336,308 research outputs found

    Decompositions of two player games: potential, zero-sum, and stable games

    Full text link
    We introduce several methods of decomposition for two player normal form games. Viewing the set of all games as a vector space, we exhibit explicit orthonormal bases for the subspaces of potential games, zero-sum games, and their orthogonal complements which we call anti-potential games and anti-zero-sum games, respectively. Perhaps surprisingly, every anti-potential game comes either from the Rock-Paper-Scissors type games (in the case of symmetric games) or from the Matching Pennies type games (in the case of asymmetric games). Using these decompositions, we prove old (and some new) cycle criteria for potential and zero-sum games (as orthogonality relations between subspaces). We illustrate the usefulness of our decomposition by (a) analyzing the generalized Rock-Paper-Scissors game, (b) completely characterizing the set of all null-stable games, (c) providing a large class of strict stable games, (d) relating the game decomposition to the decomposition of vector fields for the replicator equations, (e) constructing Lyapunov functions for some replicator dynamics, and (f) constructing Zeeman games -games with an interior asymptotically stable Nash equilibrium and a pure strategy ESS

    Evolutionarily Stable Strategies in Quantum Games

    Full text link
    Evolutionarily Stable Strategy (ESS) in classical game theory is a refinement of Nash equilibrium concept. We investigate the consequences when a small group of mutants using quantum strategies try to invade a classical ESS in a population engaged in symmetric bimatrix game of Prisoner's Dilemma. Secondly we show that in an asymmetric quantum game between two players an ESS pair can be made to appear or disappear by resorting to entangled or unentangled initial states used to play the game even when the strategy pair remains a Nash equilibrium in both forms of the game.Comment: RevTex,contents extended to include asymmetric games,no figur

    Hedonic Games with Graph-restricted Communication

    Full text link
    We study hedonic coalition formation games in which cooperation among the players is restricted by a graph structure: a subset of players can form a coalition if and only if they are connected in the given graph. We investigate the complexity of finding stable outcomes in such games, for several notions of stability. In particular, we provide an efficient algorithm that finds an individually stable partition for an arbitrary hedonic game on an acyclic graph. We also introduce a new stability concept -in-neighbor stability- which is tailored for our setting. We show that the problem of finding an in-neighbor stable outcome admits a polynomial-time algorithm if the underlying graph is a path, but is NP-hard for arbitrary trees even for additively separable hedonic games; for symmetric additively separable games we obtain a PLS-hardness result
    • …
    corecore