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Abstract

This paper studies the procedural egalitarian solution on the class of egalitarian
stable games. By deriving several axiomatic characterizations involving consistency and
monotonicity, we show that the procedural egalitarian solution satisfies various desirable
properties and unites many egalitarian concepts defined in the literature. Moreover, we
illustrate the computational implications of these characterizations and relate the class
of egalitarian stable games to other well-known classes.
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egalitarian stability
JEL classification: C71

1 Introduction

Egalitarianism is a social and economic principle pursuing the notion of equality. This
principle stems from the belief that all humans are fundamentally equal and should be treated
equally. Such a point of view is often justified using philosophical thought experiments in
which members of a society negotiate about social goals behind the veil of ignorance, i.e.
without being aware of their identity, characteristics, and natural abilities and endowments
a priori.

However, in many interactive situations, egalitarianism is not the only desirable value
that plays a role. Agents often distinguish themselves in terms of contributions, rights,
needs, power, or responsibility in such a way that a purely equal treatment is not necessarily
considered fair. In these cases, society looks for a trade-off between egalitarianism and other
fairness principles.

In this paper, we interpret egalitarianism as a principle for distributive justice, i.e. the
nature of socially just allocations of goods and bads. In this context, a widely used measure
for egalitarianism in economic distributions such as incomes, wealth, and taxes is the so-called
Lorenz criterion. Roughly speaking, a certain reward or cost allocation Lorenz dominates
another allocation if the former cumulatively assigns to each subgroup of ex post richest
agents less than the latter does.

∗International Laboratory of Game Theory and Decision Making, National Research University Higher
School of Economics, St. Petersburg, Russian Federation. Support from the Basic Research Program of the
National Research University Higher School of Economics is gratefully acknowledged.
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In a seminal paper, Dutta and Ray (1989) applied the Lorenz criterion in the context of
coalitional games, where the focus is on allocating joint revenues among cooperating players.
Here, strict equal division is not really satisfactory since it does not take into account the
economic possibilities of subcoalitions. Instead, motivated by a coherent use of egalitarian
norms, Dutta and Ray (1989) applied the Lorenz criterion to the self-introduced Lorenz core.
Remarkably, and particularly caused by the Lorenz core not being closed, this results in at
most one payoff allocation, despite the partial ordering generated by the Lorenz criterion.
However, the proposed solution lacks existence for many games in its domain. In fact,
a general existence result has not been provided up to the present day, but existence is
guaranteed for the special class of convex games. There, the Dutta and Ray (1989) solution
belongs to the core and Lorenz dominates every other core allocation.

Inspired by the aforementioned work, several authors continued the line of research aiming
for an appropriate trade-off between egalitarianism and coalitional rationality in the context
of transferable utility games. Dutta and Ray (1991) applied the Lorenz criterion to the
equal division core. For this solution, existence is guaranteed under the mild condition that
the underlying game is cohesive, a weak form of superadditivity and balancedness, which
substantially widens the potential domain of applications. However, the Dutta and Ray
(1991) solution does not posses the extremely appealing uniqueness property of the Dutta
and Ray (1989) solution. The same holds for the approach taken by Hougaard, Peleg, and
Thorlund-Petersen (2001) and Arin and Iñarra (2001), where the Lorenz criterion is applied
to the core. This extends the Dutta and Ray (1989) solution for convex games to the class
of balanced games, but generally results in a set of multiple payoff allocations. Recently,
Dietzenbacher, Borm, and Hendrickx (2017) introduced the procedural egalitarian solution
for which existence and uniqueness is guaranteed for any transferable utility game. Moreover,
it coincides with the Dutta and Ray (1989) solution on the class of convex games.

Dutta (1990) axiomatically characterized the Dutta and Ray (1989) solution on the class
of convex games. Klijn, Slikker, Tijs, and Zarzuelo (2000) presented several reformulations
of these characterizations. In both works, a significant role is played by the reduced game
property of Davis and Maschler (1965), to which we refer as max-consistency. In the earlier
development of the theory of coalitional games, max-consistency has already been exploited
for axiomatizations of the prenucleolus (cf. Sobolev (1975)), the prekernel (cf. Peleg (1986)),
and the core (cf. Peleg (1986)). Later, in an egalitarian context, it was not only part of
axiomatizations of the Dutta and Ray (1989) solution, but also of an analogous result for
the egalitarian core (cf. Arin and Iñarra (2001)).

This paper initiates an axiomatic study of the procedural egalitarian solution. The
procedural egalitarian solution is based on the result of an iterative procedure in which
intercoalitional egalitarian considerations are central. This procedure converges to a steady
state where each player has acquired a certain egalitarian claim which is attainable in at
least one egalitarian admissible coalition. Taking these claims into account, the procedural
egalitarian solution allocates the worth of the grand coalition in an egalitarian way among
the cooperating players.

We focus on the large class of egalitarian stable games where the grand coalition is
egalitarian admissible. There, the procedural egalitarian solution turns out to be a Lorenz
undominated element of the core and satisfies various desirable properties. We start from
the original result of Dutta (1990) where the Dutta and Ray (1989) solution for convex
games is characterized by an alternative solution for two-player games, called constrained
egalitarianism, and max-consistency. These axioms do not comprise a unique solution on
the larger class of egalitarian stable games. However, an elementary characterization of
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constrained egalitarianism does lead to a full axiomatization of the procedural egalitarian
solution. Interestingly, this axiomatization induces an alternative computational method for
the underlying iterative procedure.

