124]. However, the design principles are applicable to

other platforms. The solution needs to support all major smartphone OSs (Android, iOS,

Microsoft). The solution also needs to be usable by all users regardless of their skills.

75

Figure 4.2: Taskr Architecture

4.3 Taskr: A Do-it-Yourself Approach to Spot Task Mobilization

In this section, we present Taskr, a framework that allows for mobilization of spot tasks

within enterprise applications by all users. The Taskr infrastructure consists of three com-

ponents - Taskr-recorder, Taskr-server and Taskr-client (Figure 1).

• The Taskr-server is hosted on a cloud platform. The infrastructure has a control plane to

allow DIY configuration, service requests, host enterprise application clients, maintain

transformation rules and logging.

• When the enterprise wants to allow DIY mobilization for a particular application, it hosts

the corresponding application client (for web applications, this would mean a browser

pointing to the appropriate URL) on the infrastructure.

• When a user wants to mobilize her workflows, she uses the Taskr-recorder configuration

tool to configure the mobile app simply by performing the workflow that needs to be

mobilized.

• The infrastructure generates a Taskr-client mobile app (.ipa, .apk, and URL) for the user

to download and install onto her smartphone. In addition to this app, the user can also use

Twitter or email to perform her workflows. The mobile app is simply a remote viewer

with the appropriate application and user configuration locator embedded in it.

76

Figure 4.3: Remote Computing

• In addition to generating the app, Taskr-server also maintains a communication handle

for the user corresponding to the different usage modalities. When the user launches

the Taskr-client app, a computing slice is set-up on the fly to service that specific user

session. The slice automatically loads the corresponding desktop application and user

configuration.

• The infrastructure delivers the mobile view as configured to the smartphone. The user

interacts with the Taskr-client app, and the actions are shipped to the cloud infrastructure

where they are performed on the desktop client. In addition to the mobile app, the user

can also start the spot tasks by sending a command to the Taskr over Email, Twitter,

SMS, Slack, etc. The server replies to the user with any configured READ elements and

asks the user to send the values of the configured ACT elements. The user can then reply

to this message with the ACT values.

• Any changes to the client view either based on server pulls or pushes is appropriately

transformed and the corresponding mobile friendly view delivered to the mobile app.

We now delve into the key design elements of Taskr.

4.3.1 Key Design Elements

Remote Computing with Refactoring:

Taskr uses remote computing [125, 126] to mobilize applications while requiring no de-

velopment and minimal deployment effort from the enterprise or the end-user. Figure 4.3

77

shows the architecture of remote computing based framework for mobilization for a target

application with a client-server architecture. To mobilize any given application, enterprises

can host a remote computing server and the application client on a Virtual Machine in the

cloud. The application client’s view is then streamed to the remote computing client on the

user’s smartphone. The user interacts with the application locally on her smartphone. With

remote computing, the users can access all the rich features of the enterprise applications

on their smartphone.

Mobilization through remote computing can be achieved quickly without requiring sig-

nificant development and deployment effort. It is indeed an interesting candidate to solve

the mobilization problem as users could conceivably be provided with a simple framework

that they could configure to mobilize applications. However, the key limitation of remote

computing is that it does not allow for any meaningful defeaturization. The entire applica-

tion is streamed to the smartphone as-is. Given the complexity of the application and the

fact that any particular user is only interested in a subset of the features provided by the

application, this method is very likely to increase the usage burden. The user will have to

navigate the complex application on a much smaller screen than what the application was

originally developed for. If the entire application view is presented at once to the smart-

phone user, the UI elements appear very tiny requiring significant zooming effort from the

user. On the other hand, if the size of the desktop view is maintained, significant scrolling

effort will be required from the user.

While thin-client remote computing offers a easy way to mobilize an application while

retaining all the features of the application, the result is not usable at all on a smartphone. It

is clear that the remote application view presented has to be optimized for the client device.

However, unlike traditional remote computing, Taskr optimizes the remote view for the

client device through Application Refactoring, wherein the desktop application UI is dy-

namically transformed into an appropriate UI for the smartphone. Refactoring restructures

the view for the target platform without changing the underlying application behavior via

78

two steps - (i) reducing the number of features available (Defeaturization) and (ii) optimiz-

ing the application view (Transformation). This view is dynamically generated as the user

is using the application. The original application view is defeaturized and transformed to

suit a corresponding input modality chosen by the user. For the native mobile app modality,

this means the UI elements of the original view are transformed into a smartphone native

view. On the other hand, for text based input modalities like email, twitter, SMS, etc.,

the UI elements are transformed into their corresponding text versions. Any actions on

these transformed UI elements are sent to the application client and virtually executed on

it. While the user can simply perform these actions using a mobile app modality, she can

describe these actions over the text based modalities. For example, to check the account

balance, the user can simply send (using an email/tweet/SMS/etc.) a command with user-

name and password values appended, asking for the account balance to the server. The

server can execute the workflow with the username and password values and reply back to

the user with the account balance.

The benefit of this approach stems from the fact that the UI elements of the desktop

application can be selectively chosen and transformed into highly optimized versions for

usability on the smartphone. The dynamic transformation also allows for the user to per-

form the tasks using several input modalities such as tweets, email, SMS, Slack, messenger,

in addition to smartphone native app. By using application refactoring as a basis for mo-

bilization, Taskr marries the benefits of no coding, scripting, or development of remote

computing to the usability of true native apps. Furthermore, if the user is allowed to con-

figure the defeaturization and transformation process while maintaining the usability of the

resultant mobile app, refactoring presents a powerful paradigm through which enterprises

can solve the mobilization problem for spot tasks.

79

Do-It-Yourself Configuration:

Users of an enterprise application best know what features are required to be present in

the mobile app, in order to perform their job functions easily. Taskr leverages this fact

and allows the users to mobilize the necessary features themselves while simultaneously

maintaining the usability of the resultant mobile app. Taskr only requires the users to know

how to perform the workflow on the desktop application.

For configuration, the users are only required to perform the workflows on the Desktop

application in the presence of a configuration tool - Taskr-recorder. This tool observes the

user’s interactions with the application to know what UI elements are necessary for the

completion of the task and defeaturizes the application to include only these elements. In

addition to performing automatic defeaturization, the tool also allows the users to fine-tune

the configuration through an intuitive user interface. Also, the transformations of these UI

elements (into optimized smartphone versions) are computed simultaneously and presented

to the user. This transparency not only allows the user to verify the mobilization results,

but also to modify when needed.

Flexible Mobile Delivery:

The result of the configuration process is a mobile app through which the users can view all

their spot tasks and execute them. Note that a key goal of Taskr is to reduce the task burden

of performing the tasks for all users irrespective of their skill levels. Therefore, Taskr

does not restrict the users to use a mobile app to execute the tasks and extends the user

interface to include other usage modalities. Smartphone users use certain apps extensively

throughout their day (e.g., Twitter, SMS, Email, Slack, Messenger, etc.). Taskr leverages

the users’ familiarity with these modalities and allows them to execute their tasks within

them. This saves the user the burden of learning to use the interface of a new mobile app -

Taskr client.

80

Taskr transforms the UI of the desktop application to suit these usage modalities i.e.

smartphone native UI for the Taskr-client app and text blurbs for the other modalities. For

the Taskr-client app, the UI elements are transformed into a smartphone native elements.

On the other hand, for the other text based modalities like email, twitter, SMS, etc., the

UI elements are transformed into their corresponding text versions. Any actions on these

transformed UI elements are sent to the application client and virtually executed on it.

Single Screen Transaction:

The ideal candidates for DIY mobilization are the workflows that can be performed easily

with the limited screen real estate of a smartphone. The workflows should not only require

little user interaction but also be simple enough to be configurable by users of all skill

ranges. Therefore, in order to maintain usability while at the same time requiring minimal

intervention from the user, Taskr restricts the users to configure only a limited number of

UI elements within one spot task. In this work, we set the limit to 140 characters each for

the total character count of READ elements and the labels of ACT elements6.

4.3.2 Challenges and Design Choices

In this section we present Taskr Do-It-Yourself application mobilization solution through a

series of discussions on design challenges and choices.

How is the configuration done?

If mobilization is done at the granularity of spot tasks, a related challenge is how the con-

figuration is done to indicate what specific spot tasks need to be mobilized. Recall that

the fundamental goal is to make the configuration process accessible to the layman user,

regardless of skills. Also, since a key goal is to reduce the task burden for a particular

user, the tasks to mobilize should ideally be learned from the usage patterns of the desktop

6This restriction is arbitrary and is imposed to allow all transactions to fit within a few text messages

81

application. The output of this process should identify the workflows that can be executed

in stand-alone fashion i.e. the completion of the workflow should only depend on user ac-

tions from that workflow, and should not depend on any other user actions. For example,

consider the case of creating an invoice in a supply chain management application - (A) the

user logs in, (B) clicks the invoice link, (C) fills in the necessary fields for billing and saves.

The workflow learned should contain all three steps. A workflow involving just steps B and

C is not a stand-alone workflow as step B is dependent on step A (there is no invoice link

unless the user logs in).

One strategy in line with these goals is to automatically extract the workflows from

usage-patterns. However, this process is not straight-forward and can lead to irrelevant/incomplete

workflows. A lot of applications remember the credentials of the user and automatically

login that user (e.g. Single Sign On feature). Also, a set of applications may use a Single

Sign On (SSO) feature, wherein the user needs to sign in only once to access any of the

applications in the set. This leads to cases wherein the observations alone cannot capture

all the stages in a workflow as-is. Also, through passive observation, only the UI elements

that the user explicitly acted upon can be identified and not the UI elements read by the

user. On the other hand, the user could be directed to write a script describing all the steps

of a workflow. However, this requires significant effort from the user and not all users have

the skillset to script the workflows.

Therefore, Taskr uses an approach that enlists the help of a user, without requiring

the user to configure each and every detail of the workflow. The user configures a spot

task by simply performing that particular task in the presence of Taskr-recorder. For all

the stages except the last stage of the task, the tool automatically tracks the UI elements

that are acted upon by the user and records the action parameters - ACT elements, their

values and NAV elements. For the last stage, the tool has an interface through which

users can select any elements that may have been missed and assign a category to them

- READ/ACT/NAV. As the user is selecting the elements, the tool records the number of

82

Figure 4.4: Overview of configuration with Taskr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

R
a

ti
o

 o
f

e
le

m
e

n
ts

Average % of change

Path from root
Path from nearest ID

Graphical coordinates

Figure 4.5: Performance of different fingerprint candidates

characters of READ elements and the labels of ACT elements. Once the total number of

characters in each category reaches the limit defined in Section 3.3.1, the user is notified

and a further selection of elements is disabled. By allowing users themselves to configure

the workflows in this simple and intuitive fashion, the needs of that user can be best served.

Figure 4.4 shows an overview of configuration with Taskr.

How are UI elements identified reliably?

If the actions performed by the user on the refactored view have to be correctly executed

by the server, the UI elements involved in a workflow need to be reliably identified among

all the other elements in that application, even when the application changes. Otherwise,

83

the user actions can be incorrectly executed on some other elements. Identification of

UI element involves extracting a set of parameters (say, the fingerprint) unique to that

element in the entire application view. We call this unique identity the fingerprint of that

element. Given that the web applications are increasingly dynamic today with changing

views not only due to the developer modifying the application but also due to end-user

actions manipulating data. In such a scenario, the fingerprint of the UI element has to be

robust to most changes in the application view.

An obvious choice for an element’s identity are its coordinates on the application

screen. However, these visual features are not robust. Minor changes (for eg., modify-

ing text of an article) can easily break not only the fingerprint of an element but also the

fingerprints of other elements surrounding it. Also, the change in graphical coordinates of

one element are trickled down to many subsequent elements, affecting the accuracy of their

fingerprints; For example, if the user modifies a wiki page, the graphical coordinates and

size of the text of that wiki page change, thereby breaking the fingerprint of not just the

changed element, but also all other surrounding elements; Therefore, graphical features are

not reliable candidates for identity.

All pages in a web application are structured as a tree, called a Document Object Model

(DOM). Each HTML tag in the application is a node in the DOM tree which is rooted

at the <HTML> tag. The position of a UI element from the root of the DOM tree is

one candidate for a fingerprint. However, it is susceptible to failure due to changes like

insertions/deletions/migrations of elements along the path from the anchor to the element.

Given the dynamic nature of web applications, it is very likely for these changes to happen,

thereby breaking the robustness of the fingerprint. This fingerprint can be further enhanced

by considering the path from an anchor element in the DOM, which is closer to the element

(to be fingerprinted) instead of the path from the root. This can reduce the probability of

layout changes breaking the fingerprints. One candidate for this anchor could be the nearest

ancestor on the DOM with an HTML attribute id, or the root of the DOM tree when no

84

ancestor with id is found. This anchor element can be uniquely identified on the page by

its HTML id 7. This fingerprint is susceptible to changes in the DOM path between the

anchor element and the UI element. Furthermore, in some cases, even the id attribute is

not consistent across different instances of the page. ExtJS [127] is a popular js library that

generates a new id for every instance of an element.

To verify the robustness of these different fingerprint candidates, we artificially intro-

duced layout/attribute changes into randomly selected nodes of the DOM tree of a Learning

Management System application - Sakai [128]. At the beginning of each experiment, we

randomly selected 10% of the elements in the DOM tree and extracted their fingerprint. At

every iteration (for 5 iterations), with a certain probability, each element undergoes either

a layout change or a tag attribute change. Figure 4.5 shows the ratio of elements that are

correctly identified after 5 rounds of changes to the DOM tree vs. the % of nodes changing

in the DOM tree. We observed that even with 1% of nodes changing, 10% of nodes are

incorrectly identified with Path from nearest element with id and 82% nodes are incorrectly

identified with graphical coordinates. This shows that none of the features discussed so far

are ideal candidates for fingerprints.

Therefore Taskr, adds resiliency to the fingerprint by using the position of the elements

relative to several other elements in the page to calculate an element’s fingerprint. More

details on the fingerprint are available in chapter 5. Figure 4.6 shows an overview of how

Trackr is used in Taskr.

How is data extraction done?

Once the UI elements are identified, extracting the (i) nature of the UI element (e.g.,

textbox/button etc.) and any (ii) associated context (e.g., label) is crucial so that the user

can understand and execute its function on the mobile device as intended. For example,

Bootstrap, one of the most popular UI frameworks, allows developers to integrate complex

7Note that the id attribute itself cannot be used as a fingerprint because it is not necessary for all elements
in the DOM tree to have an id

85

Figure 4.6: Overview of Trackr’s usage in Taskr

Table 4.1: Percentage of action elements with associated labels

Application % of action elements with label
Sakai 65.4

Sharepoint 37.8
Utility Company * 77.3

Amazon AWS 95
Quickbooks 80.8

* *Name anonymized

Table 4.2: Different UI frameworks used by enterprise applications

Application UI Frameworks
Salesforce Ext Js [127]
Sharepoint Bootstrap [129], XUI [130]
Quickbooks Dojo [131], Express [132], New Relic [133]
Excelerate Backbone [134], Require [135], Bootstrap, Underscore [136]
AtlasMD D3 [137], Modernizr [138], Moment [139], NVD3 [140]

Utility Company FancyBox [141], Bootstrap

86

<a class="btn dropdown-toggle"
data-toggle="dropdown" href="#">
Action

Figure 4.7: UI element from an external UI framework

UI elements - such as navigation bars, tabs, paginations, etc., on their websites. If this

information is not correctly extracted, it will be difficult to comprehend the function that

the UI element serves. For eg., without the label ‘Username’ next to a text field, the user

cannot associate it with a place to enter her username.

Prompting the user to specify the nature of each UI element along with any associated

labels at the configuration step can become very tedious for the user. On the other hand, an

element’s tag and the associated context can be inferred from its attributes and content in-

side the HTML tag. For example, if a UI element has the source <button id=‘submit btn’>

SUBMIT < /button>, its nature can be extracted as a button and the associated context as:

label = ‘SUBMIT’. However, for many elements, this extraction is not always possible.

For eg., the label for input field can be declared via text surrounding that tag - Username:

<input type=‘text’ id=‘username’> To observe how often this is the case, we extracted all

possible actionable UI elements from the landing pages of 5 popular enterprise applications

and observed that on an average 28.74% of elements do not have any text present inside

their HTML tags (See Table 4.1).

Furthermore, the Web is dynamic with new UI frameworks being designed each day

to make web content more appealing to the end user. This problem is further aggravated

by the presence of complex third-party UI frameworks8. For example, in Bootstrap, a

button dropdown menu that has a HTML source shown in Figure 4.7 would be incorrectly

classified as a link (from the ‘a’ tag). Therefore, Taskr uses a hybrid approach that not only

obtains data from the source but also from the other surrounding tags, and by taking the

user’s help where such extraction is not possible. Using tag and attribute definitions from

8All the enterprise applications considered in this paper used atleast one third-party UI framework shown
in Table 4.2.

87

Figure 4.8: Overview of Taskr’s data extraction

the HTML5 standard and from the complex UI frameworks, a list of rules for extraction is

first created manually. For e.g., to get a label for an <input> element, the text within that

element’s tags is processed. When no text is found, the page source is be parsed to see if

a ‘label’ tag for that input is present. At the configuration step, the extracted nature and

context are displayed to the user. Whenever extraction using rules fails, the user is prompted

to specify the nature and the context. Note that this is tractable as it only needs to be done

once for every new UI element encountered. This is in sync with our goal of enabling the

user to mobilize workflows, as the user best knows what to mobilize. Figure 4.8 shows an

overview of data extraction with Taskr.

Translation to a mobile view:

Every UI element in the workflow selected by the user needs to be translated into the de-

sired usage modality on the smartphone - native UI element for the smartphone app client

and text for email, twitter, SMS, slack, etc. Enterprise web applications have been typically

made for the desktop user. Therefore the UI elements are designed keeping in mind the in-

put modalities of a desktop. Any translation of these elements should allow the same user

actions (as in the desktop) to be performed on the modalities. Unlike traditional remote

88

Figure 4.9: Overview of UI element translation in Taskr

computing that presents a remote view of the element as-is, and hence is subject to delays

and unresponsive behavior, Taskr refactors the application view to suit the usage modal-

ity. Taskr uses a translation table that maps each UI element (including the ones from the

third-party UI frameworks) to a corresponding native UI element (for the app) and also a

text version for the other modalities. Each desktop UI element (including the ones from

the third-party UI frameworks) is mapped beforehand to a smartphone native versions. The

result of the translation is presented to the user during configuration. When the transla-

tion table does not contain a mapping for the selected UI element or if the result of the

translation is not satisfactory, the user can manually specify the translation by selecting a

type (e.g., text box, radio button, etc.) and a corresponding label. For different third-party

frameworks, this phase can be combined with the information extraction phase and for ev-

ery new element encountered this step needs to be done only once9. Figure 4.9 shows the

translation in Taskr.

Note that Taskr translates each UI element of the workflow to one smartphone UI ele-

ment. However, different platforms provide convenient macros that bundle user interactions

across several elements into one interaction. Taskr divides the macros into the component

9Note that, the current version of the translation table covers most of the input elements from HTML5
standard.

89

UI elements and translates them individually to smartphone UI elements. Taskr can also

be extended to consider these macros by asking the user to define any macros the user per-

forms at the configuration stage. For the smartphone app, Taskr can create a new macro by

bundling fixed parameter user actions at the last stage of the spot task into one UI element.

