62,487 research outputs found

    Staff Detection with Stable Paths

    Full text link

    Institutional paraconsciousness and its pathologies

    Get PDF
    This analysis extends a recent mathematical treatment of the Baars consciousness model to analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cognitive modules, instantiating a Global Workspace. Human institutions, by contrast, support several, sometimes many, such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Such highly parallel multitasking - institutional paraconsciousness - while clearly limiting inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic dysfunctions involving the distortion of information sent between global workspaces. Consequently, organizations (or machines designed along these principles), while highly efficient at certain kinds of tasks, remain subject to canonical and idiosyncratic failure patterns similar to, but more complicated than, those afflicting individuals. Remediation is complicated by the manner in which pathogenic externalities can write images of themselves on both institutional function and therapeutic intervention, in the context of relentless market selection pressures. The approach is broadly consonant with recent work on collective efficacy, collective consciousness, and distributed cognition

    MoMA-LigPath: A web server to simulate protein-ligand unbinding

    Get PDF
    Protein-ligand interactions taking place far away from the active site, during ligand binding or release, may determine molecular specificity and activity. However, obtaining information about these interactions with experimental or computational methods remains difficult. The computational tool presented in this paper, MoMA-LigPath, is based on a mechanistic representation of the molecular system, considering partial flexibility, and on the application of a robotics-inspired algorithm to explore the conformational space. Such a purely geometric approach, together with the efficiency of the exploration algorithm, enables the simulation of ligand unbinding within very short computing time. Ligand unbinding pathways generated by MoMA-LigPath are a first approximation that can provide very useful information about protein-ligand interactions. When needed, this approximation can be subsequently refined and analyzed using state-of-the-art energy models and molecular modeling methods. MoMA-LigPath is available at http://moma.laas.fr. The web server is free and open to all users, with no login requirement

    Work Organisation and Innovation - Case Study: Volkswagen Poznań, Poland

    Get PDF
    [Excerpt] Volkswagen Poznań Sp. z o. o. (VWP) 1 was established in 1993. 2 It is part of the Volkswagen AG Corporation and is owned entirely by Volkswagen Nutzfahrzeuge (VW Utility Cars). VWP is a manufacturer of passenger cars. Currently, the company manufactures two types of utility cars: the Caddy, which constitutes the basis of production, and the T5 Transporter. The main target group for the products manufactured by the Poznań-based branch of Volkswagen are business clients, who use the utility cars for the transport of lighter goods. About 94% of manufactured vehicles are exported as part of the intra-Community supply of goods, as well as to third countries
    corecore