A second characterization tells that the procedural egalitarian solution is the unique
selector from the egalitarian core which satisfies aggregate monotonicity. In this respect,
the procedural egalitarian solution can also be interpreted as a trade-off between egalitarian
coalitional rationality and aggregate monotonicity. Arin, Kuipers, and Vermeulen (2008)
provided sufficient conditions for egalitarianism based on symmetry and core contraction
independence. This inspires us to derive a third axiomatization of the procedural egalitarian
solution using coalitional rationality, aggregate monotonicity, symmetry, and core contraction
independence.

In the analysis, an explicit comparison is made with the equal division solution, which
simply prescribes equal division of the worth of the grand coalition, and the coalitional
Nash solution (cf. Compte and Jehiel (2010)), which assigns to any balanced game the core
element with maximal payoff product. Besides, we observe that the procedural egalitarian
solution unites many egalitarian concepts defined in the literature.

We conclude by relating the class of egalitarian stable games with other well-known
subclasses of balanced games which contain all convex games. In particular, we show that
all large core games (cf. Sharkey (1982)) are egalitarian stable. Several open questions could
serve as fruitful suggestions for future research.

This paper is organized in the following way. Section 2 formally describes the procedural
egalitarian solution based on Dietzenbacher et al. (2017) and derives some useful elementary
results. Section 3 formulates several axiomatic characterizations, discusses the computational
implications, and presents connections with other egalitarian concepts. Section 4 elaborates
more on the class of egalitarian stable games.

2 The procedural egalitarian solution

Let N be a nonempty and finite set. A transferable utility game is a pair (N, v) in which
N ⊆ N is a nonempty set of players and v : 2N → R+ assigns to each coalition S ∈ 2N its
worth v(S) ∈ R+ such that v(∅) = 0.1 Let TUN denote the class of all transferable utility
games.

Let (N, v) ∈ TUN . The imputation set is defined by

I(N, v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀i∈N : xi ≥ v({i})

}
and the core is defined by

C(N, v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀S∈2N :
∑
i∈S

xi ≥ v(S)

}
.

The game (N, v) is imputation admissible if I(N, v) 6= ∅, balanced if C(N, v) 6= ∅, and convex
(cf. Shapley (1971)) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ∈ 2N . Convex games
are balanced, and balanced games are imputation admissible.

1Although completely unnecessary for the procedural egalitarian solution, we restrict to nonnegative
games in order to make a solid comparison with the coalitional Nash solution. However, none of the formal
results depends on this restriction.
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A solution on TUN∗ ⊆ TUN is a function f which assigns to any (N, v) ∈ TUN∗ a payoff
allocation f(N, v) ∈ RN for which

∑
i∈N fi(N, v) = v(N). Throughout this paper, f is the

generic notation for a solution.

We focus on the procedural egalitarian solution introduced by Dietzenbacher et al. (2017).
This solution is based on the result of an iterative procedure in which intercoalitional egal-
itarian considerations are central. The formal definition of this procedure follows after an
illustrative example.

Example 1
Let (N, v) ∈ TUN be the game with N = {1, 2, 3} for which the worth of each coalition and
the egalitarian procedure underlying the procedural egalitarian solution are presented in the
following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 5 0 0 8 0 0 9
χv,1(S) (5, ·, ·) (·, 0, ·) (·, ·, 0) (4, 4, ·) (0, ·, 0) (·, 0, 0) (3, 3, 3)
χv,2(S) (5, ·, ·) (·, 0, ·) (·, ·, 0) (5, 3, ·) (5, ·,-5) (·, 0, 0) (5, 2, 2)
χv,3(S) (5, ·, ·) (·,3, ·) (·, ·, 0) (5,3, ·) (5, ·,-5) (·,3,-3) (5,3, 1)

χv,k(S) (k ≥ 4) (5, ·, ·) (·,3, ·) (·, ·,1) (5,3, ·) (5, ·,1) (·,3,1) (5,3,1)

The function χv,1 divides the worth of each coalition equally among its members. Players
can fix their allocated payoff in a coalition if none of its members is allocated a higher payoff
in any other coalition. This is the case for player 1 with a payoff of 5 in coalition {1}. In
the next iteration, χv,2 assigns in each coalition to player 1 the payoff of 5 and divides the
remaining worth equally among the other members. Again, players can fix their allocated
payoff in a coalition if none of its members is allocated a higher payoff in any other coalition.
This is still the case for player 1 with a payoff of 5 in coalition {1}, but this is now also the
case for player 2 with a payoff of 3 in coalition {1, 2}. This procedure continues in this way
and guarantees that all players fix a payoff at some point. 4

The egalitarian procedure
Let (N, v) ∈ TUN . Define P v,0 = ∅. Let k ∈ N. The function χv,k assigns to each
S ∈ 2N \ {∅} the payoff allocation χv,k(S) ∈ RS defined by

χv,ki (S) =

{
γv,k−1i if i ∈ S ∩ P v,k−1;
v(S)−

∑
j∈S∩Pv,k−1 γ

v,k−1
j

|S\Pv,k−1| if i ∈ S \ P v,k−1.

The collection Av,k ⊆ 2N \ {∅} is defined by

Av,k =

{
S ∈ 2N \ {∅}

∣∣∣∣∣ ∑
i∈S

χv,ki (S) = v(S),∀i∈S∀T∈2N :i∈T : χv,ki (T ) ≤ χv,ki (S)

}
.