Mobile delivery and presentation

For every workflow stage, the translated versions of these elements have to be displayed on

the mobile screen in a manner that enables the user to finish the task with minimal effort

and should allow the user to easily comprehend the different actions to be performed to

complete the task. Also, for ease of use, the mobile screen should preserve the sequence

of actions performed while executing the workflow. For example, on a login page, the user

typically enters the login information first, then the password and then clicks submit. At

this stage, the elements should be organized in the order - username, password and submit.

Displaying the password field before the username field can be non-intuitive for the user.

The task effort is directly proportional to the number of user actions needed to finish

that stage. Specifically, task effort (τ) of a stage (S) is defined as - τ = ∑e∈S Aaccess(e)+

Aper f orm(e), where in, Aaccess(e) is the number of actions to reach the element e (eg.

scrolling till the element appears on the screen) and Aper f orm(e) is the number of actions it

takes to perform the function of e (eg: clicking a button). Each action on a smartphone can

be - tap, longpress, drag, scroll, zoom, shrink, etc.

In the view of our goals of requiring minimal development effort and no assumption on

the skillsets of the end-users, manually designing the layout for the workflow is not possi-

ble. Taking into account the simplicity of spot tasks and the inherent limits on the number

of characters allowed, Taskr follows a fixed display template for every spot task. For the

mobile app modality, Taskr divides the screen into three panes, and populates the READ

elements in the first pane, the translated versions of the ACT elements in the second pane

and two buttons ‘SUBMIT’ and ‘CANCEL’ in the final pane. The elements are displayed

90

Figure 4.10: Overview of delivery and presentation in Taskr

in a list within the respective panes and in the order of their selection during the config-

uration phase to preserve the logical sequence of actions in the workflow. For the other

usage modalities, a text blurb is constructed with the text version of the READ elements

in the final stage followed by the labels of the ACT elements (one in each line) and sent

to the user. To execute the workflow, the user can reply to this blurb with values for the

ACT elements (one in each line and in the same order). Consider an example workflow of

viewing payroll in Peoplesoft. One of the workflow stages is to solve a math problem to

prove the user is not a robot (see figure 4.11). This stage involves 1 Read elements - math

question, 1 Act element - the answer, and 1 Navigation element - submit. These elements

are displayed in order. Figure 4.10 shows an overview of mobile delivery and presentation

in Taskr.

User interaction and spot task execution:

If the user desires to execute any spot task, she has to first select an input modality to

interact with. To complete the workflow using the Taskr mobile app modality, the user

simply opens the app and selects the workflow among other workflows from the landing

screen. Upon selection, the Taskr app informs the Taskr-server to start the workflow. The

91

Taskr-server executes all the stages of the workflow (except the last stage) using the fixed

parameters recorded during configuration phase. The mobile app then presents a screen

with READ and ACT elements of the final stage. When the user chooses input values for

the ACT elements and clicks ’SUBMIT’, the actions are sent to the Taskr-server where

they are virtually executed on the application client.

On the other hand, to execute the workflow using other text based input modalities, the

user has to send a start command (’#startworkflow’) along with the name of the workflow

to a fixed address (for email)/twitter handle (for twitter)/phone number (for SMS), etc. To

get a list of configured workflows, the user can send a list command (’#listworkflows’)

to the server address to which the server replies with a list of workflow names. Once the

server receives the start command, it begins executing the workflow. At the last stage, any

READ elements and the labels for required ACT elements are sent to the user. The user can

reply to this with the corresponding ACT values, which are then interpreted and executed

on the application client. The user can also send an abort command (’#cancelworkflow’) to

cancel any currently running workflows.

Optimizations and Error Checking

Optimizations: All of the previous challenges deal with the user performing the workflow

using a sequence of actions as on the desktop. Therefore, mobilization performance (time

taken to finish the task) is limited by the application performance on the desktop. Given

that the users are generally more tolerant to delays on the desktop than on the smartphone,

any long delays can lead to a drastic decrease in the perceived user experience. Also, since

the workflow is configured while the user performs it on the desktop, the number of actions

taken to finish the workflow are the same as that of desktop. Therefore, the mobilized

workflow needs to be optimized further to make the task execution even better than that

of the desktop. This leads us to the following question - In addition to mobilizing the

workflow, what optimizations can be applied so that the overall user experience is better

92

than that of the desktop?

The following are some examples of optimizations: (a) Handling common input values:

Instead of the user typing/entering each input value, some common input values can be

saved and presented as hints to the user when the workflow is performed for the next time.

If these input values do not change, the process of entering them can be automated; (b)

Auto Login: Several enterprise applications need the user to log-in before any workflow

can be performed. Instead of performing login steps each time for a workflow, the login

information in the form of a session cookie could be saved, allowing the user to auto-login

the next time the workflow is executed; (c) Reducing the number of stages in a workflow:

The number of stages in a workflow and the number of user actions needed to finish each

stage currently are the same as that on the desktop. Whenever a stage does not require

user input it can be automated; For example, a stage of the workflow that just has one

navigate element can be performed automatically by the server without the user explicitly

navigating. (d) Prefetching content to be used in the future: The delay in the mobile

application is currently lower bounded by the delay on the desktop application. The delay

can be reduced by opportunistically prefetching and rendering the next layout while the user

is using the current layout; For example, while the user is typing, the result page can be

fetched if it doesn’t depend on the current input. (e) Performing spot tasks across devices:

To allow for pausing and resuming of spot tasks from the smartphone, Taskr preserves the

application session on the virtual browser as long as possible. Taskr also allows the user

to switch devices in the middle of a spot task by recording any partially completed input

fields on the first device and restoring them on the second device.

Error checking: Workflow execution can lead to errors due to several reasons: when

page/element is no longer available, the user forgot to configure prerequisites (eg. login)

for the workflow, the result of a stage of a workflow leads to another that has not been

configured by the user, etc. When the application developer changes the application (say,

removes a page), some elements of the workflow may no longer be found, thereby break-

93

Table 4.3: List of Worflows configured on enterprise applications

Application Workflows Application Workflows
1. Create a security group 1. View the latest salary amount
2. View service status 2. Add direct deposit account

Amazon AWS 3.View instance status Peoplesoft 3. View year to date earnings
4. View account balance 4. Get balance vacation hours
5. Create new volume 5. Update contact information
1. Get the next task deadline 1. Get Quarterly net performance
2. Create a task and assign it 2. Create a poll for followers

Sharepoint 3. Edit a wiki page Salesforce 3. Get information on the top deal
4. Sync the website 4. Create a new campaign
5. Share a project 5. Create an open lead
1. Add a new customer 1. Edit a Wiki page
2. Add a new service 2. Change page permissions

Quickbooks 3. Get net profits/loss this month Sakai 3. Add a participant to a Wiki
4. Add a new vendor 4. Create a new group
5. View income report 5. Check a Wiki’s last edit owner
1. View latest balance 1. Add a patient
2. View usage history 2. Add a note to the pharmacist

Utility 3. Pay latest balance AtlasMD 3. Add a new pharmacy
4. Get usage in current month 4. Close office next monday
5. Get plan expiration date 5. Add a pricing tier
1. Retrieve VIN of the vehicle
2. Add a service request

Excelerate 3. View vehicle registration information
4. Request an insurance card
5. Report mileage

ing the workflow; The presence of these errors leads to the following challenge - How to

handle any errors that may be encountered while the user is performing a workflow, which

are a result due to drastic changes in the application flow or due to user error? The mo-

bilized application gracefully shuts down upon encountering any error. A display message

which corresponds to the cause of the error is prompted the user. This allows the user to

re-configure the workflow correctly.

4.4 Evaluation

Prototype

We implement a proof of concept prototype of Taskr with which users can easily mobilize

spot tasks and execute them through three different usage modalities - app, Twitter and

Email (see Figures 4.11a, 4.11b, 4.11c, and 4.11d). Within this prototype, the Taskr-

94

recorder is a Javascript browser extension for Google Chrome. In addition to observing the

user action while the user is performing the spot task, the tool also allows user to manually

select elements, extracts fingerprints and transforms using rules.

The Taskr-server is written in python and deployed in the Amazon EC2 cloud. When

the user selects a spot task, it instantiates a headless Chrome browser and attaches a Se-

lenium automation driver to it. Upon receiving any user actions performed on the Taskr-

client, it executes them on the browser through selenium. For the Twitter usage modality,

the server uses Twitter Direct Messaging APIs to filter out appropriate commands from its

Twitter stream and to send responses to the user. For the Email usage modality, the server

monitors its email mailbox for any emails with commands using Python’s imaplib. Any

response to be sent to the user is handled by smtplib.

Finally, the Taskr-client is implemented as an app for Android OS. The landing screen

of the app lists all spot tasks that have been mobilized, organized by the application name.

Upon selection of a task, Taskr-client renders the UI elements of final stage of the workflow

using translations constructed during configuration phase. Any user actions on these native

elements are reported back to the Taskr-server. The user can either execute the workflow

(i) using Taskr-client, (ii) by sending a direct message with an appropriate start command

to the server’s twitter handle, or (iii) sending an email with the subject containing the start

command to the server’s email address.

User Study:

We mobilize spot tasks in 9 enterprise applications using Taskr in the following cate-

gories - Learning Management System (Sakai [128]), Human Resources Management (Or-

acle Peoplesoft), Collaboration (Sharepoint), Customer Relationship Management (Sales-

force CRM), Accounting (Quickbooks [27]), Cloud Management (Amazon Web Services),

Billing portal (A utility company website - name anonymized), Electronic Health Record

(AtlasMD) and Fleet Management (Element Fleet). We configure five workflows from each

95

of these applications representing typical daily usage patterns of employees. For brevity,

we only show workflows from four of these applications in Table 4.3. We configure each

workflow through the taskrt. During the configuration phase, we select the elements on the

page, mark their category as read/write/navigate. If a label is not picked by default, we type

an appropriate label when prompted. Once the workflow is configured, it is automatically

uploaded to the server hosted on Amazon EC2 cloud.

We then start the Taskr-client on a Google Pixel smartphone (Android 7 Nougat) and the

Taskr-server on an Ubuntu Server hosted on Amazon EC2 cloud instance. The instance is

of type m4-2xlarge with 4 vCPUs and 32 GB of RAM. We subsequently execute each of the

workflows on the Taskr-client, Chrome browser on the smartphone, and a Chrome browser

on a desktop. Whenever the workflow cannot be performed using the mobile web version

of the application, we load the desktop page of the application on the mobile browser to

complete the workflow. Figures 4.12 shows the number of actions taken by user to perform

the workflows in Table 4.3 for the Taskr-client, the Chrome Browser on the smartphone,

and the Chrome Browser on the Desktop. We observed that, on an average, the workflows

on Taskr-client take 40.67% fewer actions compared to the desktop browser and 38.19%

fewer actions compared to the mobile browser.

We also evaluate Taskr using subjective experiments on 15 volunteers 10. We selected

the following 5 workflows from 3 applications - Sakai (editing a wiki page, changing per-

missions of a site and adding a participant to a site), Amazon AWS (#4), and Peoplesoft

(#2). Each volunteer performed the workflows on three platforms (Taskr client, Desktop

and Mobile browser) in a random order. The order of the platforms on which these users

performed the workflows was also randomized. The volunteers were then asked to answer

the following 7 questions rating each of the platforms.

• On a scale of 1 to 5, how satisfied are you with the application?

• I am satisfied with the number of steps it took to finish the workflows
10The volunteers were mostly university students within 22-30 year age group

96

• Information presented on the screens was easy to comprehend

• How easy is it use and figure out the app?

• Navigation: Is moving between screens logical/accurate/appropriate?

• How long does it take to perform the workflow on this application?

• Would you recommend this application to people who might benefit from it?

The users were then asked to answer these questions by choosing one among 5 options.

The options presented for the users were based on a likert-scale with likert-type responses.

For example, the options for Question 1 would be - strongly disagree, disagree, neither

agree nor disagree, agree, and strongly agree. Each option has a score corresponding to

it (from 1:worst to 5:best). Figure 4.13 shows the % of total responses across the scores

from the users in a stacked graph for three of the questions - How satisfied are you with the

application? The responses to other questions follow similar trends. The users consistently

rated Taskr-client better than the other two platforms for all the questions. For example,

100% of the users were satisfied (score > 3) for Taskr. On the other hand, only 66.67% of

users were satisfied with the desktop experience and 13.33% with the mobile experience.

The desktop was rated the better in general than the mobile, due to the user’s familiarity

with the application on the desktop.

97

(a) Peoplesoft on Desktop

(b) Taskr-client
(c) Email

(d) Twitter
Figure 4.11: Taskr prototype for a test workflow on Oracle Peoplesoft

98

 6

 8

 10

 12

 14

 16

 18

 20

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(a) Amazon Web Services

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(b) Peoplesoft

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(c) Sharepoint

 5

 10

 15

 20

 25

 30

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(d) Salesforce

 5

 10

 15

 20

 25

 30

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(e) Quickbooks

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(f) Excelerate Fleet

 5

 10

 15

 20

 25

 30

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(g) Sakai

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(h) Utility Company Web-
site

 5

 10

 15

 20

 25

 30

1 2 3 4 5

N
u
m

b
e
r

o
f
a
c
ti
o
n
s

Workflow #

Taskr
Desktop

Mobile

(i) AtlasMD

Figure 4.12: Number of actions taken to perform workflows on enterprise applications

 0

 20

 40

 60

 80

 100

Mobile Desktop Taskr

%
 o

f
to

ta
l

5
4

3
2

1

(a) Question 1

 0

 20

 40

 60

 80

 100

Mobile Desktop Taskr

%
 o

f
to

ta
l

5
4

3
2

1

(b) Question 3

 0

 20

 40

 60

 80

 100

Mobile Desktop Taskr

%
 o

f
to

ta
l

5
4

3
2

1

(c) Question 5

Figure 4.13: Mean Opinion Score from volunteers

99

CHAPTER 5

TRACKR: RELIABLE TRACKING OF UI ELEMENTS WITHIN WEB

APPLICATIONS TO ENABLE ROBUST APIFICATION

5.1 Introduction

A relatively recent trend in the domain of web applications is to APIfy applications so that

evolutionary secondary services may be built upon them seamlessly. In fact, the increasing

adoption of web service frameworks such as REST and SOAP in building web applications

is in line with allowing for such seamless extensibility. A simple example of APIfication of

web applications is Google Maps. While Google Maps is itself a popular application used

by users to obtain navigation information, other applications can also leverage the API

exposed by Google Maps such as those for directions, distance, elevation, geolocation,

roads, and time zones. The APIs can be used by any application over HTTP, allowing

for faster integration of mapping and navigation intelligence into those applications. Well

known applications such as AirBnb, Expedia, Allstate Goodhome, NYTimes, 7-Eleven,

and Runstatic all rely on Google Maps APIs [142]. Most popular web-based applications

such as Gmail, Salesforce, Twitter, etc., have their own APIs that other applications can

leverage.

While applications can indeed be built ground up to support APIs, an interesting prob-

lem is how web applications not built in such manner can still be retroactively APIfied.

Such a scenario occurs under two different conditions: (i) the applications are legacy appli-

cations that pre-date the APIfy movement, but still command considerable usage wherein

APIfication will have tremendous value; and (ii) the applications are built by a vendor who

does not have any explicit business or technology motivation to expose APIs to third party

developers (even if they do exist on the backend). The second issue is more pertinent as ex-

100

posing APIs for a web application does come with its own costs such as ensuring security,

incurring maintenance overheads, facilitating monitoring and monetizing, and provision-

ing for scalability. A more nuanced version of the aforementioned problem is when a

third-party developer needs a certain functionality offered by the web application but not

exposed through an API. One approach to APIfy is to rewrite the underlying software for

the web application to expose APIs. However, such a strategy incurs the burden of both

the redevelopment of the software, and the redeployment of the application. Hence, the

rebuilding-based strategy is an expensive process and is quite undesirable.

A different strategy to APIfying a web application relies on front-end only techniques

to create APIs. Using a combination of automated navigation, intelligent acting, and con-

tent scraping, front-end APIfying techniques create APIs without requiring any changes

whatsoever to the application backend. Consider the simple example of a thermostat web

application (that could control a smart thermostat inside a home) that requires the cur-

rent temperature for a zip code. Regardless of the APIs supported by a service such as

weather.com, a front-end APIfying approach can create APIs for weather.com that will

provide the current temperature for a zip code purely by navigating to weather.com, en-

tering the zip code in the search bar, and scraping the temperature information from the

resultant view. The salient advantage of this strategy is the non-dependence on backend

changes. This is certainly less expensive. More importantly, APIfying an application is no

longer dependent on the vendor who created the application. Third party developers can as

easily create APIs for it.

It is such front-end based APIfy strategies that we consider in this paper. Specifi-

cally, such strategies rely on a fundamental building block - the ability to uniquely identify

and track front-end UI elements on the web application. For example, in the smart ther-

mostat use-case, consider that the temperature UI element is uniquely identified on the

resultant view on weather.com. The thermostat application will now rely on an API that

reads the temperature from that specific UI element on weather.com. What happens if the

101

weather.com changes in a manner that impacts the temperature UI element? There are in-

deed changes that should break the API a good example would be if weather.com removes

the temperature UI element. However, there are a variety of changes including the temper-

ature UI element moving to a different location, new UI elements introduced on the page,

other (non-relevant) UI elements removed from the page, attributes of UI elements such

as color, size and labels change, etc., that should not break the API. This challenge is the

focus of this paper.

What makes the challenge non-trivial is that UI elements within web-applications, or-

ganized in a DOM tree, do not have distinct permanent identifiers that remain invariant

across application changes. Thus, only relative identifiers (e.g. path from DOM tree root)

can be relied upon to uniquely identify UI elements. These relative identifiers are vulner-

able to even minor changes to the application that impacts the DOM tree in some manner.

In this context, we present Trackr, a UI element tracking algorithm that improves the ro-

bustness of APIs created atop web applications multi-fold. At a high level, trackr uses the

concept of quorum fingerprinting that determines the identity of a target UI element based

on its relative paths from other nodes in the DOM tree that have an attribute ID. We then

argue why such an approach by itself remains insufficient to handle the different types of

possible changes to the web application. We then present multiple optimizations to the

baseline quorum fingerprinting including resilient path construction, progressive patching

of fingerprints, and localized fingerprints as fail safes. We show using popular web ap-

plications such as Salesforce, a PeopleSoft application, a SharePoint application, and a

Sakai application that Trackr can improve the identification of a target UI element multi-

fold compared to standard mechanisms. We then present three different use-cases that rely

on APIfied web applications and discuss how they benefit from Trackr.

The rest of the chapter is organized as follows: Section 2 presents background and mo-

tivation for Trackr. Section 3 outlines the Trackr design. Section 4 presents evaluation

results and Section 5 discusses use-cases where Trackr can be used to deliver better perfor-

102

Figure 5.1: Possible changes in a web application

mance. Finally, Section 6 discusses a few issues with Trackr and presents key conclusions.

