2,224 research outputs found

    Stack-run adaptive wavelet image compression

    Get PDF
    We report on the development of an adaptive wavelet image coder based on stack-run representation of the quantized coefficients. The coder works by selecting an optimal wavelet packet basis for the given image and encoding the quantization indices for significant coefficients and zero runs between coefficients using a 4-ary arithmetic coder. Due to the fact that our coder exploits the redundancies present within individual subbands, its addressing complexity is much lower than that of the wavelet zerotree coding algorithms. Experimental results show coding gains of up to 1:4dB over the benchmark wavelet coding algorithm

    Wavelet Based Image Coding Schemes : A Recent Survey

    Full text link
    A variety of new and powerful algorithms have been developed for image compression over the years. Among them the wavelet-based image compression schemes have gained much popularity due to their overlapping nature which reduces the blocking artifacts that are common phenomena in JPEG compression and multiresolution character which leads to superior energy compaction with high quality reconstructed images. This paper provides a detailed survey on some of the popular wavelet coding techniques such as the Embedded Zerotree Wavelet (EZW) coding, Set Partitioning in Hierarchical Tree (SPIHT) coding, the Set Partitioned Embedded Block (SPECK) Coder, and the Embedded Block Coding with Optimized Truncation (EBCOT) algorithm. Other wavelet-based coding techniques like the Wavelet Difference Reduction (WDR) and the Adaptive Scanned Wavelet Difference Reduction (ASWDR) algorithms, the Space Frequency Quantization (SFQ) algorithm, the Embedded Predictive Wavelet Image Coder (EPWIC), Compression with Reversible Embedded Wavelet (CREW), the Stack-Run (SR) coding and the recent Geometric Wavelet (GW) coding are also discussed. Based on the review, recommendations and discussions are presented for algorithm development and implementation.Comment: 18 pages, 7 figures, journa

    Non-expansive symmetrically extended wavelet transform for arbitrarily shaped video object plane.

    Get PDF
    by Lai Chun Kit.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 68-70).Abstract also in Chinese.ACKNOWLEDGMENTS --- p.IVABSTRACT --- p.vChapter Chapter 1 --- Traditional Image and Video Coding --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- Fundamental Principle of Compression --- p.1Chapter 1.3 --- Entropy - Value of Information --- p.2Chapter 1.4 --- Performance Measure --- p.3Chapter 1.5 --- Image Coding Overview --- p.4Chapter 1.5.1 --- Digital Image Formation --- p.4Chapter 1.5.2 --- Needs of Image Compression --- p.4Chapter 1.5.3 --- Classification of Image Compression --- p.5Chapter 1.5.4 --- Transform Coding --- p.6Chapter 1.6 --- Video Coding Overview --- p.8Chapter Chapter 2 --- Discrete Wavelets Transform (DWT) and Subband Coding --- p.11Chapter 2.1 --- Subband Coding --- p.11Chapter 2.1.1 --- Introduction --- p.11Chapter 2.1.2 --- Quadrature Mirror Filters (QMFs) --- p.12Chapter 2.1.3 --- Subband Coding for Image --- p.13Chapter 2.2 --- Discrete Wavelets Transformation (DWT) --- p.15Chapter 2.2.1 --- Introduction --- p.15Chapter 2.2.2 --- Wavelet Theory --- p.15Chapter 2.2.3 --- Comparison Between Fourier Transform and Wavelet Transform --- p.16Chapter Chapter 3 --- Non-expansive Symmetric Extension --- p.19Chapter 3.1 --- Introduction --- p.19Chapter 3.2 --- Types of extension scheme --- p.19Chapter 3.3 --- Non-expansive Symmetric Extension and Symmetric Sub-sampling --- p.21Chapter Chapter 4 --- Content-based Video Coding in MPEG-4 Purposed Standard --- p.24Chapter 4.1 --- Introduction --- p.24Chapter 4.2 --- Motivation of the new MPEG-4 standard --- p.25Chapter 4.2.1 --- Changes in the production of audio-visual material --- p.25Chapter 4.2.2 --- Changes in the consumption of multimedia information --- p.25Chapter 4.2.3 --- Reuse of audio-visual material --- p.26Chapter 4.2.4 --- Changes in mode of implementation --- p.26Chapter 4.3 --- Objective of MPEG-4 standard --- p.27Chapter 4.4 --- Technical Description of MPEG-4 --- p.28Chapter 4.4.1 --- Overview of MPEG-4 coding system --- p.28Chapter 4.4.2 --- Shape Coding --- p.29Chapter 4.4.3 --- Shape Adaptive Texture Coding --- p.33Chapter 4.4.4 --- Motion Estimation and Compensation (ME/MC) --- p.35Chapter Chapter 5 --- Shape Adaptive Wavelet Transformation Coding Scheme (SA WT) --- p.36Chapter 5.1 --- Shape Adaptive Wavelet Transformation --- p.36Chapter 5.1.1 --- Introduction --- p.36Chapter 5.1.2 --- Description of Transformation Scheme --- p.37Chapter 5.2 --- Quantization --- p.40Chapter 5.3 --- Entropy Coding --- p.42Chapter 5.3.1 --- Introduction --- p.42Chapter 5.3.2 --- Stack Run Algorithm --- p.42Chapter 5.3.3 --- ZeroTree Entropy (ZTE) Coding Algorithm --- p.45Chapter 5.4 --- Binary Shape Coding --- p.49Chapter Chapter 6 --- Simulation --- p.51Chapter 6.1 --- Introduction --- p.51Chapter 6.2 --- SSAWT-Stack Run --- p.52Chapter 6.3 --- SSAWT-ZTR --- p.53Chapter 6.4 --- Simulation Results --- p.55Chapter 6.4.1 --- SSAWT - STACK --- p.55Chapter 6.4.2 --- SSAWT ´ؤ ZTE --- p.56Chapter 6.4.3 --- Comparison Result - Cjpeg and Wave03. --- p.57Chapter 6.5 --- Shape Coding Result --- p.61Chapter 6.6 --- Analysis --- p.63Chapter Chapter 7 --- Conclusion --- p.64Appendix A: Image Segmentation --- p.65Reference --- p.6

