44 research outputs found

    Effectivity of Combined Rhythmic Auditory Stimulation Rehabilitation Approach on Gait post Stroke

    Get PDF
    Effectivity of Combined Rhythmic Auditory Stimulation Rehabilitation Approach on Gait post Stroke Abstract Background: this review is assessing the effectiveness of combing forms of rhythmic auditory stimulation (a form of neurologic music therapy) to commonly used physiotherapeutic methods in the treatment of gait for hemiplegic/paresis stroke patients. Aim: to evaluate the extent in which Rhythmic Auditory Stimulation (RAS) combined therapy has a positive effect on gait for stroke patients, and whether RAS combined therapy is a more effective approach than conventional physiotherapeutic approaches. Methods: Databases Cochrane Central Register of Controlled Trials, Pubmed and Science Direct were searched. All databases were searched using a publication year range from 2009- 2022. Studies accepted were either Randomized Control Trials, Clinical Control Trails or Case Control Studies, evaluating RAS combined therapy versus conventional physiotherapeutic methods for Hemiplegic/paresis stroke patients. The outcome measures evaluated were gait and balance ability, according to spatiotemporal gait parameters and balance or lower extremity function assessments. Data was extracted according to PRISMA guidelines as well as with the help of a reference manager. The studies were analysed for risk of bias according to...Účinnost kombinovaného přístupu rytmické sluchové stimulace v rehabilitaci chůze u pacientů po cévní mozkové příhodě Abstrakt Východiska: práce je věnována posouzení účinnosti forem rytmické sluchové stimulace (forma neurologické muzikoterapie) k běžně používaným fyzioterapeutickým metodám v léčbě chůze u pacientů po cévní mozkové příhodě s hemiplegií. Cíl: zhodnotit, do jaké míry má kombinovaná terapie rytmické sluchové stimulace pozitivní vliv na chůzi u pacientů po cévní mozkové příhodě a zda je tato kombinovaná terapie účinnějším přístupem než běžné, konvenční fyzioterapeutické přístupy. Metody: Studie pro rešerši byly vyhledávány v databázích Cochrane Central Register of Controlled Trials, Pubmed a Science Direct. Pro zařazení studií bylo stanoveno období publikování v letech 2009-2022. Přijaté studie byly randomizované kontrolované studie, klinické kontrolované studie nebo případové kontrolované studie, hodnotící kombinovanou terapii rytmické sluchové stimulace oproti konvenčním fyzioterapeutickým metodám u pacientů s hemiplegií po cévní mozkové příhodě. Pro hodnocení efektu terapie byla použita chůze a schopnost rovnováhy dle časoprostorových parametrů chůze, hodnocení rovnováhy nebo funkce dolních končetin. Data byla extrahována dle PRISMA doporučených postupů a studie byly analyzovány vzhledem...Katedra fyzioterapieDepartment of PhysiotherapyFaculty of Physical Education and SportFakulta tělesné výchovy a sport