The set P v,k ∈ 2N \ {∅} is defined by P v,k =
⋃
S∈Av,k S. The vector γv,k ∈ RPv,k

is defined

by γv,ki = χv,ki (S) for all i ∈ P v,k, where S ∈ Av,k and i ∈ S. #

This procedure is well-defined and guarantees that all players fix a payoff within a number
of iterations which is bounded by the number of players in the underlying game, i.e. for any
(N, v) ∈ TUN , we have P v,k ⊆ P v,k+1 for all k ∈ N and P v,k = N for some k ≤ |N |. A
useful observation is that this potential payoff does not increase over the iterations. As long
as some players have not fixed a payoff yet, their allocated payoffs in a next iteration will
be at most their allocated payoffs in the current iteration. This is formally described by the
following lemma.
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Lemma 2.1
Let (N, v) ∈ TUN and let k ∈ N. Then χv,k+1

i (S) ≤ χv,ki (S) for all i ∈ N \ P v,k and each
S ∈ 2N with i ∈ S.

Proof. Let i ∈ N \ P v,k and let S ∈ 2N be such that i ∈ S. Then

χv,k+1
i (S) =

v(S)−
∑
j∈S∩Pv,k γ

v,k
j

|S \ P v,k|

=
v(S)−

∑
j∈S∩Pv,k−1 γ

v,k
j −

∑
j∈S∩(Pv,k\Pv,k−1) γ

v,k
j

|S \ P v,k|

≤
v(S)−

∑
j∈S∩Pv,k−1 γ

v,k−1
j −

∑
j∈S∩(Pv,k\Pv,k−1) χ

v,k
j (S)

|S \ P v,k|

=
|S \ P v,k−1|χv,ki (S)− |S ∩ (P v,k \ P v,k−1)|χv,ki (S)

|S \ P v,k|

=
|S \ P v,k|χv,ki (S)

|S \ P v,k|
= χv,ki (S).

This also means that, when a player fixes a payoff for the first time, this payoff is the
lowest among all members of the corresponding coalitions. In general, it implies that for each
player there exists a coalition where all members can attain their fixed payoffs and all these
payoffs are at least as large as the fixed payoff of this particular player. This remark will
be of great importance for the derivation of several properties of the procedural egalitarian
solution. The procedural egalitarian solution takes the fixed payoffs from the procedure and
the coalitions in which they are attainable into account to prescribe a payoff allocation for
the worth of the grand coalition. The fixed payoffs are called the egalitarian claims of the
players and coalitions in which they are attainable are called egalitarian admissible.

The procedural egalitarian solution
Let (N, v) ∈ TUN . The iteration nv ≤ |N | is defined by nv = min{k ∈ N | P v,k = N}. The
vector of egalitarian claims γ̂v ∈ RN is defined by γ̂v = γv,n

v

. The collection of egalitarian
admissible coalitions Âv ⊆ 2N \ {∅} is defined by Âv = Av,nv

. The set of strong egalitarian

claimants Dv ∈ 2N is defined by Dv =
⋂
{S ∈ Âv | ∀T∈Âv : S 6⊂ T}. The procedural

egalitarian solution PES(N, v) ∈ RN is defined by

PES(N, v) =
(

(γ̂vi )i∈Dv , (min{γ̂vi , λ})i∈N\Dv

)
,

where λ ∈ R is such that
∑
i∈N PESi(N, v) = v(N). #

Example 2
Let (N, v) ∈ TUN be the game from Example 1. Then nv = 3, γ̂v = (5, 3, 1), Âv =
{{1}, {1, 2}, {1, 2, 3}}, and Dv = N . Hence, PES(N, v) = (5, 3, 1). 4
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Let (N, v) ∈ TUN . The vector of egalitarian claims is an aspiration (cf. Bennett (1983)),
i.e.

∑
j∈S γ̂

v
j ≥ v(S) for all S ∈ 2N , and for each i ∈ N there exists an S ∈ 2N with i ∈ S

for which
∑
j∈S γ̂

v
j = v(S). Lemma 2.1 even implies that for each i ∈ N there exists an

S ∈ 2N with i ∈ S for which
∑
j∈S γ̂

v
j = v(S) and γ̂vi ≤ γ̂vj for all j ∈ S. The collection of

egalitarian admissible coalitions consists of those coalitions in which all members can attain
their egalitarian claims, i.e.

Âv =

{
S ∈ 2N \ {∅}

∣∣∣∣∣ ∑
i∈S

γ̂vi = v(S)

}
.

The result of the egalitarian procedure is interpreted as a claims problem in which the
worth of the grand coalition is the endowment and the players are entitled to their egali-
tarian claims. Members of all inclusion-wise maximal egalitarian admissible coalitions are
called strong egalitarian claimants. The procedural egalitarian solution assigns to the strong
claimants their claims and divides the remaining worth of the grand coalition as equal as
possible among the other players under the condition that players are not allocated more
than their claims.

Example 3
Let (N, v) ∈ TUN be the game with N = {1, 2, 3} for which the worth of each coalition and
the first iteration of the egalitarian procedure are presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 1 1 0 1
χv,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) ( 1

2 ,
1
2 , ·) ( 1

2 , ·,
1
2 ) (·, 0, 0) ( 1

3 ,
1
3 ,

1
3 )

Then nv = 1, γ̂v = ( 1
2 ,

1
2 ,

1
2 ), Âv = {{1, 2}, {1, 3}}, and Dv = {1}. Hence, PES(N, v) =

( 1
2 ,

1
4 ,

1
4 ).2 4

Note that the grand coalition is not egalitarian admissible in Example 3. By contrast,
the grand coalition is egalitarian admissible in Example 1 and Example 2. In that case, the
vector of egalitarian claims is a feasible aspiration, all players are strong claimants, and the
procedural egalitarian solution simply assigns to all players their claims. Such games are
called egalitarian stable.