5.2 Background and Motivation

5.2.1 Web Applications and DOM Trees: A Primer

Web applications are gaining popularity today as they are platform independent, easy to

deploy and have a well established development infrastructure. They provide a convenient

way to deliver different functionalities to the user with minimal development costs. A web

application can be typically accessed on any browser through it’s URL. A web application

is a collection of web pages, most of which are rendered on the browser as HTML docu-

ments. The underlying data structure for an HTML document is a tree called the Document

Object Model (DOM). The DOM tree defines the layout of the application. Each tag from

the document is an element of this tree. The tree is rooted at the <HTML> tag. Any nested

tags within a particular tag are children elements of that tag. Fig. 5.2 shows the DOM tree

for a simple HTML document in Fig. 5.3.

Each tag in the HTML document can be classified as: (i) meta (e.g., meta, link, script,

etc.), (ii) formatting (e.g., p, br, bf, etc.), (iii) layout (e.g., div, table, etc.), or (iv) ac-

tion (e.g., a, button, textbox, etc.). After the tree is rendered, the effect of these tags

can either be visible (layout and meta tags) or invisible (action and formatting tags). All

103

Figure 5.2: DOM Tree

[baselinestretch=0.7]
<HTML><HEAD>
<TITLE>title</TITLE>
</HEAD><BODY>
<DIV ID=d1>

</DIV>
<DIV ID=d2>

</DIV></BODY></HTML>

Figure 5.3: HTML Source

modern browsers allow the DOM tree to be accessed through Javascript DOM API[143].

For example, the method getElementById(id) returns the element with an attribute ID=id,

getElementsByTagName(tag) returns an array with elements whose tag name = tag, etc.

Also, as users interact with elements their appearance defined by their HTML attributes

can change even though the layout remains the same. For example, when a user clicks on

a checkbox, the attribute ‘checked’ is toggled.

UI Element Identifiers

A tag can have some HTML attributes associated with it. For example, the tag

has one attribute href. The attribute values need not be unique for the tags. One exception

to this rule is the attribute ID. Therefore, the value of an HTML attribute ID is a glob-

ally unique identifier for that element. While such an identifier is highly desirable for an

element, it is not always available. For example, in the Salesforce web application, only

19% of all elements have an ID declared. Also, even though the value of the ID is unique

in an instance of a DOM tree, it is not necessary for it to remain constant across multiple

instances of the application. ExtJS[127] is a popular JS library that creates different ID

values at different instances. On the other hand, using the attributes contained within the

tags of an element, an attribute based identifier can be constructed. However, this identifier

is not unique as it is not necessary for an element’s attributes to be unique in a DOM tree.

104

For example, in Salesforce, only 16% of elements have a unique set of attributes. Given

that the element’s own attributes will not help in its identification, the next logical direction

is to consider identifiers that are relative to some property. When this property is relative

to the element’s local context within the DOM, the identifier again is not unique. For ex-

ample, a local identifier consisting of an element’s parent, immediate siblings and children

is only unique for 13% of the elements on Salesforce. On the other hand, identifiers that

describe an element relative to a unique global property within the DOM are unique. Some

examples of such IDs are - Path from the root, Path from all elements with IDs, Coordinates

from the top left corner of a page, Path from the body element, etc. Such an identifier can

be constructed for every element within the DOM. Also, given an identifier and any DOM

tree, at most only one element can be found with the same identifier.

On the nature of changes

While an element’s global relative identifiers can uniquely identify it given a DOM tree, it

is not necessary that they remain constant even when the DOM tree changes. For example,

when the dashboard of Salesforce application is reconfigured to add a new ‘messages’ sec-

tion, all the elements that immediately follow this section (e.g., recently viewed) will have

their global relative identifiers changed i.e. the paths to these elements in the DOM tree

get altered. Web applications are dynamic and rich today, wherein the DOM trees not only

change due to the developer modifying the application, but also because of user interac-

tions[144]. Any user action can either modify the DOM tree or can lead to a new webpage

with a new DOM tree. For example, clicking on a list will modify the DOM tree by intro-

ducing option elements into the tree, where as clicking on a link will load a new webpage.

A web application can undergo several types of changes such as layout modifications, con-

tent updates, appearance changes (either by the style attributes of elements or when a UI

library is updated) and code changes. These changes affect the underlying DOM structure

in one of the following ways (see Fig. 5.1): (i) Local changes: These are the changes

105

wherein only attributes within an element are changed leaving the DOM tree intact. For

example, the change in color of a link after a user clicks on it; (ii) Insertions: These are

changes wherein a new element is inserted into the DOM tree. For example, when a user

creates a new task and it is added to the list of all tasks; (iii) Deletions: These are the

changes wherein an element is deleted from the DOM tree. Any children of this element

are inserted at the element’s position before deletion. For example, when container DIV is

deleted and all its children are moved back into the parent DIV; (iv) Migrations: These

occur when an element (and any descendants) moves to any other position in the tree. For

example, when a user decides to reorganize a dashboard, say by moving the list of tasks

to another location within the dashboard; Consider an example wherein a simplistic DOM

tree shown in Fig. 5.2 changes to the tree shown in Fig. 5.5. The change in attribute ID

value of element d1 to d3 is a local change, the addition of p1 is an insertion, absence of

a3 and a4 are two deletions, and movement of a2 is a migration. All other changes can be

expressed as a combination of these categories.

5.2.2 Problem Definition, Scope, and Goals

In this paper, we target the problem of developing an algorithm to reliably track UI elements

of a web application across several instances of the application. Note that web-applications

innately do not need to have distinct permanent identifiers for the UI elements. Hence, UI

elements can be identified only by a relative identifier constructed based on some property

of the underlying DOM tree. Hence, the problem involves creating a unique identity (called

the fingerprint) for the UI elements that remains robust even as the application changes. We

only consider web applications that are rendered as HTML documents on the client browser

due to their dominance in the web application ecosystem[124]. In this chapter, we treat web

elements as containers of content, and not as content itself. For example, in a list of recently

viewed headlines, when a particular headline content originally at the top of the list moves

to a different position, the web element corresponding to the top position in the list hasn’t

106

moved but the content it carries changed. On the other hand, if the list of headlines as

a whole is moved to a different location on the page, we assume that the web elements

have moved. Furthermore, the framework should be able to track any element belonging

to the DOM tree as a whole. Tracking parts of a node individually is beyond the scope

of this paper. For example, if there is a paragraph of text declared as a node of the DOM

tree, the framework should be able to track paragraph as a whole, and not individual words

within it. Also, given a fingerprint, tracking should only return an element if it is present

in the application. If the element is deleted from the DOM Tree either by the developer

modifying the application or the user configuring the application, tracking should return an

empty pointer.

The problem considered in this chapter can be formally stated as - Given a web appli-

cation A with a DOM tree τ, how can a unique fingerprint for any given web element e ∈ τ

be created, such that the fingerprint can effectively be used to identify the element e in a

different instance of the DOM tree τ′.

Any algorithm for tracking UI elements should satisfy the following goals: (i) The

algorithm should be robust and withstand a wide range of changes within the DOM struc-

ture; (ii) It should be able to track elements with only the information available from a

typical web-application and make no assumptions about any additional resources from the

web-applications, especially from the application developers; and (iii) Finally, it should be

application agnostic.

5.2.3 Problem Relevance and Significance

Given the rising popularity of web applications, there are several secondary web services

available that extend the functionalities provided by the (primary) applications. These ap-

plications usually rely on the APIs provided by the web applications to access their features.

A common goal among these secondary services is to observe some variables from the web

application(s) and act on the them to provide the necessary functions. To explain the rel-

107

evance of the problem considered in the paper, we discuss three such secondary service

use-cases that rely on accurate and reliable tracking of UI elements within a web appli-

cation. For each of these use cases, the lack of a reliable tracking algorithm leads to a

significant increase in task burden.

(i) Automation:

Automation services like Selenium[145] help users programmatically perform a sequence

of tasks within a web application, so to eliminate the task burden of performing them man-

ually. To automate a particular action on a web element using Selenium, a user has to write

a script that declares how to access the web element using simple Javascript DOM access

methods and specifies the type of action to be performed. However, as the application and

the corresponding DOM tree change, it is possible that the access methods mentioned in the

automation scripts fail to access the correct element. In this case, the user has to manually

rewrite the automation scripts to access the elements in the modified DOM. This can be

burdensome. An accurate element tracking algorithm can effectively eliminate this burden.

(ii) Macro-Creation:

With services like IFTTT (If this then that) [146] users can create macros to observe certain

variables within a web application, create triggers when the variables satisfy some condi-

tions and perform specific actions on a different web service. For example, a user can

create a macro that tracks a package and emails a public transit schedule to reach home

in time to collect the package. IFTTT relies on APIs provided by the web applications to

create triggers and perform actions on their data. However, given that a vast majority of

applications do not expose a compatible API, the users are restricted to using only a limited

number of web applications. With the availability of an accurate tracking algorithm, third-

party services like IFTTT can reliably access application data from their DOM structure,

independent of any support from the application itself.

108

(iii) Application Mobilization:

Application mobilization services allow the employees to use their smartphones to com-

plete the tasks that were originally performed on a desktop. Of all mobilization strategies,

application refactoring has minimum development and deployment costs. This involves

hosting the application as-is on a cloud and presenting the users with an optimized native

UI on their smartphones. Any actions on the native UI are then executed on the original

UI in the cloud. Capriza [147] is an example of a refactoring based mobilization service.

A critical step in refactoring is to map any actions from the smartphone native UI to ac-

tions on the original application UI. This requires reliable tracking of the UI elements in

the original application even as the application changes. If the tracking is inaccurate, the

mapped actions are possibly performed on the wrong element leading to failures.

Later in Section 5.4, we revisit these use-cases to demonstrate how Trackr framework

can be integrated within them.

5.2.4 Related Approaches and Performance Analysis

When the services relying on the application’s front-end (such as the three examples above)

fail due to a change in the application, they have to be reconfigured again. This can lead to

increased task burden and more costs.

Prior work:

The problem of reliably fingerprinting UI elements within a web application has been ex-

plored in the past in different contexts. XPath[86] is a widely adopted standard with syntax

to describe elements within an XML/DOM tree. Using XPath syntax, a path for traversal

within a DOM tree can be specified between two elements. For example, //html//body[1]

is the XPath expression to reach body by traversing to html’s second child. However, XPath

only provides a syntax and it is upto the developer to create a fingerprint with it. Several

optimizations[87, 88] have been proposed to interpret XPath. In [89], an element’s path

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Graphical
Coordinates

Path
FromRoot

Path
FromID

E
rr

o
r

Sakai
Sharepoint
Peoplesoft
Salesforce

Figure 5.4: Performance of existing fingerprints

from the root of the DOM tree is used as one of its features, but in the context of enhanc-

ing mining. [90] uses the shortest path from the nearest ancestor in the DOM tree with

an HTML attribute ID as a fingerprint. Here, the context is to record user actions. [91]

uses path from the root in conjunction with parent and immediate siblings to identify an

element for information extraction. In [92], the authors propose using subtree information

for each element in a DOM path. These fingerprints assume a consistent DOM for the web

application, which does not hold true in reality. We later show that these single-path based

fingerprints do not perform well in dynamic scenarios. [93, 94], use visual features of the

page to learn and extract templates for elements. [94] also uses visual features to gener-

ate a layout structure for a webpage analogous to DOM. This layout structure can then be

leveraged to create fingerprints. However, generating fingerprints based on visual features

is not feasible for a majority of secondary services as it not only requires a large amount of

annotated training data but also takes a lot of time.

Performance of related approaches:

One obvious candidate for an element’s fingerprint are it’s coordinates w.r.t. top left corner

of the webpage (Graphical Coordinates). However, it is not robust and small changes

within the application can easily break it. For example, if the title of a news article is

updated to a longer sentence, the Graphical Coordinates of all the content that surrounds

110

it will change. On the other hand assuming that the application has a consistent DOM, an

element’s position within this tree can serve as it’s fingerprint. Since all elements cannot

be directly accessed without a HTML attribute ID, the element’s position can be obtained

by traversing the shortest path from the root of the tree to the element (Path From Root).

However, when the layout of the tree changes, it is possible that this path will lead to a

different element. The probability of layout changes affecting the Path From Root can

be lowered by considering path from an anchor element closer to the given element than

the root. The only elements in the tree that can be directly accessible are elements that

have an attribute ID. Therefore, the path from a nearest element with an ID (Path From

ID) along with the ID value can act as an element’s fingerprint. To study the robustness

of the three fingerprint candidates - Graphical Coordinates, Path From Root, and Path

From ID, we downloaded the home pages (after login) of four popular web applications-

Sakai, Sharepoint, Peoplesoft and Salesforce and artificially introduced changes within

their DOM structures. We first randomly select 30 elements from the DOM to track and

introduce changes to the DOM (each element has a 0.5% chance of changing). We then

find these elements in the modified DOM tree using the three fingerprint candidates. More

details on this experimental setup are explained later in Section 5.4. Fig. 5.4 shows the

ratio of elements whose fingerprint fails to find the elements within the modified tree. On

an average, the error rates are 0.73, 0.44 and 0.11, for Graphical Coordinates, Path From

Root and Path From ID, respectively. These experiments lead us to a few key insights: (i)

DOM based fingerprints that leverage the application layout perform better than pixel based

graphical coordinates; (ii) Path From ID has a much lower error rate compared to Path From

Root. This can be attributed to the shorter length of Path From ID as shorter paths have a

lower probability of being affected by changes; (iii) Even though Path From ID performs

much better than other fingerprints, the error rate is still very high and unacceptable. This

calls for the development of a new fingerprint algorithm.

111

Figure 5.5: Changed DOM Tree Figure 5.6: Quorum Tree of a5

5.3 Trackr: Fingerprinting Algorithm

5.3.1 Architecture Overview

We design Trackr as a passive browser extension that secondary web services can rely on

to track any number of UI elements from a web application. Trackr extension exposes

two key functions - Trackr.track(element, tname) and Trackr.find(tname). Any web service

can use the track() function to track a certain element by passing the element’s current

handle (Javascript DOM object) - element and a name for the tracker - tname. Trackr then

extracts a unique identity (fingerprint) for the element and adds it to a database stored in

the browser’s persistent storage. The fingerprints in the database are indexed by the URL

of the web page from which the fingerprint was extracted and the name given to the tracker

(tname). At every subsequent visit to the page, Trackr updates the fingerprint to reflect any

changes within the DOM since the last time the fingerprint was computed. Using Trackr’s

f ind() function and the tracker name tname, the service can request a current handle to the

tracked element. Trackr then retrieves the fingerprint from the database and uses it to find

the element within the DOM tree.

112

5.3.2 Quorum Fingerprinting

In Section 5.2, we evaluated the performance of three simple fingerprints and observed that

single-path fingerprints are insufficient to reliably track elements in dynamic web applica-

tions. Also, recall that the fingerprinting algorithm cannot assume any other information

from the web applications except it’s DOM structure and elements can only be identified

relative to some other property of the DOM tree. Therefore, instead of just considering the

position of the node in the DOM tree w.r.t. one other element (root or node with an ID),

Trackr adds redundancy into the fingerprint by considering the position of the node with re-

spect to all elements with an attribute ID. The key insight is that even if some portion of the

DOM tree changes between two instances, a majority of the tree remains intact. Therefore,

by considering position w.r.t. several anchors and using a simple majority rule to identify

the element that matches most of these positions in a modified tree, Trackr creates a robust

fingerprint. We call this principle quorum fingerprinting.

To construct a quorum fingerprint Q.FP() for an element e in a DOM tree τ, Trackr

reshapes the DOM tree so that it is now rooted at e (quorum tree). Reshaping is done by

first inverting the shortest path from the element e to the HTML root, so that e is now at

the root position of the new tree. Trackr then appends all the other elements as children to

their respective parent nodes from the old tree. Fig. 5.6 shows the quorum tree for the node

a5 from the example shown in Fig. 5.2.

Using the quorum tree, Trackr computes the shortest path from all elements with an

attribute ID to the root of the quorum tree. Therefore, Q.FP(e) = (ID(a),SP(a,e))∀a ∈ τ

and a has an attribute ID, where ID(a) is the value of attribute ID for a and SP(a,e) is the

shortest path between a and e in the quorum tree. Shortest path SP(a,e) is computed by

traversing the quorum tree upwards from the element with ID until its root is reached. For

each element encountered in the traversal, the element’s name along with the index w.r.t.

to its siblings (in the original tree) is recorded, i.e. given an element e, and it’s quorum

tree Q(τ,e), SP(a,e) = [(name(e′), index(e′))∀e′encountered in the traversal to e], where

113

index(e′) is the index of e′ w.r.t it’s siblings in the original tree τ. For example, the element

a5 has a quorum fingerprint Q.FP(a5) = (d1, [(BODY,2),(DIV,2),(A,2)]),(d2, [(A,2)]).

In order to find an element in another instance of the DOM tree τ′, Trackr compares

Q.FP(e) to the quorum fingerprints of all other elements of the same type (as e) in τ′. For

each element e′ of the same type in the modified tree, Trackr uses Algorithm 1 to compute

a score that reflects how many of the paths in e’s fingerprint match with those of e′. The

element with the maximum non-zero score among all other elements is e’s counterpart in τ′.

For example, element a1 can be identified in the modified tree (Fig. 5.5) using the quorum

fingerprint computed from the tree in Fig. 5.2. Even though it’s nearest anchor DIV d1’s

ID has changed, the path from the other anchor element d2 remains intact in the modified

tree. Figure 5.7 shows an overview of the fingerprinting algorithm of Trackr.

Given that an element’s quorum fingerprint contains the traversal paths from all other

elements with an attribute ID to the element, it can be expensive to compute when the DOM

tree has many anchor elements with attribute IDs. For these situations, Trackr provisions

for a flexible parametric quorum fingerprint that limits the number of anchor elements

considered. This limit can be tuned by the developer using Trackr to balance the tradeoff

between the accuracy of tracking and the complexity of computing paths. If a limit K on

the number of paths is set, the quorum fingerprint of an element em only contains the paths

from the closest K elements within the DOM Tree to em.

Algorithm 1 Baseline Algorithm
1: procedure match f ingerprint(Q.FP(e),Q.FP(e′))
2: score← 0
3: for id ∈ Q.FP(e) do
4: if id ∈ Q.FP(e′) then
5: P1← Path corresponding to id in Q.FP(e)
6: P2← Path corresponding to id in Q.FP(e′)
7: if P1 == P2 then score← score+1
8: end if
9: end if

10: end for
11: return score
12: end procedure

114

Figure 5.7: Overview of Trackr with Quorum Fingerprinting

5.3.3 Fingerprinting Optimizations

Through the principle of quorum fingerprinting, Trackr increases the immunity of the fin-

gerprint to DOM changes. We now describe five different optimizations that are progres-

sively applied to the baseline algorithm to make it more robust.

