16,515 research outputs found

    Waves, rings, and trails: The scenic landscape of axonal actin.

    Get PDF
    The goal of this article is to provide the reader a snapshot of recent studies on axonal actin--largely emerging from superresolution and live-imaging experiments--and place this new information in context with earlier studies

    Cooperative Behavior and Pattern Formation in Mixtures of Driven and Nondriven Colloidal Assemblies

    Full text link
    We simulate a disordered assembly of particles interacting through a repulsive Yukawa potential with a small fraction of the particles coupled to an external drive. Distortions in the arrangement of the nondriven particles produce a dynamically induced effective attraction between the driven particles, giving rise to intermittent one-dimensional stringlike structures. The velocity of a moving string increases with the number of driven particles in the string. We identify the average stable string length as a function of driving force, background particle density, and particle charge. This model represents a new type of collective transport system composed of interacting particles moving through deformable disorder.Comment: 4 pages, 4 postscript figure

    Electron Sources for Future Lightsources, Summary and Conclusions for the Activities during FLS 2012

    Full text link
    This paper summarizes the discussions, presentations, and activity of the Future Light Sources Workshop 2012 (FLS 2012) working group dedicated to Electron Sources. The focus of the working group was to discuss concepts and technologies that might enable much higher peak and average brightness from electron beam sources. Furthermore the working group was asked to consider methods to greatly improve the robustness of operation and lower the costs of providing electrons.Comment: 11 pages, 7 figures, summary paper from working group Future Light Sources 2012 Workshop at Newport News, Virginia, USA (http://www.jlab.org/conferences/FLS2012/

    Protein unfolding and refolding as transitions through virtual states

    Get PDF
    Single-molecule atomic force spectroscopy probes elastic properties of titin, ubiquitin and other relevant proteins. We explain bioprotein folding dynamics under both length- and force-clamp by modeling polyprotein modules as particles in a bistable potential, weakly connected by harmonic spring linkers. Multistability of equilibrium extensions provides the characteristic sawtooth force-extension curve. We show that abrupt or stepwise unfolding and refolding under force-clamp conditions involve transitions through virtual states (which are quasi-stationary domain configurations) modified by thermal noise. These predictions agree with experimental observations.Comment: 6 pages, accepted for publication in EPL http://iopscience.iop.org/ep

    Active elastohydrodynamics of vesicles in narrow, blind constrictions

    Get PDF
    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semi-analytical theory for active transport of vesicles that are forced through such constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel, and find that relative to an open channel, transport into a blind end leads to the formation of an effective lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of non-local hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries

    Swarming in shallow waters

    Get PDF
    A swarm is a collection of separate objects that move autonomously in the same direction in a concerted fashion. This type of behavior is observed in ensembles of various organisms but has proven inherently difficult to realize in artificial chemical systems, where the components have to self-assemble dynamically and, at the same time, propel themselves. This paper describes a class of systems in which millimeter-sized components interact hydrodynamically and organize into dissipative structures that swarm in thin fluid layers. Depending on the geometry of the particles, various types of swarms can be engineered, including ensembles that rotate, follow a "leader", or are pushed in front of a larger particle

    Electron transport through a metal-molecule-metal junction

    Full text link
    Molecules of bisthiolterthiophene have been adsorbed on the two facing gold electrodes of a mechanically controllable break junction in order to form metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have been recorded at room temperature. Zero bias conductances were measured in the 10-100 nS range and different kinds of non-linear I-V curves with step-like features were reproducibly obtained. Switching between different kinds of I-V curves could be induced by varying the distance between the two metallic electrodes. The experimental results are discussed within the framework of tunneling transport models explicitly taking into account the discrete nature of the electronic spectrum of the molecule.Comment: 12 pages, 12 figures to appear in Phys. Rev. B 59(19) 199

    STM studies of ABP molecules - towards molecular latching for dangling-bond wire circuits