Egalitarian stability A game (N, v) ∈ TUN is egalitarian stable if N ∈ Âv. #

In fact, a game is egalitarian stable if and only if the procedural egalitarian solution is an
element of its core. Let TUNes denote the class of all egalitarian stable games. Dietzenbacher
et al. (2017) showed that convex games are egalitarian stable, and that egalitarian stable
games are balanced. For two-player games, egalitarian stability is equivalent to convexity
and balancedness. On the class of convex games, the procedural egalitarian solution coincides
with the Dutta and Ray (1989) solution, i.e. it is the Lorenz undominated element of the
Lorenz core and the Lorenz undominated element of the core.

2Surprisingly, the procedural egalitarian solution coincides with the Dutta and Ray (1991) solution, i.e.
it is the Lorenz undominated element of the equal division core. The Dutta and Ray (1989) solution does
not exist, i.e. there is no Lorenz undominated element of the Lorenz core.
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3 Egalitarianism and coalitional rationality

This section studies the procedural egalitarian solution on the class of egalitarian stable
games. There, the procedural egalitarian solution is an element of the core, which implies
that it is an element of the imputation set. In other words, it satisfies individual rationality
and coalitional rationality.

Individual rationality f(N, v) ∈ I(N, v) for all (N, v) ∈ TUNes . #

Coalitional rationality f(N, v) ∈ C(N, v) for all (N, v) ∈ TUNes . #

On the class of convex games, a strict subclass of egalitarian stable games, the procedural
egalitarian solution coincides with the Dutta and Ray (1989) solution. Dutta (1990) showed
that the Dutta and Ray (1989) solution is the unique solution on the class of convex games
satisfying constrained egalitarianism and max-consistency. Constrained egalitarianism is an
alternative solution for games with two players in which the worth of the grand coalition is
divided as equal as possible subject to individual rationality.3

Constrained egalitarianism

fi(N, v) =

{
max{v({i}), 12v(N)} if v({i}) ≥ v(N \ {i});
v(N)− v(N \ {i}) if v({i}) ≤ v(N \ {i}).

for all (N, v) ∈ TUNes with |N | = 2 and each i ∈ N . #

On the class of games with two players, constrained egalitarianism is equivalent to individual
rationality and the equal division upper bound. The equal division upper bound requires
that no player is allocated more than the maximal average worth in the game. This could
be desirable from an egalitarian point of view.

The equal division upper bound

fi(N, v) ≤ max
S∈2N\{∅}

v(S)

|S|

for all (N, v) ∈ TUNes and each i ∈ N . #

Lemma 3.1
If a solution satisfies individual rationality and the equal division upper bound, then it satisfies
constrained egalitarianism.

Proof. Let f be a solution on TUNes . Assume that f satisfies individual rationality and the
equal division upper bound. Let (N, v) ∈ TUNes with |N | = 2. Denote N = {1, 2} such that
v({1}) ≥ v({2}). Then v({1}) + v({2}) ≤ v(N) and f1(N, v) + f2(N, v) = v(N).

Suppose that v({1}) ≤ 1
2v(N). By the equal division upper bound, f1(N, v) ≤ 1

2v(N)
and f2(N, v) ≤ 1

2v(N). This means that f1(N, v) = f2(N, v) = 1
2v(N).

Now suppose that v({1}) ≥ 1
2v(N). By individual rationality, f1(N, v) ≥ v({1}). By

the equal division upper bound, f1(N, v) ≤ v({1}). This means that f1(N, v) = v({1}) and
f2(N, v) = v(N)− f1(N, v). Hence, f satisfies constrained egalitarianism.

3The standard solution for (N, v) ∈ TUN with |N | = 2 is for each i ∈ N defined by

fi(N, v) =
1

2
(v(N) + v({i})− v(N \ {i})) .

7



The other way around, a solution satisfies individual rationality and the equal division upper
bound on the class of two-player games if it satisfies constrained egalitarianism. Since the
Dutta and Ray (1989) solution for convex games satisfies individual rationality and the
equal division upper bound, the result of Dutta (1990) implies that the Dutta and Ray
(1989) solution is the unique solution on the class of convex games satisfying individual
rationality, the equal division upper bound, and max-consistency.

Max-consistency is based on reduced games as introduced by Davis and Maschler (1965)
in line with the following thought experiment. Suppose that some players reevaluate their
assigned payoffs within a specific subgroup. Serving as an appropriate benchmark, a new
cooperative game on this subgroup is defined in which the economic possibilities of all its
members are reflected. In this so-called reduced game, each coalition is allowed to cooperate
with any combination of players outside the subgroup, provided that they receive their
assigned payoffs. The corresponding solution is max-consistent if it prescribes for this reduced
game the same payoffs as for the original game.

Max-consistency fT (N, v) = f(T, vfT ) for all (N, v) ∈ TUNes and each T ∈ 2N \ {∅}, where

vfT (S) =


v(N)−

∑
i∈N\T fi(N, v) if S = T ;

maxR⊆N\T {v(S ∪R)−
∑
i∈R fi(N, v)} if S ∈ 2T \ {∅, T};

0 if S = ∅.

#

The procedural egalitarian solution satisfies individual rationality on the class of egalitarian
stable games. As derived in the Appendix, it also satisfies the equal division upper bound
and max-consistency.4 In particular, this means that the procedural egalitarian solution
satisfies constrained egalitarianism and max-consistency, which indirectly proofs that the
procedural egalitarian solution indeed coincides with the Dutta and Ray (1989) solution on
the class of convex games.

