18 research outputs found

    Nash Social Welfare in Selfish and Online Load Balancing (Short Paper)

    Get PDF
    In load balancing problems there is a set of clients, each wishing to select a resource from a set of permissible ones, in order to execute a certain task. Each resource has a latency function, which depends on its workload, and a client's cost is the completion time of her chosen resource. Two fundamental variants of load balancing problems are selfish load balancing (aka. load balancing games), where clients are non-cooperative selfish players aimed at minimizing their own cost solely, and online load balancing, where clients appear online and have to be irrevocably assigned to a resource without any knowledge about future requests. We revisit both problems under the objective of minimizing the Nash Social Welfare, i.e., the geometric mean of the clients' costs. To the best of our knowledge, despite being a celebrated welfare estimator in many social contexts, the Nash Social Welfare has not been considered so far as a benchmarking quality measure in load balancing problems. We provide tight bounds on the price of anarchy of pure Nash equilibria and on the competitive ratio of the greedy algorithm under very general latency functions, including polynomial ones. For this particular class, we also prove that the greedy strategy is optimal, as it matches the performance of any possible online algorithm

    The asymptotic price of anarchy for k-uniform congestion games

    Get PDF
    We consider the atomic version of congestion games with affine cost functions, and analyze the quality of worst case Nash equilibria when the strategy spaces of the players are the set of bases of a k-uniform matroid. In this setting, for some parameter k, each player is to choose k out of a finite set of resources, and the cost of a player for choosing a resource depends affine linearly on the number of players choosing the same resource. Earlier work shows that the price of anarchy for this class of games is larger than 1.34 but at most 2.15. We determine a tight bound on the asymptotic price of anarchy equal to ≈1.35188. Here, asymptotic refers to the fact that the bound holds for all instances with sufficiently many players. In particular, the asymptotic price of anarchy is bounded away from 4/3. Our analysis also yields an upper bound on the price of anarchy <1.4131, for all instances

    The sequential price of anarchy for affine congestion games with few players

    Get PDF
    This paper determines the sequential price of anarchy for Rosenthal congestion games with affine cost functions and few players. We show that for two players, the sequential price of anarchy equals 1.5, and for three players it equals approximately 2.13. While the case with two players is analyzed analytically, the tight bound for three players is based on the explicit computation of a worst-case instance using linear programming. The basis for both results are combinatorial arguments to show that finite worst-case instances exist

    Uniform Mixed Equilibria in Network Congestion Games with Link Failures

    Get PDF
    Motivated by possible applications in fault-tolerant routing, we introduce the notion of uniform mixed equilibria in network congestion games with adversarial link failures, where players need to route traffic from a source to a destination node. Given an integer rho >= 1, a rho-uniform mixed strategy is a mixed strategy in which a player plays exactly rho edge disjoint paths with uniform probabilities, so that a rho-uniform mixed equilibrium is a tuple of rho-uniform mixed strategies, one for each player, in which no player can lower her cost by deviating to another rho-uniform mixed strategy. For games with weighted players and affine latency functions, we show existence of rho-uniform mixed equilibria and provide a tight characterization of their price of anarchy. For games with unweighted players, instead, we extend the existential guarantee to any class of latency functions and, restricted to games with affine latencies, we derive a tight characterization of both the prices of anarchy and stability

    Altruism in Atomic Congestion Games

    Full text link
    This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting increase in social cost. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges. In addition to these results for uncoordinated dynamics, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.Comment: 13 pages, 1 figure, includes some minor adjustment

    LNCS

    Get PDF
    In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability

    On the Impact of Singleton Strategies in Congestion Games

    Get PDF
    To what extent does the structure of the players\u27 strategy space influence the efficiency of decentralized solutions in congestion games? In this work, we investigate whether better performance is possible when restricting to load balancing games in which players can only choose among single resources. We consider three different solutions concepts, namely, approximate pure Nash equilibria, approximate one-round walks generated by selfish players aiming at minimizing their personal cost and approximate one-round walks generated by cooperative players aiming at minimizing the marginal increase in the sum of the players\u27 personal costs. The last two concepts can also be interpreted as solutions of simple greedy online algorithms for the related resource selection problem. Under fairly general latency functions on the resources, we show that, for all three types of solutions, better bounds cannot be achieved if players are either weighted or asymmetric. On the positive side, we prove that, under mild assumptions on the latency functions, improvements on the performance of approximate pure Nash equilibria are possible for load balancing games with weighted and symmetric players in the case of identical resources. We also design lower bounds on the performance of one-round walks in load balancing games with unweighted players and identical resources (in this case, solutions generated by selfish and cooperative players coincide)

    The sequential price of anarchy for atomic congestion games

    Get PDF
    In situations without central coordination, the price of anarchy relates the quality of any Nash equilibrium to the quality of a global optimum. Instead of assuming that all players choose their actions simultaneously, here we consider games where players choose their actions sequentially. The sequential price of anarchy, recently introduced by Paes Leme, Syrgkanis, and Tardos then relates the quality of any subgame perfect equilibrium to the quality of a global optimum. The effect of sequential decision making on the quality of equilibria, however, depends on the specific game under consideration.\ud Here we analyze the sequential price of anarchy for atomic congestion games with affine cost functions. We derive several lower and upper bounds, showing that sequential decisions mitigate the worst case outcomes known for the classical price of anarchy. Next to tight bounds on the sequential price of anarchy, a methodological contribution of our work is, among other things, a "factor revealing" integer linear programming approach that we use to solve the case of three players

    The Power of One Secret Agent

    Get PDF
    I am a job. In job-scheduling applications, my friends and I are assigned to machines that can process us. In the last decade, thanks to our strong employee committee, and the rise of algorithmic game theory, we are getting more and more freedom regarding our assignment. Each of us acts to minimize his own cost, rather than to optimize a global objective. My goal is different. I am a secret agent operated by the system. I do my best to lead my fellow jobs to an outcome with a high social cost. My naive friends keep doing the best they can, each of them performs his best-response move whenever he gets the opportunity to do so. Luckily, I am a charismatic guy. I can determine the order according to which the naive jobs perform their best-response moves. In this paper, I analyze my power, formalized as the Price of a Traitor (PoT), in cost-sharing scheduling games - in which we need to cover the cost of the machines that process us. Starting from an initial Nash Equilibrium (NE) profile, I join the instance and hurt its stability. A sequence of best-response moves is performed until I vanish, leaving the naive jobs in a new NE. For an initial NE assignment, S_0, the PoT measures the ratio between the social cost of a worst NE I can lead the jobs to, starting from S_0, and the social cost of S_0. The PoT of a game is the maximal such ratio among all game instances and initial NE assignments. My analysis distinguishes between instances with unit- and arbitrary-cost machines, and instances with unit- and arbitrary-length jobs. I give exact bounds on the PoT for each setting, in general and in symmetric games. While it turns out that in most settings my power is really impressive, my task is computationally hard (and also hard to approximate)

    Non-Atomic One-Round Walks in Polynomial Congestion Games

    Get PDF
    Abstract. In this paper we study the approximation ratio of the solutions achieved after an -approximate one-round walk in non-atomic congestion games. Prior to this work, the solution concept of one-round walks had been studied for atomic congestion games with linear latency functions onl
    corecore