(i) TrackrPR Path Resiliency: Even though the baseline fingerprint described earlier is ro-

bust to secluded changes in the DOM tree away from the element, the presence of many

changes in the vicinity of the element can still break the fingerprint. For example, element

a5’s quorum fingerprint is insufficient to find it in the modified tree, as its index w.r.t to

its siblings has changed. To counter this problem, Trackr adds resiliency to how paths are

calculated. Instead of just using the name of an element and the index (w.r.t. its siblings) to

differentiate it from its siblings, Trackr computes three parameters from the original tree τ

- (i) l: the number of siblings to the left of the node, including the node; (ii) r: the number

of siblings to the right of the node, including the node; and (iii) d: the number of children

of the node. Each path is now a list of 4-tuples - (name, l,r,d). The computation of score

in line 7 of Algorithm 1 is now replaced with match paths from Algorithm 2. Given an

anchor element with ID, a path to an element P1 computed on the old tree, and a path to

an element P2 computed on the modified tree, Trackr first checks the names of all elements

115

along these paths (line 3). For ith element in P1 and P2, if both l and r indices match, then

the score is incremented by 2
|P1| (lines 5-6). If only one of indices, say l, matches and the

number of children d match, then the score is incremented by r(P1[i])
|P1|(l(P1[i])+r(P1[i]))

. Note that

this increment is less than the increment when both l and r match i.e. there is a penalty

if one of the indices doesn’t match. Also note that, Trackr uses the number of children as

an additional matching criterion in the score computation to discourage any false positives

that may arise. Figure 5.8 shows an overview of the path resiliency optimization.

Algorithm 2 Score computation with path resiliency
1: procedure match paths(P1,P2)
2: score← 0, i← 0
3: if names(P1) = names(P2) then . names() returns a list of names of all elements along the path
4: while i < |P1| do
5: if l(P1[i]) = l(P2[i])&r(P1[i]) = r(P2[i]) then
6: score← score+ 2

|P1|
7: else if l(P1[i]) 6= l(P2[i])&r(P1[i]) = r(P2[i])&c(P1[i]) = c(P2[i]) then
8: score← score+ l(P1[i])

|P1|(l(P1[i])+r(P1[i]))
9: else if l(P1[i]) = l(P2[i])&r(P1[i]) 6= r(P2[i])&c(P1[i]) = c(P2[i]) then

10: score← score+ r(P1[i])
|P1|(l(P1[i])+r(P1[i]))

11: else
12: return 0
13: end if
14: i← i+1
15: end while
16: end if
17: return score
18: end procedure

With this optimization in place, the fingerprint of a5 computed from the old tree will

now be sufficient to find it in the modified tree, as one of it’s index (r) in the path from DIV

d2 and the number of children remain intact.

(ii) TrackrWP Weighted Path Matching: Assuming uniform distribution of changes

across the DOM tree, longer paths have a higher probability of breaking with time com-

pared to shorter paths (see discussion in Section II-D). Consider a case where in there are

two elements with IDs in a tree. Also consider an element whose fingerprint has two paths

P1, and P2 (from the two elements with ID a1, and a2, respectively). In a modified tree, it is

116

Figure 5.8: Overview of Trackr with Path Resiliency

possible that two different elements e1, and e2 have the same match score from Algorithm

2. This can occur when the path from a1 to e1 matches completely with P1, and the path

from a2 to e2 matches completely with P2. In such a scenario, the probability that the longer

path among P1 and P2 points to an incorrect element is higher than it’s alternate.

Based on this intuition, Trackr allocates more importance to matching shorter paths

compared to longer paths. This is achieved by multiplying the score from Algorithm 2

with a weight that monotonically decreases with an increase in path length1. Trackr uses

an inverse logarithm function 1
ln(1.25+length) to weigh scores2. Figure 5.9 shows an overview

of Trackr with the weighted paths optimization.

(iii) TrackrPL Path Length Amendment: To find whether two paths in different finger-

prints lead to the same element, Trackr first checks if the names of elements along the paths

are equal. Consider a case wherein an element is deleted along a path but the rest of the

path remains intact. In this case, the names of elements will no longer match. Further, if

this deletion is close to the element (say it’s parent), it is highly possible that all the paths

1When some areas of the DOM tree are subject to more changes than other areas, the assumption on the
uniform distribution of changes does not hold. In this case, more weight can be allocated to paths that do not
go through change-prone areas. Finding these areas is beyond the scope of this paper

2Any monotonically decreasing function will produce the same results

117

Figure 5.9: Overview of Trackr with Weighted Paths

within the element’s fingerprint will fail. Through this optimization, Trackr accounts for

one possible deletion with Algorithm 3. Given a path from a fingerprint computed on the

old tree P1 and a path from a fingerprint computed on the modified tree P2 (corresponding

to the same element with ID as in P1), if the length of P2 is one less than that of P1, Trackr

creates a set of dummy paths. For every ith element along the path P1, Trackr creates a

dummy path P′1 that indicates what P1 would look like if the ith element was deleted. If

the names of elements along this dummy path match to that of P2, Trackr appends this

dummy path into a list of candidate paths for consideration (lines 5-12). When an element

is deleted, all the element’s children are appended to its parent. To account for this, if the

original tree has to be traversed ‘DOWN’ to reach the deleted element (from the previous

element in the path), the siblings count l and r of the deleted element are added to the sib-

lings count of the next element along the dummy path. This is because the next element is

a child of the deleted element. On the other hand, if the direction of movement is ‘UP’, the

siblings count of the deleted element are added to those of the previous element along the

path (lines 13-19). In the end, each candidate path is matched to P2 using Algorithm 2, and

the final score is set to the maximum of all scores (among the candidate paths). In addition,

a penalty of 10 is added to the length of path P1 to discourage false positives (lines 22-27).

118

Algorithm 3 Matching paths with path length amendment
1: procedure match paths weighted(P1,P2)
2: score← 0
3: if names(P1) == names(P2) then
4: score+= match paths(P1,P2).

1
ln(1.25+|P1|)

5: else if |P2|+1 == |P1| then
6: candidates← []
7: temp← P1
8: for i← 0; i < |P1|; i++ do
9: temp← temp\temp[i]

10: if names(temp) 6= names(P2) then
11: continue
12: end if
13: if dir(P1[i]) == ‘DOWN′ then
14: l(temp[i])+ = l(P1[i+1])
15: r(temp[i])+ = r(P1[i+1])
16: else
17: l(temp[i−1])+ = l(P1[i−1])
18: r(temp[i−1])+ = r(P1[i−1])
19: end if
20: candidates.add(temp)
21: end for
22: scores← []
23: for P ∈ candidates do
24: scores← match paths(P,P1)/ ln(1.25+ |P|+10)
25: end for
26: score← max(scores)
27: end if
28: return score
29: end procedure

119

Figure 5.10: Overview of Trackr with Progressive Path Patching

(iv) TrackrPP Progressive Path Patching: Through baseline quorum fingerprinting and

the previous three optimizations, an element can be reliably identified even when the DOM

tree is changed. When a web service utilizes Trackr to track some elements, their finger-

prints are computed and stored. Over time, as the web application undergoes more changes,

the paths within the old fingerprint slowly become irrelevant. To avoid this issue, Trackr

progressively updates the fingerprint every time the user visits the same web application.

To do this, Trackr first identifies the elements in the web application using the matching

procedures outlined earlier. If any of the paths in fingerprint have since been modified,

Trackr patches the stored fingerprint to reflect the new paths.

(v) TrackrLS Local Signature: While all of the previous optimizations are designed to

create resiliency in the presence of changes away from the element, when the element itself

migrates to a different part of the tree either by itself, or as a part of migration of one of its

ancestors all of the paths in the fingerprint can fail. However, there is still a high possibility

that the element’s surrounding context remains the same (as the element migrates with its

descendants). As a fail-safe for this situation Trackr includes an element’s local context,

120

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

G
raphical

PathFrom

Root

PathFrom

Id
Trackr

E
rr

o
r

Type-II error
Type-I error

(a) Sakai

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

G
raphical

PathFrom

Root

PathFrom

ID
Trackr

E
rr

o
r

Type-II error
Type-I error

(b) Peoplesoft

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

G
raphical

PathFrom

Root

PathFrom

ID
Trackr

E
rr

o
r

Type-II error
Type-I error

(c) Sharepoint

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

G
raphical

PathFrom

Root

PathFrom

ID
Trackr

E
rr

o
r

Type-II error
Type-I error

(d) Salesforce

Figure 5.11: Performance of Trackr compared to Graphical (Coordinates), Path From
Root, and Path From ID

called its signature in the fingerprint. The signature of an element is defined as a list of

tag names of the children and grandchildren of the element ordered in a depth first pattern.

To find an element using its signature, Trackr matches the pattern in signature to all other

elements in the DOM tree and looks for an exact match. As the signature has a very high

rate of false positives, it is only used when the all the paths fail.

5.4 Evaluation

5.4.1 Prototype:

To demonstrate the usage of Trackr, we developed a multi-application Dashboard, a proof-

of-concept mobilization app for Android. Using Dashboard, users can mobilize and mon-

itor values within UI elements spanning across multiple web applications within one mo-

bile app. Figure 5.12 shows a screenshot of Dashboard app through which four values

121

Values Tracked
1. GBP-USD gains
www.nytimes.com
2. Bitcoin price
www.bitcoin.com
3. Etherium price
www.coinbase.com
4. Apple stock price
www.nasdaq.com

Figure 5.12: Dashboard App

from different websites (or web applications) are tracked. Dashboard prototype consists of

three components: (i) Configuration chrome extension on the user’s computer: To moni-

tor a value through Dashboard, the user installs this extension and selects the value to be

tracked through a dropdown menu on the UI element containing this value. The extension

uses Trackr to generate a fingerprint for that element; (ii) Python Dashboard server on

Amazon EC2: This server uses the fingerprint generated by the chrome extension to track

UI elements and periodically monitor the value contained within them. If there is a change

in value, the server pushes the new value to the Dashboard app (see Figure 5.16) ; and (iii)

Android Dashboard app on the user’s smartphone: This app is responsible for displaying

the configured values to the user and updating these values upon a push notification from

the server.

Methodology: In this section, we evaluate the performance of Trackr on four different

web applications: (i) Learning Management - Sakai[128], (ii) Human Resources Man-

agement - Oracle Peoplesoft[148], (iii) Collaboration and Team Management - Microsoft

Sharepoint[149], and (iv) Customer Relationship Management - Salesforce[5]. For each

122

Table 5.1: Default Experimental Parameters

Name Value Name Value
of iterations 50 Probability of change 0.5

of rounds of change 7 # of tracked elements 30

of these websites, we first download the homepage after login and extract the DOM tree.

On an average, the number of elements in the DOM tree were 191, 1356, 1357, and 1886,

for Sakai, Peoplesoft, Sharepoint, and Salesforce, respectively. We then introduce several

rounds of change into this DOM tree. At every change round, each DOM element un-

dergoes a change with a probability pchange (default value = 0.5%)3. Each change round

represents the modifications to the DOM tree between two consecutive visits. The default

number of rounds of change is set to 7. At the end of each change round, Trackr patches

the fingerprint (III-A-iv).

For elements that are selected to change, the type of change is chosen randomly among:

(i)Attribute change: The value of a randomly chosen HTML attribute is changed to a new

value; (ii) Attribute insertion: A new HTML attribute is added to the element’s tag; (iii)

Attribute deletion: A randomly chosen attribute is deleted from the element’s tag; (iv) In-

sertion: A new element is inserted as a child of the element at a randomly chosen index.

The type of this element is randomly selected among all previously seen tags in that DOM

tree; (v) Deletion: The element is deleted from the DOM tree and any children are inserted

back into the deleted element’s position; (vi) Migration: The element, along with its de-

scendants, are moved to a different (randomly selected) location in the DOM tree; These

changes broadly reflect the types of changes an element is subjected to in reality.

At the beginning of every iteration, we download the website, extract the DOM tree and

select 30 candidate elements (at random) from the DOM tree to be tracked by Trackr. We

exclude nodes that only carry meta information such as html, body, head, script, link, meta,

etc. We then introduce several rounds of change. After completion of all change rounds,

3Even though this probability is small, given the size of a typical DOM tree, the number of changes with
each round are high.

123

we use Trackr to find the candidate elements in the modified DOM tree. To establish

the ground truth, at the beginning of each iteration, we add a unique dummy ID for each

element in the DOM tree. At the end of the iteration, we compare this dummy-id to the

dummy-id of the element returned by Trackr. We then compute: 4:

• (i) Type-I error = # of candidates wrongly identified
Total # of candidates (when the dummy ID of the element re-

turned by Trackr is not equal to the dummy ID of the candidate);

• (ii) Type-II error = # of candidates not found
Total # of candidates (when Trackr is unable to find the element in the

DOM tree, but the element was not deleted); (iii) Error = Type-I error + Type-II error;

Type-I errors signify cases where the dummy ID of the element returned by Trackr is not

equal to the dummy ID of the original candidate element. Type-II errors signify cases when

Trackr is unable to find the element in the DOM tree, but the element was not deleted during

the change rounds. To eliminate random bias, we repeat the experiments for 50 iterations.

We also evaluate these errors for three other fingerprint candidates used in prior work: (i)

Graphical coordinates (Graphical Coordinates), (ii) Path from the root of the DOM tree

(Path From Root), and (iii) Path from the nearest ancestor with an attribute ID (Path From

ID).

Macroscopic results:

Figure 5.11 shows the errors of fingerprint candidates using the default parameters from Ta-

ble 5.1. Trackr clearly outperforms all other candidates. On an average, Trackr is inaccurate

only 4.74% of the time, where as the average error rates for Graphical Coordinates, Path

From Root, and Path From ID are 69.74%, 45.44%, and 10.64%, respectively. Graphical

Coordinates have the highest error rate and it performs worse compared to the fingerprints

that rely on the DOM. We can also observe that Path From ID has a much lower error com-

pared to Path From Root. This improvement can be attributed to the decrease in the path

length by computing the path from an element in the vicinity of the given element. This

4These errors are not the true definitions of Type-I and Type-II errors used in statistics

124

Table 5.2: Effect of different optimizations on Trackr

Fingerprint % Error Fingerprint % Error
Graphical Coordinates 61.9 Path From Root 22.1
Path From Nearest ID 8.9 Trackr-baseline 5.8
Trackr-path resiliency 4.8 Trackr-weighted matching 4.2

Trackr-progressive patching 3.9 Trackr 2.8

is because the shorter paths have a lower probability of breaking. Through the principle

of quorum fingerprinting, Trackr achieves an improvement of 55% over Path From ID. By

building redundancy into the fingerprint by computing paths from many elements, adding

resiliency to the paths, giving more importance to shorter paths, accounting for deletions,

patching fingerprints when possible, and by using the local signature when all of the above

fail, Trackr achieves a 55% improvement over Path From ID.

Microscopic results:

We also study the improvement resulting from progressively applying optimizations to the

baseline algorithm for Sakai application. Table 5.2 shows the overall error percentages as

the different optimizations are progressively added to the baseline version (Trackr-baseline)

of the fingerprint. When we add the path resiliency optimization to baseline quorum finger-

printing, by including two different indices in the paths, the error is reduced from 5.8% to

4.8%. By introducing weights proportional to the path lengths and including the path length

amendment optimization, the error is further reduced to 4.2%. By patching the fingerprints

on every visit to the web application, the error reduces to 3.9%. Finally, by using local

signatures to find the elements when all the paths break, the error rate of Trackr is reduced

to only 2.8%. These numbers clearly demonstrate the benefits of each of the optimizations.

Sensitivity Analysis:

In this section, we study the sensitivity of Trackr to different parameters for two web appli-

cations - Sakai and Peoplesoft. Unless mentioned, the experiments use the default param-

125

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

% of change

Trackr
Path From ID

(a) Sakai

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

% of change

Trackr
Path From ID

(b) Peoplesoft

Figure 5.13: Sensitivity to % of nodes changing in DOM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

E
rr

o
r

of rounds of change

Trackr
Path From ID

(a) Sakai

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16

E
rr

o
r

of rounds of change

Trackr
Path From ID

(b) Peoplesoft

Figure 5.14: Sensitivity to the number of rounds of changes

eters from Table 5.1. For relative comparison, we also show the performance of Path From

ID.

Figure 5.13 shows the effect on the error of changing the percentage of nodes subject

to modification in each round of change. As the percentage of change increases, the error

rate also increases for both Path From ID and Trackr. This is because as the DOM under-

goes more changes, the chances of the paths in the fingerprint breaking also increase. The

increase in error is roughly linear. On an average, every 0.1% increase in probability of

change results in a 1.1% increase in error for Trackr, and a 1.9% increase for Path From

ID.

We also study the effect of the type of change on the error (figure 5.15). With only

insertions allowed, the average error rate is 1.7% for Trackr and 7.3% for Path From ID.

When only deletions are allowed, the average error rate is 2.9% for Trackr and 9.9% for

126

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

Insertions

Deletions

M
igrations

Insertions

+deletions

All
changes

E
rr

o
r

Trackr
Path From ID

(a) Sakai

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

Insertions

Deletions

Migrations

Insertions

+deletions

All
Changes

E
rr

o
r

Trackr
Path From ID

(b) Peoplesoft

Figure 5.15: Sensitivity to types of changes

Path From ID. For only migrations, the average error rate is 4.1% for Trackr and 8.8% for

Path From ID. When deletions are also allowed, the average error rate increases to 3.56%

for Trackr and 9.85% for Path From ID. When all the different types of changes are allowed,

the average error rate is 5.6% for Trackr and 11.3% for Path from ID. As different types

of changes are introduced, the error rate increases. Given that the probability of change

is the same, if all changes are equal, the error should remain the same. However, these

numbers indicate that Trackr is most resilient to insertions and most sensitive to migrations.

This is because when a node migrates, all the paths in the fingerprint are broken leaving

Trackr with only local signature to find a match. However, since the local signature is more

susceptible to finding the wrong elements, the error rate for migrations is higher.

Figure 5.14 shows the effect of changing the number of rounds of change, the DOM

tree is subject to, before the error is computed. As the number of rounds are increased from

0 to 15, the error rate also increases. On an average, per round of change, the increase in

error rate is about 0.7% for Trackr and 1.63% for Path From ID. The increase in error rate is

lower for Trackr, as the paths in the fingerprint are progressively updated after every round

of change. While this number seems alarming, in reality, DOM trees change very slowly

with time, and hence Trackr still remains robust for a long period of time.

127

5.5 Use Cases

In this section we discuss how Trackr’s accurate and reliable fingerprinting of UI elements

can be integrated with the three secondary service use cases we introduced in Section 5.2.

5.5.1 Automation:

Web automation services are services that allow a user to perform a set of actions on web

applications programmatically. They are particularly useful when a sequence of actions

has to be repeatedly executed many times. For example, for large-scale testing of web

applications, the testers have to perform the same action (like typing text into a textbox)

many times with different parameters (say different values of text). Using automation ser-

vices can help relieve this task burden. Selenium [145] is an example of such a browser

automation framework. To automate a workflow with Selenium, the developer has first to

obtain a handle for the UI element using a script with DOM access methods and specify the

type of action with any required parameters in a script. Selenium interprets the automation

script and performs the specified actions on a browser as if they were executed manually.

For example, to enter text in a text box, the developer has to script how to access the text

box element, say through xpath expressions, and use the method find element by xpath() to

obtain a handle. Text can be inserted by calling the method send keys() on the handle. The

burden of obtaining the right handle for an element rests with the developer. If the web ap-

plication changes after the automation scripts have been written, Selenium will not be able

to perform the specified actions on the desired element. The developer then has to man-

ually update the scripts with methods to access the correct handle for the elements within

the modified DOM tree. For web applications that frequently change, this is burdensome

and impractical.

Trackr can alleviate the problem of re-coding handles for elements every time the appli-

cation changes, by allowing the developers to create a robust fingerprint for the elements.