However, the procedural egalitarian solution is not the unique solution on the class of
egalitarian stable games satisfying constrained egalitarianism and max-consistency. Compte
and Jehiel (2010) introduced the coalitional Nash solution CN, which assigns to any game
(N, v) ∈ TUNes the payoff allocation

CN(N, v) = argmax
x∈C(N,v)

∏
i∈Nv

+

xi,

where Nv
+ = {i ∈ N | ∃x∈C(N,v) : xi > 0}. The coalitional Nash solution also satisfies con-

strained egalitarianism and max-consistency, but is in general different from the procedural
egalitarian solution. This is illustrated in the following example.

Example 4
Let (N, v) ∈ TUNes be the game with N = {1, 2, 3, 4} for which the worth of each coalition is
given by

v(S) =


8 if S = N ;

6 if S ∈ {{3, 4}, {1, 3, 4}, {2, 3, 4}};
5 if S ∈ {{2, 3}, {1, 2, 3}};
0 otherwise.

4In fact, the procedural egalitarian solution satisfies the equal division upper bound on the full class of
transferable utility games.
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The procedural egalitarian solution is given by PES(N, v) = (0, 2, 3, 3). The corresponding
payoff product equals zero, whereas there exist several core elements with a positive payoff
product, e.g. (1, 1, 4, 2). This means that the procedural egalitarian solution does not
coincide with the coalitional Nash solution. It does not coincide with the Dutta and Ray
(1989) solution DR either, which is given by DR(N, v) = (1, 1, 3, 3). Note that the Dutta
and Ray (1989) solution does not belong to the core. Moreover, the convex reduced game
({1, 2}, vDR

{1,2}) ∈ TUNes is given by

vDR
{1,2}(S) =

{
2 if S ∈ {{2}, {1, 2}};
0 otherwise.

By constrained egalitarianism, DR({1, 2}, vDR
{1,2}) = (0, 2). This means that the Dutta and

Ray (1989) solution does not satisfy max-consistency in general. 4

The purpose of Example 4 is twofold. First, it shows that the Dutta and Ray (1989)
solution does not satisfy max-consistency on its full domain of existence. Second, it shows
that the procedural egalitarian solution, the coalitional Nash solution, and the Dutta and
Ray (1989) solution are all generally different. There is no unique solution for egalitarian
stable games satisfying constrained egalitarianism and max-consistency. However, there is a
unique solution satisfying individual rationality, the equal division upper bound, and max-
consistency. It is the procedural egalitarian solution.

Theorem 3.2
The procedural egalitarian solution is the unique solution on TUNes satisfying individual ra-
tionality, the equal division upper bound, and max-consistency.

Proof. The procedural egalitarian solution satisfies individual rationality. By Lemma A.1,
the procedural egalitarian solution satisfies the equal division upper bound. By Lemma A.2,
the procedural egalitarian solution satisfies max-consistency. Let f be a solution on TUNes
satisfying individual rationality, the equal division upper bound, and max-consistency.

First, we show that f satisfies coalitional rationality. Suppose that f does not satisfy
coalitional rationality. Let (N, v) ∈ TUNes and let S ∈ 2N be such that

∑
i∈S fi(N, v) < v(S).

By individual rationality, 1 < |S| < |N |. Let i ∈ S. Then

fi(N, v) = fi

(
(N \ S) ∪ {i}, vf(N\S)∪{i}

)
≥ vf(N\S)∪{i}({i})

= max
R⊆S\{i}

{
v(R ∪ {i})−

∑
i∈R

fi(N, v)

}
≥ v(S)−

∑
i∈S\{i}

fi(N, v) > fi(N, v),

where the first equality follows from max-consistency and the first inequality follows from
individual rationality. This is a contradiction. Hence, f satisfies coalitional rationality.

Next, we show by induction on the number of players that f is uniquely defined. For all
(N, v) ∈ TUNes with |N | = 1, we have f(N, v) = v(N). Let k ∈ N and assume that f(N, v)
is uniquely defined for all (N, v) ∈ TUNes with |N | ≤ k. Let (N, v) ∈ TUNes with |N | = k + 1.

Let S ∈ 2N \ {∅} be such that v(S)
|S| ≥

v(T )
|T | for all T ∈ 2N \ {∅}. By the equal division upper

bound, fi(N, v) ≤ v(S)
|S| for all i ∈ S. By coalitional rationality,

∑
i∈S fi(N, v) ≥ v(S). This

means that fi(N, v) = v(S)
|S| for all i ∈ S. By max-consistency, fN\S(N, v) = f(N \ S, vfN\S),

where f(N \ S, vfN\S) is uniquely defined since |N \ S| ≤ k. This means that f(N, v) is

uniquely defined. Hence, f(N, v) = PES(N, v).
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Theorem 3.2 has interesting computational implications for the procedural egalitarian
solution. In accordance with the proof of the uniqueness part, the procedural egalitarian
solution can also be obtained by iteratively assigning the maximal average worth to all
members of the corresponding coalitions and subsequently considering the reduced game
with respect to the other players. This exactly corresponds with the computation method
for the (max-)reduced equal split-off set introduced by Llerena and Mauri (2016). Besides, it
is in turn equivalent to a third computation method in which the maximal average remaining
worth is iteratively assigned to all members of the corresponding coalitions. This is illustrated
in the following example.

Example 5
Let (N, v) ∈ TUNes be the game with N = {1, 2, 3, 4} for which the worth of each coalition is
given by

v(S) =



24 if S = N ;

18 if S = {2, 3};
10 if S = {3};
6 if S = {1};
0 otherwise.