    Principles of organisation within the pathways in the brainstem and thalamus

    Full text link
    There are few detailed studies on the pathways through the human brainstem and even fewer on those through the pons. This thesis aims to address this lack of fine detail, and used ultra-high-field magnetic resonance imaging (MRI) of human and macaque brains to identify and characterise fibre tracts connecting cortical and spinal areas as they traverse through brainstem and thalamic structures. The material in this thesis is based on a unique dataset of ultra-high-field (7 Tesla – Duke and 11, 7 Tesla – Johns Hopkins) MRI scans on postmortem specimens, on which deterministic tractography has been applied based on high-angular-resolution diffusion imaging (HARDI) and subsequently higher order tensor glyph models. The first results section of the thesis (Chapter 3) maps the descending fibre bundles associated with movement. From the motor cortical areas, the fibres of the internal capsule are traced through the crus cerebri, basilar pons and pyramids in three dimensions to reveal their organisation into functional and topographic subdivisions. While human cortico-pontine, -bulbar and -spinal tracts were traditionally considered to be dispersed, or a “melange”, I show here a much more discrete and defined organisation of these descending fibre bundles. Nine descending fibre bundles are identified and their anatomical location and terminations are described. A hitherto unknown pathway at the midline of the pons has been discovered and named herein as the Stria Pontis which connects the neocortex to the pontine tegmentum. Ten transverse fibre bundles connecting the pontine nuclei to the cerebellum are also identified. The second results section (Chapter 4) analyses the sensory pathways; the dorsal column - medial lemniscus pathway, the spinothalamic tract, the spinal trigeminal tract and the trigeminothalamic tracts. The third results section (Chapter 5) analyses the dentato-rubro-thalamic tract. The mapping identifies the superior cerebellar peduncle, the patterning of the fibres within the superior cerebellar decussation, the patterning of the fibres within the red nucleus and finally the projection of the dentato-rubro-thalamic tract from the red nucleus to the ventral lateral nucleus of the thalamus. Finally, I characterised 117 already known anatomical parts, areas and structures of the brainstem and thalamus in 3D

    A Synopsis of Parkinson's Disease

    Get PDF
    Parkinsons disease is a disabling neurological condition with both motor and non-motor symptoms for which no cure is available at this stage. This book is unique in covering the most important topics related to Parkinsons disease. Current research and updates about some non-motor symptoms, as well as surgical treatment of Parkinsons disease, in addition to the long term complications of pharmacological treatments have been presented. This book can be used by physicians, researchers and neuroscientists who want to learn new information about these topics related to Parkinsons disease. Authors of the individual chapters are well known in their fields and the book has been edited by a world renowned Parkinsons disease expert

    Understanding motor control in humans to improve rehabilitation robots

    Get PDF
    Recent reviews highlighted the limited results of robotic rehabilitation and the low quality of evidences in this field. Despite the worldwide presence of several robotic infrastructures, there is still a lack of knowledge about the capabilities of robotic training effect on the neural control of movement. To fill this gap, a step back to motor neuroscience is needed: the understanding how the brain works in the generation of movements, how it adapts to changes and how it acquires new motor skills is fundamental. This is the rationale behind my PhD project and the contents of this thesis: all the studies included in fact examined changes in motor control due to different destabilizing conditions, ranging from external perturbations, to self-generated disturbances, to pathological conditions. Data on healthy and impaired adults have been collected and quantitative and objective information about kinematics, dynamics, performance and learning were obtained for the investigation of motor control and skill learning. Results on subjects with cervical dystonia show how important assessment is: possibly adequate treatments are missing because the physiological and pathological mechanisms underlying sensorimotor control are not routinely addressed in clinical practice. These results showed how sensory function is crucial for motor control. The relevance of proprioception in motor control and learning is evident also in a second study. This study, performed on healthy subjects, showed that stiffness control is associated with worse robustness to external perturbations and worse learning, which can be attributed to the lower sensitiveness while moving or co-activating. On the other hand, we found that the combination of higher reliance on proprioception with \u201cdisturbance training\u201d is able to lead to a better learning and better robustness. This is in line with recent findings showing that variability may facilitate learning and thus can be exploited for sensorimotor recovery. Based on these results, in a third study, we asked participants to use the more robust and efficient strategy in order to investigate the control policies used to reject disturbances. We found that control is non-linear and we associated this non-linearity with intermittent control. As the name says, intermittent control is characterized by open loop intervals, in which movements are not actively controlled. We exploited the intermittent control paradigm for other two modeling studies. In these studies we have shown how robust is this model, evaluating it in two complex situations, the coordination of two joints for postural balance and the coordination of two different balancing tasks. It is an intriguing issue, to be addressed in future studies, to consider how learning affects intermittency and how this can be exploited to enhance learning or recovery. The approach, that can exploit the results of this thesis, is the computational neurorehabilitation, which mathematically models the mechanisms underlying the rehabilitation process, with the aim of optimizing the individual treatment of patients. Integrating models of sensorimotor control during robotic neurorehabilitation, might lead to robots that are fully adaptable to the level of impairment of the patient and able to change their behavior accordingly to the patient\u2019s intention. This is one of the goals for the development of rehabilitation robotics and in particular of Wristbot, our robot for wrist rehabilitation: combining proper assessment and training protocols, based on motor control paradigms, will maximize robotic rehabilitation effects