128

By including the Trackr browser extension through add extension() method of selenium,

and calling Tracker.track() on the element’s current handle, a tracker for the element can

be initialized. At a later point in time, the correct handle to the element can be obtained by

passing the tracker’s name to Tracker. f ind() method. The following pseudocode demon-

strates the usage of Trackr in Selenium.

\\Adding trackr extension

options = webdriver.ChromeOptions()

options.add_extension(’trackr.crx’)

driver = webdriver.Chrome(chrome_options=options)

...

\\ Track a list of elements

\\ elem: a handle for the element to be tracked.

\\ name: a name for the tracker

js=’return Trackr.track(arguments);’

fp = driver.execute_script(’js’,elem, name)

...

\\ Get a handle for tracked element

js = ’return Trackr.find(arguments)’

elem = driver.execute_script(’js’,name)

...

Macro-Creation:

There are a wide variety of web applications available today that provide a diverse range of

services to the end user. The types of services include, but are not limited to, productivity

(e.g., Microsoft One Drive, Google Drive, Microsoft Sharepoint, etc.), home automation

(e.g., Nest, Hue, etc.), personal assistants (e.g., Alexa, Google Home, etc.), Collaboration

management (e.g., Microsoft Sharepoint), HR and Customer management (e.g., Oracle

129

Peoplesoft, Salesforce CRM, etc.), travel management (e.g., Kayak, Concur, etc.), weather

and traffic (e.g., maps, Weather.com, etc.), fitness (Fitbit, runkeeper, etc.) etc. Even though

different web applications provide services that pervade the day to day life of users, most of

these applications exist independent of each other. Macro-creation services are secondary

services that allow users to create ‘macros’ to conveniently access the services provided

by web applications on a standard interface. IFTTT (If This Then That) [146] is a popular

macro-creation service using which users can monitor some variables within one service,

create triggers when these variables meet some conditions, and perform actions on a differ-

ent web service when the triggers are activated. Using IFTTT, users can monitor parameters

from one web service and create triggers on these parameters based on some conditions,

and perform actions on a different web service when the triggers are met. For example,

users can create a trigger to monitor the current temperature on weather.com and set the

thermostat of the house to cool when it crosses a threshold. In IFTTT, macros can be con-

figured through a GUI, wherein the users can select from a list of available triggers and

actions. The burden of providing the triggers for IFTTT is on the web application and

therefore, the users are restricted to only those applications that expose an IFTTT compat-

ible API. However, given that a very small percentage of applications provide an API, the

benefits of macros are severely limited. On the other hand, expecting all web services to

provide a functional API to monitor variables and perform tasks is impractical. Further,

the burden of providing the right handles to monitor parameters (say the outside tempera-

ture) rests with the primary web service. If the primary web service fails to maintain these

handles, the applets created by users can fail.

With simple extensions to Trackr, users can be allowed to create their triggers even

from web applications that do not currently provide an API to integrate with IFTTT. Rather

than manually updating the API to monitor a trigger value each time the structure of the

primary web service change, the developers (of primary web services) can use Trackr to

track web elements that contain the trigger value automatically. Further, using Trackr, users

130

can create their triggers from web services that do not currently provide an API to integrate

with IFTTT. To support this feature, Trackr browser extension can be extended to allow

users to select a web element to be monitored by right-clicking on it in a web page and

selecting an option from the context menu. The users can then be asked also to enter a

condition for the monitored value. Trackr can then periodically monitors the element from

the application. When the trigger conditions are met, Trackr can embed the value in a JSON

object and send a response back to IFTTT as an HTTP POST message indicating that the

trigger is activated. These steps are demonstrated in the following pseudocode.

elem, condition <- get from user

// Start a tracker to monitor element

fp = trackr.Track(elem,name);

//periodically monitor value of elem

while(1):

load_web_service() // Load the web service

// Get the monitored value

value = Trackr.find(name).value

if value satisfies condition:

//Create a IFTTT JSON response

response_json= {

"trigger_identity": "92429d82a41e93048",

"triggerFields": {"monitored_value": value},

"ifttt_source":

{"url": "https://example.com/trigger"},

}

// post the response back to IFTTT

post(response_json);

131

sleep(period) // polling frequency

Application Mobilization:

Application mobilization is the process of transforming desktop applications into smart-

phone apps. It can improve the productivity of enterprise employees, as they can now

perform tasks that were originally performed on a desktop, but their smartphone. Among

different strategies to mobilize enterprise applications, application refactoring is gaining

popularity today. Mobilizing enterprise applications with refactoring involves hosting the

application on a cloud server and providing a highly optimized native UI for the users to

interact with the application on their smartphones. Here, the core application logic remains

unchanged and only the front-end is transformed into a highly optimized native UI for the

smartphone. However, unlike traditional remote computing that presents the user with the

application as-is, the UI is instead transformed into a platform native UI. A crucial step in

this process involves capturing any actions performed by the user on the smartphone native

UI and executing them back on the original UI of the application. As refactoring does not

require modifying the original application in any way, mobilization can be readily achieved

with minimal development and deployment costs. Through Capriza [147], users can create

micro-apps that perform specific workflows on traditional enterprise applications through

a simple GUI tool called the Designer. It allows the users to select elements from the orig-

inal application UI, customize them and add them to the smartphone UI. For these selected

elements, Capriza creates unique fingerprints and associates them to their smartphone na-

tive versions. When the user performs an action (say taps a button on the smartphone),

these mappings are used to find the corresponding UI element of the original application

and execute actions. For the created mobile app to function correctly, the actions have to

be executed on the correct elements in the original UI. When the layout of the original

application changes, it is possible that the fingerprints generated by Capriza at the time of

micro-app creation fail. In this case, the user will not be able to perform the intended work-

132

Figure 5.16: Integration of Trackr with a mobilization service

flow on the micro-app. The user will now have to recreate the original micro-app from the

modified application UI.

Figure 5.16 demonstrates the possible architecture that integrates Trackr with Capriza.

When the user selects the elements from the Designer, Capriza can use Trackr to initiate

trackers for them and map these trackers to their corresponding native UI elements. When

the user performs an action on the native UI, the tracker names can be used to obtain a

handle to the element in the original UI and perform the corresponding action on it.

5.6 Issues

The following questions could be raised on the approach taken by Trackr to track elements:

• Can Object tracking algorithms from image processing research [150] be used to

track elements? Object tracking algorithms assume that between two consecutive

video frames, the object does not move by a lot. However, given that the web el-

ements are containers of content, their appearance can change drastically between

two instances. Therefore, pixel-based object tracking methods do not apply to our

problem;

• Can the developers of web applications be forced to declare attribute IDs for all web

elements? It requires remodeling the large body of legacy web applications and is

133

impractical;

• Can trackers be embedded within elements by the secondary web services? This

would require a change at the web application’s end to honor the trackers, and is

therefore impractical;

134

CHAPTER 6

PEEK: A MOBILE-TO-MOBILE REMOTE COMPUTING PROTOCOL

6.1 Introduction

The adoption of smartphones (and tablets1) has seen an explosive growth over the last

decade and in 2011 the number of smartphones shipped finally eclipsed that of the num-

ber of PCs. Even traditionally conservative enterprise sector is adopting mobile devices at

a blistering pace, driven by a clear return-on-investment in the form of higher employee

productivity, reduced paper work, and increased revenue. It appears inevitable that smart-

phones will become the primary computing device for a majority of users in the future.

Many enterprise employees work in teams where collaboration between various team

members is necessary to accomplish tasks [151]. Collaboration between enterprise employ-

ees has been shown to improve employee productivity [151]. Even though collaboration is

crucial in an enterprise setting, very few mobile apps (e.g., Google Docs) natively support

it. Most mobile apps are designed for individual use and do not allow multiple users to

collaborate unless they are working on the same device. Such a restriction hinders one of

the significant advantages of mobility - the convenience of working from any location. In

this chapter, we consider using mobile-to-mobile remote computing to enable collaboration

between users on two different devices in scenarios when the application does not include

simultaneous multi-user support. Remote computing involves a remote server running ap-

plications on one user’s mobile device while the other user interacts with it remotely, using

a remote computing protocol. Remote computing allows users to view and control other

devices in real time while being physically away from them.

In addition to collaboration on smartphone apps, a mobile-to-mobile remote computing

1While all of our discussions apply to both smartphones and tablets, for brevity we refer only to smart-
phones in the rest of this paper.

135

protocol can enable users to experience a range of different application scenarios, which

otherwise would not have been possible. For example, a user can allow her colleague

access to her smartphone to get help with editing an image. She can play a game on her

friend’s smartphone, even when she is present at a different physical location. In addition

to that, she can create virtual smartphone images on a resource-rich cloud infrastructure

and remotely access them to perform CPU heavy tasks. She can also help configure her

grandmother’s phone by controlling it remotely. The possible applications with a mobile-

to-mobile remote computing protocol are hence numerous.

While several remote desktop sharing protocols are available today [126, 152–154],

they cannot be applied as-is for mobile-to-mobile remote computing for the following rea-

sons: (i) Multi-touch interface: Existing protocols assume that the user interacts with her

device using a keyboard and mouse. However, most smartphones use multi-touch screens,

which are not supported by these protocols; (ii) Context association: A user interacts with

her smartphone, not just through the input devices, but also with the associated context

through sensors (e.g., accelerometer, proximity sensor, gyroscope, light sensors, location

sensors) for a rich application experience. However, traditional remote computing proto-

cols do not associate context to a session; (iii) Resource constraints: A good-quality remote

computing session requires high network bandwidths and substantial processing capabili-

ties. While the resource requirements are available within most Desktops, smartphones are

limited by low power processors and limited bandwidth wireless networks (WiFi, 3G/4G).

In this context, we introduce Peek, an application agnostic, platform and device inde-

pendent mobile-to-mobile remote computing protocol for smartphones. Peek has the fol-

lowing properties: (i) Multi-touch support: Peek enables client-server interaction through

multi-touch interfaces, which increases the ease of interaction. Compared to Virtual Net-

work Computing (VNC), a popular remote desktop solution, Peek vastly increases the num-

ber of supported touch gestures. By implementing Peek on Android smartphones, we show

that the time taken to perform specific actions on the server remotely is reduced by 62.8%

136

Figure 6.1: Peek usage

on average; (ii) Context association: Peek associates sensor context to a session, which

allows users to experience a broad range of smartphone apps (including apps using local

device context) remotely; (iii) Multi-modal frame compression: Peek chooses a frame com-

pression mode based on the server’s CPU/memory load, the rate of change of screen pixels

and the current network bandwidth. Using synthetic datasets, we show that Peek can poten-

tially reduce the bytes sent over a network by over 30% compared to VNC. To the best of

our knowledge, Peek is the first ever remote computing protocol designed for communica-

tion between two smartphones. In the rest of this chapter, Section 6.2.1 provides a primer

on remote computing.

The rest of this chapter is organized as follows - Section 6.2.2 outlines the need for a

mobile-to-mobile remote computing protocol for smartphones. Section 6.2.3 discusses the

key challenges of using existing remote computing protocols for smartphones. Section 6.3

sketches the details of Peek. Finally, Section 6.4 specifies the evaluation of Peek.

137

6.2 Background and Motivation

6.2.1 A Primer:

Remote computing involves one or more client devices communicating with a server. Dur-

ing a remote computing session, the server encodes the content of its frame buffer (screen

pixels) and sends it to the associated clients. The clients display this view on their screens

and allow users to interact with it using input devices like keyboard and mouse. The clients

capture these input device operations and send them over the network to the server, which

executes these operations at its end and sends any screen updates back to the clients. These

updates could either be a direct encoding of the screen pixels[96] or primitives such as

‘draw a rectangle’[95]. The format of the messages exchanged between the client and the

server depend on the remote computing protocol. VNC uses Remote Frame Buffer Pro-

tocol (RFB) [96] for communication. In RFB, server encodes pixels in the frame buffer

using a compression scheme negotiated between the client and server at the start of the

session. The client decodes these pixels and displays them by writing onto the local frame

buffer. Irrespective of the type of encoding, only those rectangles that have changed from

the previous state of the frame buffer are sent over the network. The client can control the

server through input devices like a keyboard or mouse.

6.2.2 A case for mobile-mobile remote computing

We consider mobile-to-mobile remote computing as a platform that extends a smartphone

to a new dimension of applications. With remote computing, users can experience appli-

cations through other physical or virtual devices and are not limited by their device. We

envision the following applications for mobile-to-mobile remote computing:

138

Real time collaboration:

Users can collaborate on any smartphone application, even when it is not built for collab-

oration. One user can run the application natively on her smartphone, while the other uses

can use remote computing to access the same instance of the application on using their re-

spective smartphones. For example, user Bob can help user Alice edit a picture on Alice’s

smartphone by remotely accessing Alice’s smartphone from his smartphone and interacting

with Alice’s instance of a photo editing application.

Computation offload:

A user with a low-end smartphone can access a virtual instance of a device hosted on

a resource-rich cloud and complete resource-heavy tasks like panorama stitching, image

manipulation, video editing, compression, encryption, among others.

Troubleshooting:

A support technician can access a user’s smartphone and help debug an issue in real-time.

Such a feature would also enable non-savvy users to get help when needed to utilize the

full range of features available with smartphones.

Multi-player gaming:

Games, with or without multi player support, can be enjoyed by multiple users without be-

ing present at the same location. For example, by remotely accessing the same smartphone,

two users can play Angry Birds, where they can either collaborate to pass a level or take

turns competing on the same level and compare scores.

Virtual Mobile Infrastructure:

For data security purposes, certain enterprise workers are required to carry a smartphone for

office use in addition to their personal smartphones. This can be avoided if the enterprises

139

Table 6.1: Touch to mouse translation

Client Gesture Translation Server execution
Tap Left Click Tap
Double Tap Left Double Click Double Tap
Long Press Long click Long press
Long press(short) + swipe Left click + Move Swipe/Drag

can provide a sandboxed virtual smartphone environment on a cloud, which the employees

are allowed to access only at the workplace or with a secure VPN.

6.2.3 Key Challenges

Desktop remote computing protocols2 cannot be applied as-is for mobile-to-mobile remote

computing for the following reasons. In this section, we outline these challenges.

Input Handling:

Desktop remote computing assumes one end of the application is a Desktop with which

users interact with a keyboard and a mouse. With the advent of smartphones, interactions

through keyboard and mouse are no longer relevant as users interact with applications on

a smartphone using touch screen gestures. However, there are no remote computing proto-

cols specifically designed for touch screen input devices. Existing VNC smartphone client

and server applications are designed for keyboard and mouse operations. They adapt to

the desktop protocol by translating touch screen operations into mouse operations, rather

than supporting them natively. A VNC smartphone client that translates touch to mouse

operations can be used to communicate with a VNC smartphone server that converts the

mouse operations back to touch operations. We identified this translation between touch

and mouse operations and present it in Table 6.1. Such a translation creates the following

problems:

(i) Many gestures cannot be mapped. Multi-touch enables a smartphone user to interact

2While we use VNC as a representative desktop remote computing protocol, the discussion can still be
applied to all the other protocols.

140

Table 6.2: Non intuitive and non existent gestures

Swipe Scroll Multi-finger Swipe Multi-finger hold
Multi-finger drag Pinch Multi-finger tap Multi-finger pinch

Expand Multi-finger expand Multi-finger multi-tap Fling
Multi-finger Fling Multi-finger rotate Anchoring

with her device using intuitive gestures performed with multiple points of contact. Since a

mouse has only one pointer moving across the screen, many multi-touch operations cannot

be mapped;

(ii) Mapped gestures are not intuitive. For example, when a user wants to scroll a list on

his smartphone, she swipes upwards on the touch screen. However, if the user wants to do

the same on the VNC server smartphone, she has to long press on the screen first and then

swipe up. This usage is confusing to remember as it is not natural and hence is a source

of confusion. Also, if the user doesn’t swipe on time after she long presses, a menu might

open up corresponding to the long press gesture. Gestures that are either non-intuitive or

cannot be mapped are shown in Table 6.2.

(iii) Context information is not associated. A typical smartphone is equipped with many

sensors including gyroscope, accelerometer, magnetometer, proximity sensor etc., which

provide contextual information on the device. This sensor context is used by many appli-

cations to provide a rich experience to users. For example, many racing games make use

of the gyroscope and accelerometer readings to emulate the effects of steering, i.e. if the

user tilts to the left, the vehicle is steered to the left. We argue that apart from input devices

like touch screen, mouse and keyboard, sensors are also a way to interact with the device.

Current remote computing protocols only consider input devices like a mouse or keyboard

as a way of interacting with the device. Applications requiring client’s sensors will not be

able to operate with traditional remote computing.

Challenge 1: How does a remote computing smartphone client interact with the smart-

phone server using multi-touch operations and associate its sensor context to a session?

141

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

BBC Temple
Run

Ebay Minion
Rush

Amazon

fr
a
m

e
 s

iz
e
 d

if
fe

re
n
c
e
 (

K
B

)

Figure 6.2: Average consecutive frame size difference of different applications

Table 6.3: VNC compression on smartphones

Type fps CPU (%) Memory (MB) Bytes per frame
Tight 256 Color 22 48 28 13946
ZRLE 5 21 17 42101

Remote View Sharing:

Usage of frame compression techniques designed for desktops, for smartphone-to-smartphone

remote computing, results in poor resource utilization in smartphones. Using VNC as-is

for smartphones presents the following problems: (i) Frame compression in VNC is in-

dependent of device status. Compression schemes that have a low CPU overhead have

poor , and those that have better visual performance are CPU heavy. To demonstrate this,

we setup a remote computing session between a VNC server that generates frames at 60

frames per second (fps) and a client that measures the rate of display of these frames, on

two LG Nexus 5 smartphones. Table III shows the fps at client and CPU, memory, bytes per

frame sent at the server for two popular VNC compression schemes. We found that ‘Tight’

achieves better fps (22 vs 5) and better per-frame compression than ‘ZRLE’, at the cost of

higher CPU and memory usage. Using the same frame compression scheme throughout

the session irrespective of the device status is not suitable for smartphones, as resources are

limited; For example, if the server’s CPU utilization is high and network utilization is low,

142

(a) Article A (b) Article B (c) Home Page H

Figure 6.3: Different screen layouts of BBC

data could be sent over the network with a simple compression scheme like ZRLE, even

though a more complex scheme was fixed beforehand.

(ii) Applications have different compression requirements. The rate of change of screen

content (frame rate) varies among different applications available. Fig. 6.2 shows the

average size difference between consecutive frames, in a single session for different appli-

cations on Android. The frame rate for graphically intensive games like Temple Run and

Minion Rush is high compared to the other applications. VNC uses the same type of com-

pression scheme, irrespective of the application. Using a complex compression algorithm,

which was decided at the start of session for applications with a lower frame rate, leads to

wastage of resources;

(iii) Application usage behavior leads to inefficient resource utilization in smartphones.

Many smartphone applications use a fixed number of screen layouts with different content.