The first three iterations of the egalitarian procedure are partially presented in the following
table.

S {1} {3} {2, 3} {1, 2, 3, 4}
v(S) 6 10 18 24
χv,1(S) (6, ·, ·, ·) (·, ·, 10, ·) (·, 9, 9, ·) (6, 6, 6, 6)
χv,2(S) (6, ·, ·, ·) (·, ·,10, ·) (·, 8,10, ·) (6, 4,10, 4)
χv,3(S) (6, ·, ·, ·) (·, ·,10, ·) (·,8,10, ·) (6,8,10, 0)

The procedural egalitarian solution is given by PES(N, v) = (6, 8, 10, 0). Note that players
do not acquire their egalitarian claims in order.5 Alternatively, the procedural egalitarian
solution can be computed by iteratively assigning the maximal average remaining worth to
all members of the corresponding coalitions. This is presented in the following table.

S {1} {3} {2, 3} {1, 2, 3, 4}
v(S) 6 10 18 24

(6, ·, ·, ·) (·, ·, 10, ·) (·, 9, 9, ·) (6, 6, 6, 6)
(6, ·, ·, ·) (·, ·,10, ·) (·, 8,10, ·) (4 2

3 , 4
2
3 ,10, 4

2
3 )

(6, ·, ·, ·) (·, ·,10, ·) (·,8,10, ·) (3,8,10, 3)
(6, ·, ·, ·) (·, ·,10, ·) (·,8,10, ·) (6,8,10, 0)

4

Let (N, v) ∈ TUNes . For any payoff allocation x ∈ RN , the maximum surplus (cf. Davis
and Maschler (1965)) of player i ∈ N over j ∈ N \ {i} is defined by

sxij(N, v) = max
S∈2N :i∈S,j /∈S

{
v(S)−

∑
h∈S

xh

}
.

The egalitarian core (cf. Arin and Iñarra (2001)) is defined by

EC(N, v) =
{
x ∈ C(N, v)

∣∣ ∀i,j∈N :xi>xj
: sxij(N, v) = 0

}
.

5However, in convex games, players do acquire their egalitarian claims from high to low.
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Let (N, v) ∈ TUNes . For any payoff allocation x ∈ RN , let x ∈ R|N | be obtained from
x by permuting its coordinates in such a way that x1 ≥ . . . ≥ x|N |. The payoff allocation

y ∈ RN Lorenz dominates x ∈ RN , denoted by y ≺Lor x, if y 6= x and
∑k
i=1 yi ≤

∑k
i=1 xi

for all k ∈ {1, . . . , |N |}. The strong egalitarian core (cf. Hougaard et al. (2001) and Arin
and Iñarra (2001))6 is defined by

SEC(N, v) =
{
x ∈ C(N, v)

∣∣ ∀y∈C(N,v) : y 6≺Lor x
}
.

In other words, an allocation is an element of the egalitarian core if and only if no other
core allocation can be obtained by an equalizing bilateral transfer (cf. Arin et al. (2008)).
Similarly, an allocation is an element of the strong egalitarian core if and only if no other
core allocation can be obtained by a finite number of equalizing bilateral transfers. Indeed,
the strong egalitarian core is a subset of the egalitarian core. A solution satisfies egalitarian
coalitional rationality if it is an element of the egalitarian core, and satisfies strong egalitarian
coalitional rationality if it is an element of the strong egalitarian core.

Egalitarian coalitional rationality f(N, v) ∈ EC(N, v) for all (N, v) ∈ TUNes . #

Strong egalitarian coalitional rationality f(N, v) ∈ SEC(N, v) for all (N, v) ∈ TUNes .
#

On the class of egalitarian stable games, the procedural egalitarian solution satisfies strong
egalitarian coalitional rationality, i.e. it is a Lorenz undominated element of the core. This
is another indirect proof that the procedural egalitarian solution coincides with the Dutta
and Ray (1989) solution on the class of convex games.

Lemma 3.3
The procedural egalitarian solution satisfies strong egalitarian coalitional rationality.

Proof. Let (N, v) ∈ TUNes . Denote x = PES(N, v). Let y ∈ C(N, v). We show that y = x

if
∑k
i=1 yi ≤

∑k
i=1 xi for all k ∈ {1, . . . , |N |}. Assume that

∑k
i=1 yi ≤

∑k
i=1 xi for all

k ∈ {1, . . . , |N |}. Define R0 = ∅ and Rk = {i ∈ N | ∀j∈N\Rk−1
: xj ≤ xi} for all k ∈ N.

Then Rk−1 ⊆ Rk for all k ∈ N and Rk = N for all k ≥ |N |. We show by induction that
yRk

= xRk
for all k ∈ N. Clearly, yi = xi for all i ∈ R0.

Let k ∈ N and assume that yi = xi for all i ∈ Rk−1. Then yi ≤ xi for all i ∈ Rk. Let

i ∈ Rk \ Rk−1 and let S ∈ Âv with i ∈ S be such that xi ≤ xj for all j ∈ S. Then S ⊆ Rk
and

v(S) ≤
∑
j∈S

yj ≤
∑
j∈S

xj = v(S).

This means that yj = xj for all j ∈ S. In general, yi = xi for all i ∈ Rk. Hence, the
procedural egalitarian solution satisfies strong egalitarian coalitional rationality.

Corollary 3.4
The procedural egalitarian solution is the unique solution on TUNes satisfying strong egalitar-
ian coalitional rationality, the equal division upper bound, and max-consistency.