    Efficacy of Rhythmic Auditory Stimulation on Ataxia and Functional Dependence Post-Cerebellar Stroke

    Get PDF
    Ataxia, from Greek meaning, “lack of order,” is described as irregular movement and discoordination of body, gait, eyes, and speech. Ataxia is associated with cerebellar damage due to stroke and other cerebellar pathologies. Ataxia frequently results in functional impairment. Standard physical and occupational therapies in stroke rehabilitation facilitate motor recovery, especially within 90 days. However, many patients experience movement derangements beyond this time frame. Rhythmic auditory stimulation has been shown to be an effective intervention in chronic motor deficits like those observed after cerebellar stroke. Efficacy among patients with chronic stroke-induced ataxia is unexplored. This randomized control trial seeks to determine the benefit of rhythmic auditory stimulation over standard of care for rehabilitation of cerebellar stroke-induced ataxia. Patient progress will be assessed using validated disability and ataxia scales. It is projected that rhythmic auditory stimulation will improve ataxia and independence among patients with chronic disability post-cerebellar stroke, versus standard rehabilitation

    Effects of overground walking with a robotic exoskeleton on lower limb muscle synergies

    Full text link
    Les exosquelettes robotisés de marche (ERM) représentent une intervention prometteuse dans le domaine de la réadaptation locomotrice. Sur le plan clinique, les ERM facilitent la mise en application de principes de neuroplasticité. Jusqu'à présent, la majorité des études analysant les effets de l’ERM a été menée avec des ERM fournissant une assistance robotique complète le long d’une trajectoire de mouvements prédéfinie des membres inférieurs (MI) de façon à reproduire la marche de façon quasi parfaite à très basse vitesse. La nouvelle génération d’ERM, maintenant disponible sur le marché, propose de nouveaux modes de contrôles qui permettent, entre autres, une liberté de mouvement accrue aux MIs (c.-à-d. trajectoire non imposée) et une possibilité d’offrir une assistance ou résistance aux mouvements de différentes intensités surtout pendant la phase d’oscillation du cycle de marche. Cependant, les effets de ces modes de contrôles sur la coordination musculaire des MI pendant la marche au sol avec l’ERM, caractérisé via l’extraction de synergies musculaires (SM), restent méconnus. Cette thèse mesure et compare les caractéristiques des SM (c.-à-d. nombre, profils d’activation, composition musculaire et contribution relative des muscles) pendant la la marche au sol sans ou avec un ERM paramétré avec six différents modes de contrôle chez des individus en bonne santé (articles #1 et #2) et d’autres ayant une lésion médullaire incomplète (LMI) (article #3). Les signaux électromyographiques (EMG) des différents muscles clés des MI, enregistrés lors de la marche, ont été utilisés afin d’extraire les SM avec un algorithme de factorisation matricielle non négative. La similarité des cosinus et les coefficients de corrélation ont caractérisé les similitudes entre les caractéristiques des SM. Les résultats montrent que: 1) les profils d'activation temporelle et le nombre de SM sont modifiés en fonction de la vitesse de marche avec, entre autres une augmentation de la vitesse de marche entrainant une fusion de SM, chez les individus en bonne santé marchant sans ERM ; 2) lorsque ces derniers marchent avec un ERM, les différents modes de contrôle testés ne dupliquent pas adéquatement les SM retrouvées lors de la marche sans ERM. En fait, uniquement le mode de contrôle libérant la contrainte de trajectoire de mouvements des MIs dans le plan sagittal lors de la phase d’oscillation reproduit les principales caractéristiques des SM retrouvées pendant la marche sans ERM ; 3) le nombre et la composition musculaire des SM sont modifiés pendant la marche sans ERM chez les personnes ayant une LMI. Cependant, parmi tous les modes de contrôle étudiés, seul le mode de contrôle libérant le contrôle de la trajectoire de mouvements des MI et assistant l’oscillation du MIs (c.