For example, in the BBC mobile app, the articles share the same layout, which is different

from that of the home screen. Consider a case in which the user opens article A from the

home screen H and switches back to home screen, opens another article B. Since a VNC

server transmits the changes from the last displayed frame, the size of updates sent are U

= diff(H,A) + diff(A,H) + diff(H,B), where diff(x,y) is the size of the screen update if the

screen changes from x to y. However, VNC does not leverage the fact that the current frame

might have been displayed (H) in the past, or that a similar frame might have been accessed

143

before (A and B). This results in a wastage of network resources. If the client and server can

remember those frames that could repeat (like H) or one representative frame that is similar

to many frames that could be displayed in the future (say A or B), the number of bytes sent

over the network could be significantly reduced (update size = diff(H,A) + diff(A,B)<<U).

Challenge 2: How can the remote computing server compress its screen, taking into ac-

count (i) CPU, memory and network loads, (ii) screen redundancy and (iii) varying frame

rate?

6.3 PEEK: A mobile-to-mobile remote computing protocol

In this section, we briefly present Peek, a mobile-to-mobile remote computing protocol for

collaboration Peek is built on the RFB protocol and adds multi-touch support and context

association to it. Peek also improves upon frame compression of RFB, by using a multi-

modal compression scheme. Peek deals with the challenges described in Section 6.2.3 as

follows:

6.3.1 Multi-touch Support and Context Association:

If a user has to access a smartphone using VNC remotely, she has to use a client application

on her smartphone that maps touch operations to mouse operations, and a server applica-

tion on the remote smartphone that translates mouse operations to touch operations. The

mapping between touch and mouse operations affects the usability of the application. Peek

clients instead, directly capture touch interactions, represent them in a suitable format to

avoid loss of integrity, and send them to the Peek server for execution. By removing the

layer of mouse translation, touch interactions can be natively represented at the client and

easily interpreted at the server. This enables the users to interact with the remote server

intuitively in the same way as they would interact locally with their smartphones. Peek

adds a new touch screen input method to the RFB protocol. Peek clients represent each

144

(a) Touch message (b) Sensor message

Figure 6.4: Message format in Peek

point of contact of user’s finger to the screen with a touch message. Each touch message is

14 bytes long. The first byte, type, is a constant (=12) for all touch messages, irrespective

of the device. It serves as an indication to the server to interpret the next 13 bytes of the

stream as a touch message. The second byte mask is a bitwise mask that represents the

validity of different fields in the rest of the message. In Peek, touch contacts are assumed to

be elliptical in shape3 and each touch contact is represented by: (i) position on the screen

- x,y (horizontal and vertical coordinates of the center of contact); (ii) dimensions - ma jor,

minor (lengths of major and minor axes); (iii) pressure of contact - p; (iv) Id of the point

of contact - id. While parameters x, y, ma jor, minor and p are designed to represent the

physical aspects of contact, id is useful in a multi-touch scenario to differentiate one point

of contact from the other. These parameters are captured in real time by Peek clients. The

presence of x, y, ma jor, minor, p and id in the touch message is indicated by setting bits

1 to 6 of mask, respectively. While simple actions like tap have only one point of contact,

other actions (swipe, drag, scroll, etc) have multiple points of contact along the path a fin-

ger traces on the screen. Each such touch contact is packed into a touch message. A special

message with a mask of ‘0’ is sent to signal the end of an action and is generated when the

point of contact leaves the touch screen. When there are multiple points of contact for a

touch gesture, some of the parameters might remain the same for these contacts (e.g., p).

These parameters can be skipped in subsequent messages, and the mask is set appropri-

ately. The Peek server extracts touch parameters from the message and virtually applies the

touch contact. If the mask indicates that a parameter is not present, the last known value is

used.
3Most of the touch sensor drivers assume the area of contact is an ellipse.

145

Peek clients also capture various sensor readings and send them to the server. A user

with a Peek client has an option to chose either her own device’s context or the server’s

context during a session. type value varies with the function of the sensor (15 for the

gyroscope, 16 for the accelerometer, 17 for the proximity sensor, etc.). Similar to mask in a

touch message, mask in the sensor message is a bitwise mask that represents the validity of

the sensor data. The exact format of representation of sensor readings in a sensor message

depends on the type of the sensor. For example, for a gyroscope (accelerometer), it is a

series of three double values, representing the rate of device’s rotation (acceleration) along

X, Y, and Z-axes. For a proximity sensor, it is a binary value, representing if the phone is

near/away.

All the major smartphone operating systems provide APIs to interpret touch/sensor ac-

tivity (e.g. UIApplication class in iOS, and /dev/input/event virtual file system in Android).

Also, the implementation of extraction and execution of touch/sensor messages depends

on the OS of the device. For a Linux based OS, this can be achieved by writing a series

of bytes into /dev/input/event virtual filesystem in a suitable format. Since message format

is independent of the OS, clients and servers on different OS can communicate with each

other. With this message representation, all possible multi-touch and sensor events can now

be captured and communicated, thereby increasing the ease of interaction for users.

6.3.2 Multi-modal Compression:

Peek introduces a new multi-modal frame compression technique that takes into account

content redundancy, the rate of change of application content and the device resource usage.

The Peek server identifies specific key frames from the past session history and compresses

the difference between the current frame and a key frame closest to the current frame. In

this way, Peek reduces the amount of data to be compressed, thereby reducing the amount of

data sent over the network and CPU cycles. Also, Peek uses video compression techniques

when it detects rapidly changing screen content.

146

Figure 6.5: Multi-modal compression

While a VNC server uses a compression scheme selected at the beginning of the ses-

sion, Peek server selects one of three compression modes by periodically monitoring its

CPU/memory load, network load and frame generation rate: (a) last diff: Like in RFB,

the difference between the last frame and the current frame is compressed; (b) key diff: To

save bytes sent on the network in a scenario where the current frame could be very similar

to content in the past, the Peek server identifies some representative (key) frames in the

session history. If the current frame is similar to any one of these key frames, the difference

between the key frame and the current frame is compressed and sent along with the index of

the key frame. Peek uses clustering techniques to identify these key frames. Frames from

the session history between a particular server and client, that are similar to each other are

clustered into groups using fast online integer K-means clustering algorithm4. For each

cluster, a frame with the lowest possible difference with the centroid of that cluster is con-

sidered as a cluster head. The number of clusters to be formed is chosen based on the

current memory utilization of the server and client. Periodically, cluster heads are com-

municated to the client and are stored as key frames in the memory of both the client and

server. This overhead is negligible because cluster heads only need to be communicated

infrequently. Without changing the compression algorithm, key diff reduces the burden on

the device’s resources by reducing the amount of data to be compressed; (c) video diff: In

4While Peek uses K-means, it is one among a broad set of fast and light online clustering algorithms that
could be used potentially

147

Figure 6.6: System architecture of Peek

this scheme, the session is treated as a motion video, and MPEG4 compression is used on

it. This compression scheme is mainly designed for graphically intensive applications like

games, which have rapidly changing frames. For these applications, a user is presented

with new content that is quickly generated through dedicated GPUs. Using key diff that

relies on session history does not make sense for these applications as the content is not

repetitive. Peek utilizes motion prediction and motion compensation algorithms provided

in the MPEG4 standard to compress these frames.

Peek server continuously monitors the device and chooses one among the three com-

pression modes based on Figure 6.5. Since CPU/memory is the most important resource

that affects a device’s usability, not just for remote computing, but for all other applications,

Peek first considers the CPU/memory utilization to select a mode, and chooses key diff if it

is beyond a threshold τcpu. Otherwise, if frame rate is greater than a threshold τ f r, video diff

is used. If frame rate is less than τ f r, last diff or key diff is chosen depending on whether

network utilization is less or greater than a threshold τnw.

6.3.3 System Architecture

Devices running Peek have three components: (i) Input handler, (ii) View handler and

(iii) Network handler. The functions of these handlers change depending on whether the

device is running in the server mode or the client mode (Fig. 6.6). The client input handler

148

Table 6.4: Action descriptions

Action Description
A1 Crop a picture using Photo Editor Pro
A2 Write ’A’, ’B’ and ’C’ with finger
A3 Play 6 moves in Candy Crush
A4 Find an email in a list and delete it
A5 Open Youtube and search for ’apple’
A6 Select a paragraph in an email
A7 Find phone’s IMEI number from settings
A8 Open a document and append text to the end
A9 Draw a 3x3 grid on screen
A10 Draw a smiley face on the screen

captures all the touch events and sensor events through the touch capture and sensor capture

module, respectively. These modules pass the event information to input packer, which

packages it into messages. The input unpacker module in server input handler unpacks the

messages, interprets the parameters and sends touch/sensor parameters to Touch/Sensor

executor which executes them. Server view handler uses the frame capture module to

capture the device’s screen. Frame encoder chooses the right compression technique for

a particular frame based on inputs from the profiler on CPU/memory, network and frame

rate, and compresses the frame. The profiler profiles the CPU, memory, network, and

frame rate. At the client view handler, the frame decoder decodes the frames, adjusts the

image resolution and displays it on the client screen. The client/server network handler is

responsible for communication between server and client over the network.

6.4 Evaluation

We implemented and evaluated Peek server and client on two LG Nexus 5 smartphones

with Android v4.4.4. We build Peek on Android VNC Viewer, an open source VNC client

and DroidVNCServer, an open source VNC server to handle touch and sensor messages.

We extract these parameters from /dev/input/event virtual file system since Android has a

Linux kernel. The two smartphones are connected to the same WiFi AP.

149

(a) Primitive Actions (b) Complex Actions

Figure 6.7: Action times

We evaluate the usability of Peek by performing specific actions through the client on

the server, and measuring the time taken by the client to generate touch messages to be sent

to the server for these actions. We obtain this time by collecting network packet traces at the

client, filtering them for all touch/mouse message packets with the server as the destination

and measuring the time difference between the first and last touch/mouse packet. We also

compare Peek with VNC by installing an unmodified VNC client and server on LG Nexus

5 smartphone and Samsung Galaxy tablet, respectively. Here, we use a tablet instead of a

smartphone as the unmodified server application is incompatible with smartphones. Note

that the method to measure the time taken for an action at the client through network level

traces eliminates for any bias related to the network conditions and server processing power.

We also evaluate Peek only on tasks that can be performed on a tablet and a smartphone in

the same way, to avoid any bias related to screen size. Therefore, we believe that the server

device configuration has no bearing on the action times. Also, to discount for any user bias,

we consider the average of 10 measurements for each action.

To benchmark Peek, we first consider a primitive action set: tap, double tap, swipe,

long press, and drag. We can observe from Fig. 6.7a that Peek reduces action times signif-

icantly for certain actions. For swipe, long press and drag, the reduction is 80.2%, 39.9%,

and 41.8%, respectively. According to [155], an action time increase > 150ms results in

150

noticeable reduction usability. For tap and double tap, action times are higher for Peek

by 3ms and 74ms, respectively. This is because unlike the other actions, these actions are

mapped as-is, even without multi-touch support. However, this difference does not affect

the usability. To evaluate the benefits of Peek during regular smartphone usage, we also

consider a set of complex actions that span common touch screen usage patterns (Fig. 6.4).

For these actions, Peek reduces the action time by 62.8% on average (Fig. 6.7b). Peek

achieves this by eliminating mouse mapping and directly capturing and executing touch

actions. We also measured the CPU and memory usage of Peek and VNC on the client and

observed that Peek does not involve any additional overheads. For a proof of concept for

context shipping, we also implement proximity sensor context association and verify its

function.

Next, we demonstrate the potential of multi-modal compression of Peek to reduce the

bytes sent over the network for the following applications: (a) Ebay, (b) Google play, (c)

BBC, (d) Gmail, (e) Candy Crush, (f) Enterprise Sharepoint. This set is a representative

mix that spans some popular application categories. We collect large usage videos for these

applications and generate and extract all distinct video frames. We then create synthetic test

sessions of size 5500 frames. Each frame is either chosen randomly from the set of distinct

images or is the same as the previous image, with equal probability. This dataset represents

typical usage behavior wherein a user either sticks with the current view or interacts with

it (with 0.5 probability) and hence provides a way to evaluate Peek during random user

behavior. Since the collection of sizeable real application user traces for many applications

is highly intrusive, we use synthetic datasets for evaluation. This is because recording

screens and writing them to the storage card, while the user is using an application involves

a lot of I/O operations and is a CPU heavy task. We implement and evaluate different

modes of multi-modal compression used in Peek on this synthetic dataset in Matlab. For

last diff and key diff we use Tight PNG (used in VNC), to compress the difference between

two frames.

151

 550

 600

 650

 700

 750

 800

 850

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(a) BBC

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 540

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(b) Ebay

 110

 115

 120

 125

 130

 135

 140

 145

 150

 155

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(c) Candy Crush

 350

 400

 450

 500

 550

 600

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(d) Gmail

 300

 350

 400

 450

 500

 550

 600

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(e) Google Play

 260

 280

 300

 320

 340

 360

 380

 400

 420

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(f) Enterprise Sharepoint

Figure 6.8: Peek multi-modal compression

152

Fig. 6.8 shows the post-compression dataset sizes after using different modes of Peek’s

multi-modal compression for two of the applications. Traditional VNC uses an approach

similar to last diff. We observed that using key diff and video diff results in better compres-

sion. For example, compared to last diff (used in VNC), key diff with 5 key frames results

in a reduction of dataset size reduces compared to last diff (an approach used by traditional

VNC) by 27.2%, 36.8%, 37.4%, 31.4% and 32.6% for BBC, Ebay, Gmail, Google play and

Enterprise Sharepoint, respectively. For all applications, last diff results in highest post-

compression sizes. For Candy Crush, video diff performs the best. This is because it is a

game having rapidly changing screen content, with little repetition from the past usage as

the user advances to new levels. We can also observe that, increasing the number of stored

key frames results in better compression. However, considerable benefits can be achieved

by using just two key frames.

153

CHAPTER 7

INTEGRATED OPERATIONS

In the previous chapters, we discussed the user-aware optimization of three enterprise mo-

bility aspects - (i) Workflow execution, (ii) Content creation and (iii) Collaboration. In this

chapter, we discuss how these individual solutions can be integrated within conventional

enterprise mobility architectures.

Several user-aware optimizations, including the three contributions of this dissertation,

can be integrated with the architecture shown in Figure 1.2 through three enhancements: a

Mobility client, a Mobility server and a User-aware datastore. Figure 7.2 shows different

components of the Mobility client and server enhancements to integrate Dejavu, Taskr,

Trackr, and Peek within the enhanced enterprise mobility architecture shown in Figure 7.1.

The Mobility client resides on the user’s smartphone and the Mobility server is hosted

within the enterprise network.

7.0.1 At the enterprise

The Mobility server consists of three major components - the data collector, the data cura-

tor, and the orchestrator. The data collector polls the application servers (both on-premise

and cloud-based) to collect user’s data. For Dejavu, the collector obtains user’s emails from

the mail servers. For Taskr and Trackr, the collector obtains a user’s log of actions from ap-

plications like Salesforce, Sharepoint, Peoplesoft, and so on. For Peek’s multi-modal frame

compression, the collector obtains screen frames from the remote computing sessions. The

data curator parses the data obtained from the collector and stores it within the informa-

tion datastore. For example, for Dejavu, the curator processes emails, indexes them and

stores them. For Peek, the curator computes keyframes periodically and stores them in the

datastores. The orchestrator is responsible for managing all processing activities within the

154

Figure 7.1: Enterprise Mobility Architecture

Figure 7.2: Integrated Architecture

155

mobility server. For Dejavu, it calls the suggestions generator to compute and store sug-

gestions for inbox emails within the datastore. For Taskr, the orchestrator manages virtual

machines with browsers for refactoring based remote computing sessions, transforms the

application’s UI for mobilization, applies user actions on the virtual machines and com-

municates with the mobility client when needed. In Trackr, the orchestrator manages the

persistent storage and updates of fingerprints. In Peek, the orchestrator is responsible for

maintaining the remote computing session between two clients or a client and a virtual ma-

chine. All meta-information related to the users is stored within the Information datastore.

7.0.2 At the smartphone

The mobility client also consists of three major components - A user activity tracker, an

integrator and a user-aware cache. The activity tracker module tracks user’s actions on

apps (i.e., touchscreen gestures and browsing actions) and reports them to the data collector

at the mobility server. In addition to user actions, the activity tracker also profiles the

device for resource utilization to regulate the computing/network and storage overheads

of Dejavu, Taskr, and Peek mobility enhancements. The user-aware cache stores data for

mobility enhancements at the device opportunistically. For Dejavu, the cache contains

suggestions for the most recent emails. For Taskr, the cache contains meta-information

of the mobilized workflows to reduce communication overheads with the mobility server.

In Peek, the cache stores the keyframes necessary for multi-modal frame compression.

Finally, the integrator is responsible for interacting with existing apps and applying user-

aware mobility enhancements to them, i.e. integrating suggestions within email clients for

Dejavu, compressing remote computing graphical session data for Peek, orchestrating the

application refactoring based remote computing session for Taskr and fingerprinting for

Trackr.

156

CHAPTER 8

FUTURE WORK

8.1 Automated reply suggestions

As a part of this dissertation, we developed Dejavu, a system for automated email re-

sponses to ease the burden of typing these responses on smartphones. As we undertook

this research, we identified certain future research directions.

• Integration with Smart-Reply systems: A related class of response suggestion sys-

tems to Dejavu are Smart-Reply systems [69, 71]. They use long-short-term-memory

(LSTM) networks to predict the response given the words present in an inbox email.

Smart-Reply systems are typically trained on a large amount of email data and are

not specific to a particular user. Therefore, the responses suggested by Smart-Reply

systems are generic and non-informational. On the other hand, Dejavu uses the key-

words present in an Inbox email to retrieve suitable suggestions from an Informa-

tion Database. Dejavu further optimizes this retrieval using a variety of heuristics

and optimizations. Therefore, Dejavu’s user-specific retrieval system is complemen-

tary to Smart-Reply systems. Integrating Dejavu’s informational suggestions with

Smart-Reply’s non-informational suggestions would allow a user to select a suitable

response from a larger pool of choices.

• Knowledge Channels: Dejavu looks for suggestions to a reply from information that

is present only in an email inbox. However, a knowledge worker encounters several

different knowledge channels on a daily basis. These channels could be catego-

rized as read/write (Email), read-only (Dropbox) or write-only (Slack) channels. By

adding more information channels to the Information Database of Dejavu, the sug-

gestions for replies could be improved. For example, documents from the user’s

157

Dropbox can be fetched using Dropbox APIs [156] by the Information-Curator.

Different topics in these documents can be added as entries into the Information

Database. Extending Dejavu to other knowledge channels in the future remains an

open issue.

• Evaluation: We only evaluate Dejavu offline by computing HitRate for various pa-

rameters. However, the usefulness of these suggestions can be truly judged by real

users using it daily on their smartphones. The usefulness of suggestions can be cap-

tured through opinion score metrics, wherein the users rate every suggestion using a

score of 1(not helpful) to 5(very helpful). Evaluating Dejavu by distributing a pro-

duction version of the prototype to a broad set of volunteers and capturing subjective

metrics remains an open research issue.

• Search expansion: In English, a word can have several synonyms and can be present

in different forms. Dejavu only deals with the latter by stemming the word and

extracting its root. The former problem could be solved by expanding the index used

for matching to include all possible synonyms for the words encountered in that index

(obtained from a resource such as WordNet [157]). This way, suggestions containing

words that have different roots but similar meaning can be retrieved as matches.