6Arin and Iñarra (2001) called this the Lorenz stable set.
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The solution f on TUNes for which f(N, v) = (4, 3, 3, 2, 7) if N = {1, 2, 3, 4, 5} and

v(S) =


19 if S = N ;

12 if S = {1, 2, 3, 4};
7 if S ∈ {{5}, {1, 2}, {1, 3}};
0 otherwise,

and f(N, v) = PES(N, v) otherwise, satisfies strong egalitarian coalitional rationality and
the equal division upper bound, but does not satisfy max-consistency. The coalitional Nash
solution satisfies strong egalitarian coalitional rationality and max-consistency, but does not
satisfy the equal division upper bound. The equal division solution ED, which assigns to
any game (N, v) ∈ TUNes the payoff allocation

ED(N, v) =

(
v(N)

|N |

)
i∈N

,

satisfies the equal division upper bound and max-consistency, but does not satisfy individual
rationality. This means that the properties in Theorem 3.2 are independent and remain
independent when individual rationality is strengthened to strong egalitarian coalitional
rationality as in Corollary 3.4.

A consequence of violating the equal division upper bound is that the coalitional Nash
solution does not satisfy monotonicity properties. If the worth of the grand coalition turns
out to be larger than expected, some players can be worse off. This property, to which we refer
as aggregate monotonicity, was first described by Megiddo (1974). Young (1985) introduced
the coalitional monotonicity property which requires that no member can be worse off when
the worth of a coalition increases, ceteris paribus. Clearly, coalitional monotonicity implies
aggregate monotonicity.

Coalitional monotonicity fS(N, v) ≤ fS(N, v′) for all (N, v), (N, v′) ∈ TUNes and each
S ∈ 2N for which v(S) ≤ v′(S) and v(T ) = v′(T ) for all T ∈ 2N \ {S}. #

Aggregate monotonicity f(N, v) ≤ f(N, v′) for all (N, v), (N, v′) ∈ TUNes for which
v(N) ≤ v′(N) and v(S) = v′(S) for all S ⊂ N . #

Hokari (2000) showed that the Dutta and Ray (1989) solution satisfies coalitional mono-
tonicity on the class of convex games. Young (1985) showed that coalitional rationality and
coalitional monotonicity are not compatible on the class of balanced games. The following
example shows that, on the class of balanced games, egalitarian coalitional rationality and
aggregate monotonicity are not compatible either.

Example 6
Let (N, v) ∈ TUN be the game from Example 3. Then EC(N, v) = {(1, 0, 0)}. Let (N, v′) ∈
TUNes be the game with N = {1, 2, 3} for which the worth of each coalition is presented in
the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v′(S) 0 0 0 1 1 0 1 1

2

Then v(N) ≤ v′(N) and v(S) = v′(S) for all S ⊂ N . However, EC(N, v′) = {( 1
2 ,

1
2 ,

1
2 )}. This

means that egalitarian coalitional rationality and aggregate monotonicity are not compatible.
4
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However, on the class of egalitarian stable games, all these properties are compatible, as
they are satisfied by the procedural egalitarian solution.7 Moreover, egalitarian coalitional
rationality and aggregate monotonicity even characterize the procedural egalitarian solution.

Theorem 3.5
The procedural egalitarian solution is the unique solution on TUNes satisfying egalitarian
coalitional rationality and aggregate monotonicity.

Proof. By Lemma 3.3, the procedural egalitarian solution satisfies egalitarian coalitional ra-
tionality. By Lemma A.3, the procedural egalitarian solution satisfies aggregate monotonic-
ity. Let f be a solution on TUNes satisfying egalitarian coalitional rationality and aggregate
monotonicity. Let (N, v) ∈ TUNes . We show that f(N, v) is uniquely defined. Define Q0 = ∅.
Let k ∈ N. Define

αk = max
S∈2N :S*Qk−1

{
v(S)−

∑
j∈S∩Qk−1

fj(N, v)

|S \Qk−1|

}

and Qk =
⋃

argmax
S∈2N :S*Qk−1

{
v(S)−

∑
j∈S∩Qk−1

fj(N, v)

|S \Qk−1|

}
∪Qk−1.

We show by induction that for all k ∈ N, fi(N, v) ≤ αk for each i ∈ N \ Qk−1, and
fi(N, v) = αk for each i ∈ Qk \Qk−1.

Suppose that fi(N, v) > α1 for some i ∈ N . Define R1 = argmaxi∈N fi(N, v). Then
R1 6= N . Define β1 ∈ R such that

max
i∈N

fi(N, v) > β1 > max

{
α1, max

i∈N\R1

fi(N, v)

}
.

Define (N, v′1) ∈ TUNes by

v′1(S) =

{∑
i∈R1

fi(N, v) + |N \R1|β1 if S = N ;

v(S) otherwise.

Then v′1(N) > v(N). By aggregate monotonicity, f(N, v′1) ≥ f(N, v). Suppose that
fi(N, v

′
1) > fi(N, v) for some particular i ∈ N . Then∑

j∈S
fj(N, v

′
1) >

∑
j∈S

fj(N, v) ≥ v(S) = v′1(S)

for all S ⊂ N with i ∈ S. This means that s
f(N,v′1)
ij (N, v′1) < 0 for all j ∈ N \ {i}. Then

egalitarian coalitional rationality implies that fi(N, v
′
1) ≤ fj(N, v

′
1) for all j ∈ N . In other

words, fi(N, v
′
1) = fi(N, v) for each i ∈ R1, and fi(N, v

′
1) = β1 for each i ∈ N \R1. Then∑

i∈S
fi(N, v

′
1) >

∑
i∈S

α1 ≥
∑
i∈S

v(S)

|S|
= |S|v(S)

|S|
= v(S) = v′1(S)

for all S ∈ 2N \ {∅, N}. In particular, this means that s
f(N,v′1)
ij (N, v′1) < 0 for all i ∈ R1

and j ∈ N \ R1. This contradicts that f satisfies egalitarian coalitional rationality. Hence,
fi(N, v) ≤ α1 for each i ∈ N .