-à-d. HASSIST) permets l’extraction de SM similaire à celles observées chez des individus en santé lors d'une marche sans ERM. Dans l’ensemble, cette thèse a mis en évidence le fait que différentes demandes biomécaniques liées à la marche (c.-à-d. vitesse de marche, modes de contrôle de l’ERM) modifient le nombre et les caractéristiques de SM chez les personnes en santé. Cette thèse a également confirmé que la coordination musculaire, mise en évidence via l’analyse de SM, est altérée chez les personnes ayant une LMI et a tendance à se normaliser lors de la marche avec l’ERM paramétré dans le mode de HASSIST. Les nouvelles preuves appuieront les professionnels de la réadaptation dans le processus de prise de décision concernant la sélection du mode de contrôle des MIs lors de l’entrainement locomoteur utilisant avec un ERM.Wearable robotic exoskeletons (WRE) represent a promising rehabilitation intervention for locomotor rehabilitation training that aligns with activity-based neuroplasticity principles in terms of optimal sensory input, massed repetition, and proper kinematics. Thus far, most studies that investigated the effects of WRE have used WRE that provide full robotic assistance and fixed trajectory guidance to the lower extremity (L/E) to generate close-to-normal walking kinematics, usually at very slow speeds. Based on clinicians’ feedback, current commercially-available WRE have additional control options to be able to integrate these devices into the recovery process of individuals who have maintained some ability to walk after an injury to the central nervous system. In this context, WRE now offer additional degrees of movements for the L/E to move freely and different strategies to assist or resist movement, particularly during the gait cycle’s swing phase. However, the extent that these additional WRE control options affect L/E neuromuscular control during walking, typically characterized using muscle synergies (MSs), remains unknown. This thesis measures and compares MSs characteristics (i.e., number, temporal activation profile, and muscles contributing to a specific synergy [weightings]) during typical overground walking, with and without a WRE, in six different control modes, in abled-bodied individuals (Articles #1 and #2) and individuals with incomplete spinal cord injury (iSCI; Article #3). Surface EMG of key L/E muscles were recorded while walking and used to extract MSs using a non-negative matrix factorization algorithm. Cosine similarity and correlation coefficients characterized, grouped, and indicated similarities between MS characteristics. Results demonstrated that: 1) the number of MSs and MS temporal activation profiles in able-bodied individuals walking without WRE are modified by walking speed and that, as speed increased, specific MSs were fused or merged compared to MSs at slow speeds; 2) In able-bodied individuals walking with WRE, few WRE control modes maintained the typical MSs characteristics that were found during overground walking without WRE. Moreover, freeing the L/E swing trajectory imposed by the WRE best reproduced those MSs characteristics during overground walking without the WRE; and 3) After an iSCI, alterations to the number and the composition of MSs were observed during walking without WRE. However, of all WRE control modes that were investigated, only HASSIST (i.e., freeing WRE control over L/E swing trajectory while assisting the user’s self-selected trajectory) reproduced the number and composition of MSs found in abled-bodied individuals during overground walking without WRE. Altogether, the results of this thesis demonstrated that different walking-related biomechanical demands (i.e., walking speed) and most of the WRE control modes can alter some MSs, and their characteristics, in able-bodied individuals. This research also confirmed that impaired muscle coordination, assessed via MSs, can adapt when walking with a WRE set with specific control options (e.g., HASSIST). These MS adaptations mimicked typical MS characteristics extracted during overground walking. The evidence generated by this thesis will support the decision-making process when selecting specific L/E control options during WRE walking, allowing rehabilitation professionals to refine WRE locomotor training protocols