    Get PDF
    Das Ziel der vorliegenden Arbeit ist es ein Molekül zu finden und mittels hochauflösender Techniken zu untersuchen, das auf passivierten Halbleiteroberflächen als Schalter in atomaren Schaltkreisen wirken kann. Für diesen Zweck stehen Moleküle zur Verfügung, die aus mindestens einem aromatischen Ring und einer Ankergruppe bestehen, die kovalent auf Silizium bindet. Um einzelne Moleküle auf leitenden Substraten zu untersuchen, hat sich die Nutzung eines Tieftemperatur-Rastertunnelmikroskops (low-temperature scanning tunneling microscope, LT-STM) als geeignetes Werkzeug erwiesen. Zum Einen ist damit die topographische und spektroskopische Charakterisierung von leitenden Proben auf atomarer Ebene möglich, zum Anderen können einzelne Moleküle und Nanostrukturen hochpräzise bewegt oder elektrisch angesprochen werden. Atomare Schaltkreise können besonders präzise auf passivierten Halbleiteroberflächen hergestellt werden. So ist es zum Beispiel möglich, eine Reihe Wasserstoffatome gezielt mit Hilfe einer STM-Spitze von der Oberfläche zu desorbieren. Durch die Überlappung der dann freien Orbitale entstehen, je nach Richtung auf der Oberfläche, atomare Drähte mit unterschiedlichen elektrischen Eigenschaften. Da die Drähte empfindlich hinsichtlich ihrer chemischen Umgebung sind, können diese auch als logische Schaltelemente verwendet werden. Dafür werden die Drähte mit einzelnen Molekülen angesteuert. Geeignete Schaltmoleküle wurden zunächst auf der Au(111)-Oberfläche getestet. Dabei konnten grundlegende und interessante Eigenschaften von selbst-assemblierten Strukturen untersucht werden. Am Modellsystem von nicht-kovalent gebundenen 4-Acetylbiphenyl-Nanostrukturen auf Gold (111) wurde eine neue Methode entwickelt diese Molekülgruppen behutsam zu bewegen. Durch Anlegen eines Spannungspulses auf den Nanostrukturen konnten diese auf der Oberfläche über weite Strecken gezielt und ohne Beeinflussung der internen Struktur positioniert werden. Um Moleküle für zukünftige elektronische Anwendungen zu untersuchen wurde zunächst das Verfahren zur Präparation von sauberen Siliziumoberflächen in die hier verwendeten Anlage implementiert. Es konnten reproduzierbar saubere, (2×1) rekonstruierte Si(100)- Oberflächen präpariert und charakterisiert werden. Nach der erfolgreichen Präparation von Silizium-Oberflächen und der Entwicklung geeigneter Präparationsrezepte für das Schalter-Molekül 4-Acetylbiphenyl (ABP) wurden beide Systeme vereint. Das Molekül konnte erfolgreich auf die Silizium(100)-Oberfläche aufgebracht und die native Adsorptionskonfiguration durch das Anlegen von Spannungspulsen geändert werden. Das Schalten zwischen zwei Konfigurationen ist reproduzierbar und umkehrbar. ABP ist somit der erste umkehrbare molekulare Schalter, der jemals auf Silizium realisiert werden konnte. Bei der Untersuchung technomimetischer Moleküle in Radachsen-Form konnte bisher die Rollbewegung nur anhand der Analyse der Manipulationskurven nachvollzogen und belegt werden. In dieser Arbeit wurde das Rollen eines Nano-Radmoleküls bewiesen. Dazu wurde bei der Synthese in einem Teil der Subphthalocyanin-Räder eine Markierung in Form eines Stickstoffatoms gesetzt. Bei der lateralen Manipulation der Räder auf Gold(111) konnte dann durch Vergleich der STM-Bilder die Markierung verfolgt und darauf geschlossen werden, ob das Rad gerollt oder verschoben wurde.The aim of this thesis is the investigation of switching properties of single organic molecules, which can be used as molecular latches on a passivated silicon surface. Suitable molecules should be composed of an anchor group that can bind covalently to the silicon surface as well as an aromatic ring for the latching effect. For the imaging as well as the manipulation of single molecules on conductive substrates, a low-temperature scanning tunneling microscope, LT-STM, is a versatile and powerful tool. On the one hand, STM provides topographical and spectroscopic characterization of single molecules on conductive surfaces at the atomic level. On the other hand, under the tip of a STM single molecules and nanostructures can be moved with atomic precision or can be addressed by voltage pulses. Moreover, by STM it is possible to build atomic-scale circuits on passivated semiconducting surfaces as silicon (100). The STM tip is used to extract single hydrogen atoms from the surface to built atomic wires. As the orbitals of the depassivated dangling bonds of the silicon surface overlap differently depending on the direction of the wire in reference to the surface reconstruction, the electrical properties of the wires differ. Moreover, the properties of the wires vary depending on the chemical environment. Taking advantage of these characteristics, the atomic wires can be used as atomic-scale logic elements. However, to bring the input signal to a single logic element, latches are required to controllably passivate and depassivate single dangling-bond pairs. During preliminary studies on possible molecular latches, interesting experiments could be performed on 4-acetylbiphenyl (ABP) on Au(111). The molecules self assemble in non-covalently bond groups of three or four molecules. These groups can be moved controllably by applying voltage pulses on top of the supramolecular structure. The manipulation is possible over long ranges and without losing the internal structure of the assemblies. For the investigation of promising candidates for future molecular electronics on silicon, a preparation procedure tailored to the used UHV machine was developed. During this process, clean (2×1) reconstructed Si(100) surfaces could be prepared reproducibly and were characterized by means of STM imaging and spectroscopy. Switches are essential for electronic circuitry, on macroscopic as well as microscopic level. For the implementation of molecular devices on silicon, ABP is a promising candidate for a latch. In this thesis, ABP was successfully deposited on Si(100) and was switched by applying voltage pulses on top of the molecule. Two stable conformations were found and switching was realized reproducibly and reversibly. In the last part of this work, the rolling of a double-wheel technomimetic molecule was demonstrated. This thesis shows the rolling of a nanowheel on Au(111) as opposed to pushing, pulling or sliding. For this, the subphthalocyanine wheels were tagged by nitrogen during their synthesis. As this tag has different electronic properties than the rest of the wheel, it can be monitored in the STM images. By comparing the images before and after the manipulation the position of the tag proves the actual rolling
    corecore