8.2 Do-it-yourself application mobilization

• Security: Most enterprise applications require the user to log in (either explicitly

or through a single sign-on service) before any workflow can be executed. The re-

quirement of log in usually does not restrict the number of workflows that qualify

as spot tasks as the username and password can be treated as fixed parameters. The

login username and password are required by Taskr to execute workflows on most

enterprise applications. These parameters constitute sensitive information and need

to be handled carefully. The login parameters constitute sensitive information and

158

can be encrypted and stored on the local device using services like keychain API for

iOS. When the spot task has to be executed, these parameters can be encrypted and

sent to the server using transport security such as SSL. Alternately, this sensitive data

can be stored in the cloud isolated within the enterprise network and hence be pro-

tected by enterprise firewalls. The user can then be restricted to using Taskr within

the enterprise network. If the application server allows it, a continuous login session

can be maintained at the Taskr-server using the stored username and password.

• Evaluation: Taskr requires accurate fingerprinting of UI elements to execute the

workflow. While we discuss the fingerprint technique used by Taskr in Section 4.2

and implement it in the prototype, we do not evaluate it for correctness. However, we

observe that for the different spot tasks considered in Section 4.3.2, the fingerprinting

is accurate. We plan to investigate this in the future. We implemented Taskr-client

and server for twitter, email and native app usage modalities. However, we only

conduct subjective tests on the native mobile app modality. We plan to implement a

few other modalities and extend the testing in the future.

• Extraction rules and Translation tables: Taskr relies on manually constructed rules

for information extraction and fixed translation tables. For the prototype, we con-

structed these rules for most elements defined by the HTML5 standard. However,

many web applications use elements defined by third party UI frameworks. We plan

to extend these rules for some popular UI frameworks used by web applications.

Taskr performs one to one translation between web UI and smartphone native UI.

However, some platforms allow the creation of macros to bundle several UI element

interactions into one interaction. Extension of Taskr to consider many to one or one

to many translations in the context of these macros is an open issue.

• Extension to other workflows: Taskr helps users mobilize simple workflows that can

be described as spot tasks. This restriction limits the number of workflows that can

159

be mobilized. We plan to relax these restrictions to include workflows that can be

described as a sequence of spot tasks, and also other general workflows in the future.

8.3 Robust front-end APIfication

• Software design choice: In this paper, we designed Trackr to be a browser ex-

tension. However, the principles of Trackr are not restricted to this design choice.

Alternatively, Trackr can also be implemented as a javascript library that the web

applications can include to avail fingerprinting services;

• Reactive vs. Proactive updates: Trackr updates the stored fingerprints reactively

upon every subsequent visit to the web application by the user. While this approach

could work well if the pages are frequently visited by the user, a reactive approach

wherein Trackr periodically updates the fingerprint is more suited for infrequently

accessed pages;

• Identification of the web page: Trackr stores the fingerprints in a database indexed

by the name of the tracker and a URL of the web page. However, it is possible for

some web pages to have a dynamic URL ,e.g. news articles. In this case, a better

indexing mechanism would be to create a fingerprint for the page itself, independent

of the URL. One way to achieve this is to select a subset of elements whose presence

definitively identifies the web page. We plan to address these issues in the future;

• Complexity: To find an element, Trackr uses DOM access methods to retrieve all el-

ements of the same type and compares their fingerprints. The worst case complexity

is proportional to the size of the DOM. However, our observations from experiments

indicate that the retrieval does not add any noticeable delays. We plan on performing

a more formal study on the complexity in the future.

160

8.4 Mobile-to-Mobile Remote computing for smartphones

• Remote computing between heterogeneous devices Peek assumes that both the server

and client in a mobile-to-mobile remote computing session are homogeneous devices

with same screen aspect ratios. While this is a reasonable assumption within enter-

prises adopting a corporate owned personally enabled device (COPE) policy, it fails

with a bring your own device (BYOD) policy, where the employees own a variety of

devices. If the client and server have different aspect ratios, the touch actions at the

client have to be scaled to the aspect ratio of the server before they can be applied at

the server. Modeling and estimation of the scaling factor and implementation within

Peek is an open research direction.

• Network delays Peek assumes the remote computing messages are transmitted be-

tween the client and the server over a reliable transport layer protocol like TCP, to

ensure the receipt of packets in order. However, when the underlying network is sub-

ject to bursty losses, the network delays can be very high resulting in an unresponsive

session. On the other hand, using transport layer protocols like UDP over unreliable

networks may result in loss of information due to packet losses. Investigating the

impact of network protocols and conditions in the presence of unreliable networks is

a potential research direction.

161

CHAPTER 9

CONCLUSIONS

Application mobilization, or delivering an enterprise employee the ability to rely on their

mobile devices to continue to perform their business functions even when away from the

Desktop, is seen as a game changer to boost productivity among enterprise employees.

However, the potential benefits of enterprise mobility are yet to be realized. A vast ma-

jority of enterprise applications are either not mobilized, or are unusable for enterprise

employees. We argue that one of the major factors contributing to the poor adoption of

smartphone apps within the enterprise is the process of defeaturization, wherein a subset

of features within complex Desktop applications are ported into a smartphone app. Defea-

turization in enterprises has been done in a user-unaware fashion with the enterprises or the

software vendors choosing which subset of features to include in a smartphone app. This

results in users facing several issues.

In this thesis, we focused on two of the issues that hinder the true adoption of enterprise

mobility - the heavy task burden of accomplishing tasks, and the unavailability of critical

job functions. We argued that user-aware defeaturization can mitigate these issues. In this

context, we explored four different research directions.

In Chapter 3 we considered the problem of automated information suggestions to assist

in reply construction for Email on mobile devices. The basic premise of the work is that

a significant portion of the information content of a reply is likely to be present in prior

emails. Through an analysis of multiple public Email datasets, we first established that

there is considerable redundancy between replies and previous emails. We then presented a

simple user-aware solution called Dejavu that uses keyword matching to provide automated

suggestions during reply construction, using information present in the user’s mailbox. We

further proposed Dejavu ++, an optimized version of Dejavu to reduce the complexity of

162

finding suggestions and improve the relevancy of the suggested replies. When applied to

the same datasets, we showed that Dejavu and Dejavu ++ have the potential to reduce the

heavy task burden of typing emails on a smartphone keyboard.

In Chapter 4, we considered the problem of mobilizing Spot Tasks, a particular category

of workflows within web-based enterprise applications that can be finished by interacting

with only one page of the application. We presented Taskr, a do-it-yourself mobilization

solution that users, regardless of their skills, can rely on to mobilize their spot tasks robustly.

Taskr uses remote computing with application refactoring to achieve code-less mobilization

and allows for flexible mobile delivery wherein users can execute their spot tasks through

Twitter, Email or a native mobile app. We implemented a prototype of Taskr and show

through user studies that it has the potential to reduce task burden significantly.

In Chapter 5, we proposed Trackr, an algorithm to reliably track UI elements within a

web application for robust API creation. Accurate tracking of elements within a web ap-

plication is crucial for refactoring based application mobilization services. We introduced

the principle of quorum fingerprinting used by Trackr to create unique identities for the

tracked elements and presented optimizations designed to increase its robustness. We eval-

uated Trackr over four popular web applications to show attractive benefits. Finally, we

discussed Trackr’s application through three uses cases.

In Chapter 6, we presented a brief overview of Peek, a smartphone to smartphone re-

mote computing protocol with multi-touch support, context association, and a user-aware

multi-modal frame compression. Peek allows users to collaborate even in the absence of

native multi-user support. We evaluated Peek and show that it reduces the time taken to

perform specific actions by over 60% and also reduces the number of bytes transmitted into

the network by over 30%, compared to traditional VNC.

Finally, in Chapter 7, we discussed how the four complimentary user-aware solutions

proposed in the earlier chapters could work in tandem in the context of a simplified enter-

prise mobility architecture.

163

REFERENCES

[1] M. Turk, Employees say smartphones boost productivity by 34 percent: Frost and

sullivan research, https://insights.samsung.com/2016/08/03/employees-

say-smartphones-boost-productivity-by-34-percent-frost-sullivan-

research/.

[2] Bring your own device: What you need to know, https://info.sapho.com/

hubfs/Resources/BYOD_Checklist.pdf.

[3] J. Bradley, New analysis: Comprehensive byod implementation increases produc-

tivity, decreases costs, https://blogs.cisco.com/news/new- analysis-

comprehensive-byod-implementation-increases-productivity-decreases-

costs.

[4] S. Solomon, Byod and enterprise mobility market to exceed $284 billion by 2019,

http://blogs.air-watch.com/2014/04/marketsandmarkets-expects-

byod-enterprise-mobility-market-grow-284-7-billion-2019/.

[5] Salesforce, https://www.salesforce.com/.

[6] Aaptivo, https://www.apptivo.com/.

[7] Hubspot, https://www.hubspot.com/.

[8] Zoho, https://www.zoho.com/.

[9] Adp, https://www.adp.com/.

[10] Kronos, https://www.kronos.com/.

[11] Zenefits, https://www.zenefits.com/.

[12] Oracle peoplesoft, https://www.oracle.com/applications/peoplesoft/.

[13] Oracle netsuite, http://www.netsuite.com/portal/home.shtml.

164

https://insights.samsung.com/2016/08/03/employees-say-smartphones-boost-productivity-by-34-percent-frost-sullivan-research/
https://insights.samsung.com/2016/08/03/employees-say-smartphones-boost-productivity-by-34-percent-frost-sullivan-research/
https://insights.samsung.com/2016/08/03/employees-say-smartphones-boost-productivity-by-34-percent-frost-sullivan-research/
https://info.sapho.com/hubfs/Resources/BYOD_Checklist.pdf
https://info.sapho.com/hubfs/Resources/BYOD_Checklist.pdf
https://blogs.cisco.com/news/new-analysis-comprehensive-byod-implementation-increases-productivity-decreases-costs
https://blogs.cisco.com/news/new-analysis-comprehensive-byod-implementation-increases-productivity-decreases-costs
https://blogs.cisco.com/news/new-analysis-comprehensive-byod-implementation-increases-productivity-decreases-costs
http://blogs.air-watch.com/2014/04/marketsandmarkets-expects-byod-enterprise-mobility-market-grow-284-7-billion-2019/
http://blogs.air-watch.com/2014/04/marketsandmarkets-expects-byod-enterprise-mobility-market-grow-284-7-billion-2019/
https://www.salesforce.com/
https://www.apptivo.com/
https://www.hubspot.com/
https://www.zoho.com/
https://www.adp.com/
https://www.kronos.com/
https://www.zenefits.com/
https://www.oracle.com/applications/peoplesoft/
http://www.netsuite.com/portal/home.shtml

[14] Workday, https://www.workday.com/en-us/homepage.html.

[15] Sap erp, https://www.sap.com/products/enterprise-management-erp.

html.

[16] Microsoft dynamics, https://dynamics.microsoft.com/en-us/.

[17] Tableau, https://www.tableau.com/.

[18] Domo, https://www.domo.com/.

[19] Oracle business intelligence, https://www.oracle.com/solutions/business-

analytics/business-intelligence/.

[20] Sap crystal reports, https://www.sap.com/products/crystal-reports.

html.

[21] Adobe experience manager, https://www.adobe.com/marketing/experience-

manager.html.

[22] Microsoft sharepoint, https://products.office.com/en-us/sharepoint/

collaboration.

[23] Sitecore, https://www.sitecore.com/.

[24] Avaya, https://www.avaya.com/en/.

[25] Cisco unified communications manager, https://www.cisco.com/c/en/us/

products/unified-communications/unified-communications-manager-

callmanager/index.html.

[26] Skype for business, https://www.skype.com/en/business/.

[27] Quickbooks, https://quickbooks.intuit.com/.

[28] Sap business one, https://www.sap.com/products/business-one.html.

[29] Ibm maximo, https://www.ibm.com/products/maximo.

165

https://www.workday.com/en-us/homepage.html
https://www.sap.com/products/enterprise-management-erp.html
https://www.sap.com/products/enterprise-management-erp.html
https://dynamics.microsoft.com/en-us/
https://www.tableau.com/
https://www.domo.com/
https://www.oracle.com/solutions/business-analytics/business-intelligence/
https://www.oracle.com/solutions/business-analytics/business-intelligence/
https://www.sap.com/products/crystal-reports.html
https://www.sap.com/products/crystal-reports.html
https://www.adobe.com/marketing/experience-manager.html
https://www.adobe.com/marketing/experience-manager.html
https://products.office.com/en-us/sharepoint/collaboration
https://products.office.com/en-us/sharepoint/collaboration
https://www.sitecore.com/
https://www.avaya.com/en/
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.skype.com/en/business/
https://quickbooks.intuit.com/
https://www.sap.com/products/business-one.html
https://www.ibm.com/products/maximo

[30] Abb ability asset suite, https://new.abb.com/enterprise-software/asset-

optimization-management/asset-suite-eam.

[31] Mvp plant, http://mvpplant.com/.

[32] Supply chain planning, https://www.sap.com/products/digital-supply-

chain/scm.html.

[33] Oracle supply chain management, https://www.sap.com/products/digital-

supply-chain/scm.html.

[34] Jda, https://jda.com/.

[35] Atlassian, https://www.atlassian.com/.

[36] Collabnet versionone, https://www.collab.net/.

[37] Information technology (it) spending on enterprise software worldwide, from 2009

to 2019 (in billion u.s. dollars), https://www.statista.com/statistics/

203428/total-enterprise-software-revenue-forecast/.

[38] Smartphone penetration rate as share of the population in the united states from

2010 to 2022, https://www.statista.com/statistics/201183/forecast-

of-smartphone-penetration-in-the-us/.

[39] S. Zhao, J. Ramos, J. Tao, Z. Jiang, S. Li, Z. Wu, G. Pan, and A. K. Dey, “Discov-

ering different kinds of smartphone users through their application usage behav-

iors,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, ser. UbiComp ’16, Heidelberg, Germany: ACM, 2016,

pp. 498–509, ISBN: 978-1-4503-4461-6.

[40] Worldwide netskope cloud report - january 2017, https://resources.netskope.

com/cloud-reports/january-2017-worldwide-cloud-report.

[41] Enterprise app trends report, https://arxan.com/enterprise-app-trends.

166

https://new.abb.com/enterprise-software/asset-optimization-management/asset-suite-eam
https://new.abb.com/enterprise-software/asset-optimization-management/asset-suite-eam
http://mvpplant.com/
https://www.sap.com/products/digital-supply-chain/scm.html
https://www.sap.com/products/digital-supply-chain/scm.html
https://www.sap.com/products/digital-supply-chain/scm.html
https://www.sap.com/products/digital-supply-chain/scm.html
https://jda.com/
https://www.atlassian.com/
https://www.collab.net/
https://www.statista.com/statistics/203428/total-enterprise-software-revenue-forecast/
https://www.statista.com/statistics/203428/total-enterprise-software-revenue-forecast/
https://www.statista.com/statistics/201183/forecast-of-smartphone-penetration-in-the-us/
https://www.statista.com/statistics/201183/forecast-of-smartphone-penetration-in-the-us/
https://resources.netskope.com/cloud-reports/january-2017-worldwide-cloud-report
https://resources.netskope.com/cloud-reports/january-2017-worldwide-cloud-report
https://arxan.com/enterprise-app-trends

[42] The state of enterprise mobility, http : / / synchronoss . com / wp - content /

uploads/The_State_of_Enterprise_Mobility_Whitepaper.pdf.

[43] D. Roberts, Usability and mobile devices, https://www.usability.gov/get-

involved/blog/2010/05/mobile-device-usability.html.

[44] A. Neagu, Figuring the costs of custom mobile app development, https://www.

formotus.com/blog/figuring-the-costs-of-custom-mobile-business-

app-development.

[45] The social economy: Unlocking value and productivity through social technologies,

http://www.mckinsey.com/industries/high-tech/our-insights/the-

social-economy.

[46] S. Whittaker and C. Sidner, “Email overload: Exploring personal information man-

agement of email,” in Proceedings of the SIGCHI conference on Human factors in

computing systems, ACM, 1996, pp. 276–283.

[47] R. Bergman, M. Griss, and C. Staelin, “A personal email assistant,” 2002.

[48] K. Mock, “An experimental framework for email categorization and management,”

in Proceedings of the 24th annual international ACM SIGIR conference on Re-

search and development in information retrieval, ACM, 2001, pp. 392–393.

[49] G. Carenini, R. T. Ng, and X. Zhou, “Summarizing emails with conversational

cohesion and subjectivity.,” in ACL, vol. 8, 2008, pp. 353–361.

[50] S. Joty, G. Carenini, G. Murray, and R. T. Ng, “Exploiting conversation structure

in unsupervised topic segmentation for emails,” in Proceedings of the 2010 Con-

ference on Empirical Methods in Natural Language Processing, Association for

Computational Linguistics, 2010, pp. 388–398.

[51] M. Dredze, H. M. Wallach, D. Puller, and F. Pereira, “Generating summary key-

words for emails using topics,” in Proceedings of the 13th international conference

on Intelligent user interfaces, ACM, 2008, pp. 199–206.

167

http://synchronoss.com/wp-content/uploads/The_State_of_Enterprise_Mobility_Whitepaper.pdf
http://synchronoss.com/wp-content/uploads/The_State_of_Enterprise_Mobility_Whitepaper.pdf
https://www.usability.gov/get-involved/blog/2010/05/mobile-device-usability.html
https://www.usability.gov/get-involved/blog/2010/05/mobile-device-usability.html
https://www.formotus.com/blog/figuring-the-costs-of-custom-mobile-business-app-development
https://www.formotus.com/blog/figuring-the-costs-of-custom-mobile-business-app-development
https://www.formotus.com/blog/figuring-the-costs-of-custom-mobile-business-app-development
http://www.mckinsey.com/industries/high-tech/our-insights/the-social-economy
http://www.mckinsey.com/industries/high-tech/our-insights/the-social-economy

[52] W. W. Cohen, V. R. Carvalho, and T. M. Mitchell, “Learning to classify email

into“speech acts”.,” in EMNLP, 2004, pp. 309–316.

[53] V. R. Carvalho and W. W. Cohen, “On the collective classification of email speech

acts,” in Proceedings of the 28th annual international ACM SIGIR conference on

Research and development in information retrieval, ACM, 2005, pp. 345–352.

[54] S. Joty, G. Carenini, and C.-Y. Lin, “Unsupervised modeling of dialog acts in asyn-

chronous conversations,” in IJCAI Proceedings-International Joint Conference on

Artificial Intelligence, vol. 22, 2011, p. 1807.

[55] D. Aberdeen, O. Pacovsky, and A. Slater, “The learning behind gmail priority in-

box,” in LCCC: NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds,

2010.

[56] Priority inbox, https://support.google.com/mail/answer/186531?hl=en.

[57] S. Scerri, B. Davis, S. Handschuh, and M. Hauswirth, “Semanta–semantic email

made easy,” in The Semantic Web: Research and Applications, Springer, 2009,

pp. 36–50.

[58] K. Balog, L. Azzopardi, and M. De Rijke, “Formal models for expert finding in

enterprise corpora,” in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, ACM, 2006,

pp. 43–50.

[59] D. Zhang, “Web content adaptation for mobile handheld devices,” Commun. ACM,

vol. 50, no. 2, pp. 75–79, Feb. 2007.

[60] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech Recogni-

tion, 1st. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000, ISBN: 0130950696.