    Neural oscillations underlying gait and decision making

    Get PDF

    Neuroplasticity of Ipsilateral Cortical Motor Representations, Training Effects and Role in Stroke Recovery

    Get PDF
    This thesis examines the contribution of the ipsilateral hemisphere to motor control with the aim of evaluating the potential of the contralesional hemisphere to contribute to motor recovery after stroke. Predictive algorithms based on neurobiological principles emphasize integrity of the ipsilesional corticospinal tract as the strongest prognostic indicator of good motor recovery. In contrast, extensive lesions placing reliance on alternative contralesional ipsilateral motor pathways are associated with poor recovery. Within the predictive algorithms are elements of motor control that rely on contributions from ipsilateral motor pathways, suggesting that balanced, parallel contralesional contributions can be beneficial. Current therapeutic approaches have focussed on the maladaptive potential of the contralesional hemisphere and sought to inhibit its activity with neuromodulation. Using Transcranial Magnetic Stimulation I seek examples of beneficial plasticity in ipsilateral cortical motor representations of expert performers, who have accumulated vast amounts of deliberate practise training skilled bilateral activation of muscles habitually under ipsilateral control. I demonstrate that ipsilateral cortical motor representations reorganize in response to training to acquisition of skilled motor performance. Features of this reorganization are compatible with evidence suggesting ipsilateral importance in synergy representations, controlled through corticoreticulopropriospinal pathways. I demonstrate that ipsilateral plasticity can associate positively with motor recovery after stroke. Features of plastic change in ipsilateral cortical representations are shown in response to robotic training of chronic stroke patients. These findings have implications for the individualization of motor rehabilitation after stroke, and prompt reappraisal of the approach to therapeutic intervention in the chronic phase of stroke

    A STEP TOWARDS UNDERSTANDING BALANCE CONTROL IN INDIVIDUALS WITH INCOMPLETE SPINAL CORD INJURY

    Get PDF
    Purpose: Frequent falls are reported by individuals with spinal cord injury (SCI) suggesting impairments in their balance control. This thesis examined balance assessment and balance control in individuals with SCI. Methods and Results: To investigate the effects of light touch on standing balance, center of pressure (COP) sway during standing was measured in 16 participants with incomplete SCI (iSCI) and 13 able-bodied (AB) participants. Participants with iSCI showed reduction in COP sway with light touch similar to AB participants. To study the association between stability during normal walking (NW) and unexpected slip intensity, NW behaviour and intensity of an unexpected slip perturbation were assessed in 20 participants with iSCI, and 16 AB participants. Participants with iSCI demonstrated greater stability by walking slower, taking shorter steps, and more time in double support. Walking slower was associated with lower slip intensity in individuals with iSCI. To study reactive balance control, change in margin of stability with a compensatory step, activation of lower extremity muscles, and change in limb velocity trajectories in response to an unexpected slip perturbation were studied in 16 participants with iSCI and 13 AB participants. Participants with iSCI demonstrated limitations in reactive responses including a smaller increase in lateral margin of stability, slower onset of trail limb tibialis anterior activity, and decreased magnitude of trail limb soleus activity. To identify balance measures specific to individuals with SCI, a systematic review of 127 articles was conducted. Thirty balance measures were identified; 11 evaluated a biomechanical construct and 19 were balance scales designed for use in clinical settings. All balance scales had high clinical utility. The Berg Balance Scale and Functional Reach Test were valid and reliable, while the Mini Balance Evaluation Systems Test was most comprehensive. Conclusions: Individuals with iSCI have impaired balance control, as evidenced by limitations in reactive balance; however, they have the ability to modify their balance, as demonstrated by greater stability during NW and with light touch while standing. No single balance measure met all criteria of a useful measure - high clinical utility, strong psychometric properties, and comprehensiveness in the SCI population. Combined, the findings highlight the need for the comprehensive assessment and rehabilitation of balance control after iSCI
    corecore