    VHDL design and simulation for embedded zerotree wavelet quantisation

    Get PDF
    This thesis discusses a highly effective still image compression algorithm – The Embedded Zerotree Wavelets coding technique, as it is called. This technique is simple but achieves a remarkable result. The image is wavelet-transformed, symbolically coded and successive quantised, therefore the compression and transmission/storage saving can be achieved by utilising the structure of zerotree. The algorithm was first proposed by Jerome M. Shapiro in 1993, however to minimise the memory usage and speeding up the EZW processor, a Depth First Search method is used to transverse across the image rather than Breadth First Search method as initially discussed in Shapiro\u27s paper (Shapiro, 1993). The project\u27s primary objective is to simulate the EZW algorithm from a basic building block of 8 by 8 matrix to a well-known reference image such Lenna of 256 by 256 matrix. Hence the algorithm performance can be measured, for instance its peak signal to noise ratio can be calculated. The software environment used for the simulation is a Very-High Speed Integrated Circuits - Hardware Description Language such Peak VHDL, PC based version. This will lead to the second phase of the project. The secondary objective is to test the algorithm at a hardware level, such FPGA for a rapid prototype implementation only if the project time permits

    Multiscale Adaptive Representation of Signals: I. The Basic Framework

    Full text link
    We introduce a framework for designing multi-scale, adaptive, shift-invariant frames and bi-frames for representing signals. The new framework, called AdaFrame, improves over dictionary learning-based techniques in terms of computational efficiency at inference time. It improves classical multi-scale basis such as wavelet frames in terms of coding efficiency. It provides an attractive alternative to dictionary learning-based techniques for low level signal processing tasks, such as compression and denoising, as well as high level tasks, such as feature extraction for object recognition. Connections with deep convolutional networks are also discussed. In particular, the proposed framework reveals a drawback in the commonly used approach for visualizing the activations of the intermediate layers in convolutional networks, and suggests a natural alternative

    Improving SPIHT-based Compression of Volumetric Medical Data

    Get PDF
    Volumetric medical data (CT,MR) are useful tools for diagnostic investigation however their usage may be made diffcult because of the amount of data to store or because of the duration of communication over a limited capacity channel. In order to code such information sources we present a progressive three dimensional image compression algorithm based on zerotree wavelet coder with arithmetic coding. We make use of a 3D separable biorthogonal wavelet transform and we extend the zerotree SPIHT algorithm to three dimensions. Moreover we propose some improvements to the SPIHT encoder in order to obtain a better rate distortion performance without increasing the computational complexity. Finally we propose an efficient context-based adaptive arithmetic coding which eliminates high order redundancy. The results obtained on progressive coding of a test CT volume are better than those presented in recent similar works both for the mean PSNR on the whole volume and for the PSNR homogeneity between various slices
    • …
    corecore