[61] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-

domain questions,” CoRR, vol. abs/1704.00051, 2017. arXiv: 1704.00051.

168

https://support.google.com/mail/answer/186531?hl=en
http://arxiv.org/abs/1704.00051

[62] Watson discovery, https://www.ibm.com/watson/services/discovery/.

[63] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidi-

rectional transformers for language understanding,” CoRR, vol. abs/1810.04805,

2018. arXiv: 1810.04805.

[64] A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen, M. Norouzi, and Q. V. Le,

“Qanet: Combining local convolution with global self-attention for reading com-

prehension,” CoRR, vol. abs/1804.09541, 2018. arXiv: 1804.09541.

[65] Y. Yu, W. Zhang, K. S. Hasan, M. Yu, B. Xiang, and B. Zhou, “End-to-end reading

comprehension with dynamic answer chunk ranking,” CoRR, vol. abs/1610.09996,

2016. arXiv: 1610.09996.

[66] M. Hu, F. Wei, Y. Peng, Z. Huang, N. Yang, and M. Zhou, “Read + verify: Machine

reading comprehension with unanswerable questions,” CoRR, vol. abs/1808.05759,

2018. arXiv: 1808.05759.

[67] A. Fader, L. Zettlemoyer, and O. Etzioni, “Paraphrase-driven learning for open

question answering,” in Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria: Associa-

tion for Computational Linguistics, 2013, pp. 1608–1618.

[68] J. Berant and P. Liang, “Semantic parsing via paraphrasing,” in Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), Baltimore, Maryland: Association for Computational Linguistics,

2014, pp. 1415–1425.

[69] Computer, respond to this email, http://googleresearch.blogspot.com/

2015/11/computer-respond-to-this-email.html.

[70] Ios quicktype, http://www.apple.com/my/ios/whats-new/quicktype/.

169

https://www.ibm.com/watson/services/discovery/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1610.09996
http://arxiv.org/abs/1808.05759
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html
http://www.apple.com/my/ios/whats-new/quicktype/

[71] Use intelligent technology in outlook.com, https://support.office.com/en-

us/article/use-intelligent-technology-in-outlook-com-edf8204f-

2bb9-45e1-8620-fc43a2ecdba3.

[72] The enterprise platform for digital transformation, http://www.anypresence.

com/.

[73] Appcelerator, http://www.appcelerator.com/.

[74] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and E. de Lara, “Pagetailor: Reusable

end-user customization for the mobile web,” in Proceedings of the 5th International

Conference on Mobile Systems, Applications and Services, ser. MobiSys ’07, San

Juan, Puerto Rico, 2007, ISBN: 978-1-59593-614-1.

[75] H. Li, P. Li, S. Guo, X. Liao, and H. Jin, “Modeap: Moving desktop application to

mobile cloud service,” Mobile Networks and Applications, vol. 19, no. 4, pp. 563–

571, 2014.

[76] I. Mohomed, “Enabling mobile application mashups with merlion,” in Proceed-

ings of the Eleventh Workshop on Mobile Computing Systems & Applications,

ser. HotMobile ’10, Annapolis, Maryland, 2010.

[77] Feed circuit, http://feedcircuit.garage.maemo.org/.

[78] J. Nichols and T. Lau, “Mobilization by demonstration: Using traces to re-author

existing web sites,” in Proceedings of the 13th International Conference on Intelli-

gent User Interfaces, ser. IUI ’08, Gran Canaria, Spain: ACM, 2008, pp. 149–158,

ISBN: 978-1-59593-987-6.

[79] A. Moshchuk, S. D. Gribble, and H. M. Levy, “Flashproxy: Transparently en-

abling rich web content via remote execution,” in Proceedings of the 6th Inter-

national Conference on Mobile Systems, Applications, and Services, Breckenridge,

CO, USA, 2008, pp. 81–93.

170

https://support.office.com/en-us/article/use-intelligent-technology-in-outlook-com-edf8204f-2bb9-45e1-8620-fc43a2ecdba3
https://support.office.com/en-us/article/use-intelligent-technology-in-outlook-com-edf8204f-2bb9-45e1-8620-fc43a2ecdba3
https://support.office.com/en-us/article/use-intelligent-technology-in-outlook-com-edf8204f-2bb9-45e1-8620-fc43a2ecdba3
http://www.anypresence.com/
http://www.anypresence.com/
http://www.appcelerator.com/
http://feedcircuit.garage.maemo.org/

[80] N. B. Niraula, A. Stent, H. Jung, G. D. Fabbrizio, I. D. Melamed, and V. Rus,

“Forms2dialog: Automatic dialog generation for web tasks,” in 2014 IEEE Spoken

Language Technology Workshop (SLT), Dec. 2014, pp. 608–613.

[81] M. Nebeling, M. Speicher, and M. Norrie, “W3touch: Metrics-based web page

adaptation for touch,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, ser. CHI ’13, Paris, France: ACM, 2013, pp. 2311–2320,

ISBN: 978-1-4503-1899-0.

[82] Y. Potla, R. Annadi, J. Kong, G. Walia, and K. Nygard, “Adapting web page tables

on mobile devices,” Int. J. Handheld Comput. Res., vol. 3, no. 1, pp. 1–22, Jan.

2012.

[83] C.-H. Yu and R. C. Miller, “Enhancing mobile browsing and reading,” in CHI ’11

Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA ’11,

Vancouver, BC, Canada: ACM, 2011, pp. 1783–1788, ISBN: 978-1-4503-0268-5.

[84] S. Wang, W. Dou, G. Wu, J. Wang, C. Gao, J. Wei, and T. Huang, “Towards web

application mobilization via efficient web control extraction,” in Proceedings of the

7th Asia-Pacific Symposium on Internetware, ser. Internetware ’15, Wuhan, China:

ACM, 2015, pp. 21–29, ISBN: 978-1-4503-3641-3.

[85] Y. Ma, Y. Fang, X. Zhu, X. Liu, and G. Huang, “Mobitran: Tool support for refac-

toring pc websites to smart phones,” in Proceedings Demo & Poster Track

of ACM/IFIP/USENIX International Middleware Conference, ser. MiddlewareDPT

’13, Beijing, China: ACM, 2013, 6:1–6:2, ISBN: 978-1-4503-2549-3.

[86] W. W. W. C. (W3C), Xml path language (xpath) version 3.1, https://www.w3.

org/TR/xpath-31/, 2017.

[87] G. Gottlob and et.al., “Efficient algorithms for processing xpath queries,” ACM

Trans. Database Syst., vol. 30, no. 2, pp. 444–491, ’05.

171

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-31/

[88] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient filtering of xml

documents with xpath expressions,” The VLDB Journal, vol. 11, no. 4, pp. 354–

379, Dec. 2002.

[89] L. Yi and B. Liu, “Web page cleaning for web mining through feature weighting,”

in Proceedings of the 18th International Joint Conference on Artificial Intelligence,

ser. IJCAI’03, Acapulco, Mexico, 2003, pp. 43–48.

[90] S. Sanadhya, “Ultra-mobile computing: Adapting network protocol and algorithms

for smartphones and tablets,” PhD thesis, Georgia Institute of Technology, 2013.

[91] L. Zhang, M. Li, N. Dong, and Y. Wang, “An improved dom-based algorithm

for web information extraction,” JOURNAL OF INFORMATION &COMPUTA-

TIONAL SCIENCE, vol. 8, no. 7, pp. 1113–1121, 2011.

[92] J. P. Cohen, W. Ding, and A. Bagherjeiran, “Semi-supervised web wrapper repair

via recursive tree matching,” CoRR, 2015.

[93] S. Zheng, R. Song, and J.-R. Wen, “Template-independent news extraction based

on visual consistency,” in AAAI, vol. 7, 2007, pp. 1507–1513.

[94] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Vips: A vision-based page segmentation

algorithm,” Tech. Rep., Nov. 2003, p. 28.

[95] Remote Desktop Protocol, http://msdn.microsoft.com/en-us/library/

aa383015(v=vs.85).aspx.

[96] The rfb protocol, http://www.realvnc.com/docs/rfbproto.pdf.

[97] Citrix receiver, https://www.citrix.com/products/receiver/.

[98] C.-L. Tsao, S. Kakumanu, and R. Sivakumar, “Smartvnc: An effective remote com-

puting solution for smartphones,” in Proceedings of the 17th Annual International

Conference on Mobile Computing and Networking, Las Vegas, Nevada, USA, 2011,

pp. 13–24, ISBN: 978-1-4503-0492-4.

172

http://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
http://www.realvnc.com/docs/rfbproto.pdf
https://www.citrix.com/products/receiver/

[99] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “Mobidesk: Mobile virtual desktop

computing,” in Proceedings of the 10th Annual International Conference on Mo-

bile Computing and Networking, ser. MobiCom ’04, Philadelphia, PA, USA: ACM,

2004, pp. 1–15.

[100] Gaming anywhere, http://gaminganywhere.org/index.html.

[101] B. Joveski et al., “Semantic multimedia remote display for mobile thin clients,”

Multimedia Systems, vol. 19, no. 5, pp. 455–474, 2013.

[102] F. Liu, J. Wang, and H. Bai, “On the compression of hyperspectral data,” IT CoN-

vergence PRActice (INPRA), vol. 1, no. 4, pp. 39–49, Dec. 2013.

[103] S. Radicati, “E-mail statistics report, 2014–2018,” Paolo Alto: The Radicati Group

Inc, 2014.

[104] F. Kooti, L. M. Aiello, M. Grbovic, K. Lerman, and A. Mantrach, “Evolution of

conversations in the age of email overload,” in Proceedings of the 24th Interna-

tional Conference on World Wide Web, ser. WWW ’15, Florence, Italy: ACM, 2015,

pp. 603–613, ISBN: 978-1-4503-3469-3.

[105] The enron email dataset, https://www.cs.cmu.edu/˜./enron/.

[106] D. Oard, W. Webber, D. Kirsch, and S. Golitsynskiy, Avocado research email col-

lection, https://catalog.ldc.upenn.edu/LDC2015T03.

[107] Enron employee roles, http://www.inf.ed.ac.uk/teaching/courses/tts/

assessed/roles.txt.

[108] Talon, https://github.com/mailgun/talon.

[109] Natural language toolkit, www.nltk.org.

[110] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach.

Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

173

http://gaminganywhere.org/index.html
https://www.cs.cmu.edu/~./enron/
https://catalog.ldc.upenn.edu/LDC2015T03
http://www.inf.ed.ac.uk/teaching/courses/tts/assessed/roles.txt
http://www.inf.ed.ac.uk/teaching/courses/tts/assessed/roles.txt
https://github.com/mailgun/talon
www.nltk.org

[111] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala, “Latent semantic in-

dexing: A probabilistic analysis,” in Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, ser. PODS ’98,

Seattle, Washington, USA: ACM, 1998, pp. 159–168, ISBN: 0-89791-996-3.

[112] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of the 22Nd

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, ser. SIGIR ’99, Berkeley, California, USA: ACM, 1999,

pp. 50–57, ISBN: 1-58113-096-1.

[113] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. PAMI-6, no. 6, pp. 721–741, 1984.

[114] Amazon ec2 - virtual server hosting, https://aws.amazon.com/?nc2=h_lg.

[115] K-9 mail, https://play.google.com/store/apps/details?id=com.fsck.

k9&hl=en.

[116] Swype for android, https://www.nuance.com/mobile/mobile-applications/

swype/android.html.

[117] Scikit-learn, https://scikit-learn.org/stable/.

[118] Employees say smartphones boost productivity by 34 percent, https://goo.gl/

PmEUys.

[119] Gartner survey shows that mobile device adoption in the workplace is not yet ma-

ture, https://www.gartner.com/newsroom/id/3528217.

[120] Mobile workforce to drive further enterprise change in 2017, https://goo.gl/

uWHqGm.

[121] 2017 trends in enterprise mobility, https://goo.gl/3M2Ruv.

174

 https://aws.amazon.com/?nc2=h_lg
https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en
https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en
https://www.nuance.com/mobile/mobile-applications/swype/android.html
https://www.nuance.com/mobile/mobile-applications/swype/android.html
https://scikit-learn.org/stable/
https://goo.gl/PmEUys
https://goo.gl/PmEUys
https://www.gartner.com/newsroom/id/3528217
https://goo.gl/uWHqGm
https://goo.gl/uWHqGm
https://goo.gl/3M2Ruv

[122] Supportcentral, https://supportcentral.ge.com/siteminderagent/forms/

sso_login.asp.

[123] Kinvey, https://www.kinvey.com/.

[124] Google trends on web platforms, https://goo.gl/qqy558.

[125] T. Richardson and J. Levine, “The remote framebuffer protocol,” 2011.

[126] Remote desktop protocol, http://msdn.microsoft.com/en- us/library/

aa383015(VS.85).aspx.

[127] Ext js, https://www.sencha.com/products/extjs.

[128] Sakai, https://sakaiproject.org/.

[129] Bootstrap. the world’s most popular mobile first and responsive front-end frame-

work, http://getbootstrap.com/.

[130] Xui, a tiny javascript framework for mobile web apps, https://github.com/

xui/xui.

[131] Dojo toolkit, https://dojotoolkit.org/.

[132] Express - node.js web framework, https://expressjs.com/.

[133] New relic, https://newrelic.com/.

[134] Backbone.js, http://backbonejs.org/.

[135] Require.js, http://requirejs.org/.

[136] Underscore.js, http://underscorejs.org/.

[137] D3.js, https://d3js.org/.

[138] Modernizr.js, https://modernizr.com/.

[139] Moment,js, https://momentjs.com/.

[140] Nvd3.js, http://nvd3.org/.

[141] Fancybox, http://fancybox.net/.

175

https://supportcentral.ge.com/siteminderagent/forms/sso_login.asp
https://supportcentral.ge.com/siteminderagent/forms/sso_login.asp
https://www.kinvey.com/
https://goo.gl/qqy558
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
https://www.sencha.com/products/extjs
https://sakaiproject.org/
http://getbootstrap.com/
https://github.com/xui/xui
https://github.com/xui/xui
https://dojotoolkit.org/
https://expressjs.com/
https://newrelic.com/
http://underscorejs.org/
https://d3js.org/
https://modernizr.com/
https://momentjs.com/
http://nvd3.org/
http://fancybox.net/

[142] Google maps apis, https://developers.google.com/maps/showcase/,

[143] Javascript html dom, https://www.w3schools.com/js/js_htmldom.asp.

[144] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas, “The web changes everything: Un-

derstanding the dynamics of web content,” in Proceedings of the Second ACM In-

ternational Conference on Web Search and Data Mining, ser. WSDM ’09, Barcelona,

Spain, 2009, pp. 282–291, ISBN: 978-1-60558-390-7.

[145] Selenium, http://www.seleniumhq.org/.

[146] Ifttt, https://ifttt.com/.

[147] Capriza, https://www.capriza.com/.

[148] Peoplesoft applications overview, http://www.oracle.com/us/products/

applications/peoplesoft-enterprise/overview/index.html.

[149] Sharepoint, https://products.office.com/en-us/sharepoint/collaboration.

[150] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing

surveys (CSUR), vol. 38, no. 4, p. 13, 2006.

[151] Cisco collaboration work practice study, https://www.cisco.com/c/dam/en/

us/solutions/collaboration/collaboration-sales/cwps_full_report.

pdf.

[152] The rfb protocol, http://www.realvnc.com/docs/rfbproto.pdf.

[153] Citrix receiver, https://www.citrix.com/products/receiver/.

[154] Pcoip, http://www.teradici.com/pcoip-technology.

[155] N. Tolia et al., “Quantifying interactive user experience on thin clients,” Computer,

vol. 39, no. 3, pp. 46–52, Mar. 2006.

[156] Dropbox api, https://www.dropbox.com/developers.

[157] Wordnet. a lexical database for english, https://wordnet.princeton.edu/.

176

https://developers.google.com/maps/showcase/
https://www.w3schools.com/js/js_htmldom.asp
http://www.seleniumhq.org/
https://ifttt.com/
https://www.capriza.com/
http://www.oracle.com/us/products/applications/peoplesoft-enterprise/overview/index.html
http://www.oracle.com/us/products/applications/peoplesoft-enterprise/overview/index.html
https://products.office.com/en-us/sharepoint/collaboration
https://www.cisco.com/c/dam/en/us/solutions/collaboration/collaboration-sales/cwps_full_report.pdf
https://www.cisco.com/c/dam/en/us/solutions/collaboration/collaboration-sales/cwps_full_report.pdf
https://www.cisco.com/c/dam/en/us/solutions/collaboration/collaboration-sales/cwps_full_report.pdf
http://www.realvnc.com/docs/rfbproto.pdf
https://www.citrix.com/products/receiver/
http://www.teradici.com/pcoip-technology
https://www.dropbox.com/developers
https://wordnet.princeton.edu/

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Enterprise Application Mobilization
	User-Aware enterprise mobility
	Enterprise Mobility Architecture and Mobilization Challenges

	Research Focus
	Thesis statement
	Thesis Organization

	Literature Survey
	Content Sharing
	Commercial Solutions:
	Research Solutions:

	Workflow Mobilization
	 Commercial Solutions
	Research Solutions

	Front-end APIfication
	Collaboration

	Dejavu: Assisted Email Replies For Reduction Of Reply Burden On Smartphones
	Motivation
	Datasets
	Processing
	Methodology
	Metrics:
	Analysis
	Insights

	The DejaVu Solution
	Problem Definition and Scope
	The DejaVu solution

	Dejavu++: Optimizations to Dejavu
	Reduction of Computation Complexity With Topic Filters
	Improving the relevancy of suggestions with user feedback
	Expanding the sources of suggestions to the global network of mailboxes
	Architecture
	Prototype

	Evaluation
	Methodology
	Macroscopic Results
	Microscopic Results
	User burden reduction
	Performance Comparison to Related Approaches
	Performance of Dejavu++

	Taskr: Fast and Easy Mobilization of Spot Tasks in Enterprise Web Application
	Introduction
	Mobilization and Spot Tasks
	Mobilization and Defeaturization
	Spot Tasks

	Taskr: A Do-it-Yourself Approach to Spot Task Mobilization
	Key Design Elements
	Challenges and Design Choices

	Evaluation

	Trackr: Reliable Tracking of UI Elements within Web Applications to Enable Robust APIfication
	Introduction
	Background and Motivation
	Web Applications and DOM Trees: A Primer
	Problem Definition, Scope, and Goals
	Problem Relevance and Significance
	Related Approaches and Performance Analysis

	Trackr: Fingerprinting Algorithm
	Architecture Overview
	Quorum Fingerprinting
	Fingerprinting Optimizations

	Evaluation
	Prototype:

	Use Cases
	Automation:

	Issues

	Peek: A mobile-to-mobile remote computing protocol
	Introduction
	Background and Motivation
	A Primer:
	A case for mobile-mobile remote computing
	Key Challenges

	PEEK: A mobile-to-mobile remote computing protocol
	Multi-touch Support and Context Association:
	Multi-modal Compression:
	System Architecture

	Evaluation

	Integrated Operations
	At the enterprise
	At the smartphone

	Future Work
	Automated reply suggestions
	Do-it-yourself application mobilization
	Robust front-end APIfication
	Mobile-to-Mobile Remote computing for smartphones

	Conclusions
	References