7In fact, the procedural egalitarian solution satisfies aggregate monotonicity on the full class of transferable
utility games. In this respect, the procedural egalitarian solution can also be interpreted as a trade-off between
egalitarian coalitional rationality and aggregate monotonicity.

13



By coalitional rationality,∑
i∈S

fi(N, v) ≥ v(S) = |S|α1 =
∑
i∈S

α1 ≥
∑
i∈S

fi(N, v)

for all S ∈ 2N \ {∅} for which v(S)
|S| = α1. This means that fi(N, v) = α1 for each i ∈ Q1.

Let k ∈ N and assume that for all h ∈ {1, . . . , k}, fi(N, v) ≤ αh for each i ∈ N \ Qh−1,
and fi(N, v) = αh for each i ∈ Qh\Qh−1. Suppose that fi(N, v) > αk+1 for some i ∈ N \Qk.
Define Rk+1 = argmaxi∈N\Qk

fi(N, v). Then Rk+1 6= N \Qk. Define βk+1 ∈ R such that

αk ≥ max
i∈N\Qk

fi(N, v) > βk+1 > max

{
αk+1, max

i∈N\(Qk∪Rk+1)
fi(N, v)

}
.

Define (N, v′k+1) ∈ TUNes by

v′k+1(S) =

{∑
i∈Qk∪Rk+1

fi(N, v) + |N \ (Qk ∪Rk+1)|βk+1 if S = N ;

v(S) otherwise.

Then v′k+1(N) > v(N). By aggregate monotonicity, f(N, v′k+1) ≥ f(N, v). Suppose that
fi(N, v

′
k+1) > fi(N, v) for some particular i ∈ N . Then∑

j∈S
fj(N, v

′
k+1) >

∑
j∈S

fj(N, v) ≥ v(S) = v′k+1(S)

for all S ⊂ N with i ∈ S. This means that s
f(N,v′k+1)

ij (N, v′k+1) < 0 for all j ∈ N \ {i}. Then
egalitarian coalitional rationality implies that fi(N, v

′
k+1) ≤ fj(N, v

′
k+1) for all j ∈ N . In

other words, fi(N, v
′
k+1) = fi(N, v) for each i ∈ Qk ∪Rk+1, and fi(N, v

′
k+1) = βk+1 for each

i ∈ N \ (Qk ∪Rk+1). Then∑
i∈S

fi(N, v
′
k+1) =

∑
i∈S∩Qk

fi(N, v
′
k+1) +

∑
i∈S\Qk

fi(N, v
′
k+1)

>
∑

i∈S∩Qk

fi(N, v) +
∑

i∈S\Qk

αk+1

≥
∑

i∈S∩Qk

fi(N, v) +
∑

i∈S\Qk

v(S)−
∑
j∈S∩Qk

fj(N, v)

|S \Qk|

=
∑

i∈S∩Qk

fi(N, v) + |S \Qk|
v(S)−

∑
j∈S∩Qk

fj(N, v)

|S \Qk|

=
∑

i∈S∩Qk

fi(N, v) + v(S)−
∑

j∈S∩Qk

fj(N, v)

= v(S)

= v′k+1(S)

for all S ⊂ N for which S * Qk. In particular, this means that s
f(N,v′k+1)

ij (N, v′k+1) < 0 for
all i ∈ Rk+1 and j ∈ N \ (Qk∪Rk+1). This contradicts that f satisfies egalitarian coalitional
rationality. Hence, fi(N, v) ≤ αk+1 for each i ∈ N \Qk.
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By coalitional rationality,∑
i∈S\Qk

fi(N, v) =
∑
i∈S

fi(N, v)−
∑

i∈S∩Qk

fi(N, v)

≥ v(S)−
∑

i∈S∩Qk

fi(N, v)

= |S \Qk|αk+1

=
∑

i∈S\Qk

αk+1

≥
∑

i∈S\Qk

fi(N, v)

for all S ∈ 2N with S * Qk for which
v(S)−

∑
j∈S∩Qk

fj(N,v)

|S\Qk| = αk+1. This means that

fi(N, v) = αk+1 for each i ∈ Qk+1 \Qk.

Corollary 3.6
The procedural egalitarian solution is the unique solution on TUNes satisfying strong egalitar-
ian coalitional rationality and coalitional monotonicity.

The coalitional Nash solution satisfies strong egalitarian coalitional rationality, but does not
satisfy aggregate monotonicity. The equal division solution satisfies coalitional monotonicity,
but does not satisfy egalitarian coalitional rationality. This means that the properties in
Theorem 3.5 are independent and remain independent when egalitarian coalitional rationality
is strengthened to strong egalitarian coalitional rationality, and aggregate monotonicity is
strengthened to coalitional monotonicity, as in Corollary 3.6.

Arin et al. (2008) provided sufficient conditions for egalitarian core allocations using the
properties symmetry and core contraction independence.8 Suppose that the core of a given
game turns out to be smaller than expected, but the original solution is still an element of
this smaller core. Then the core contraction independence property states that the solution
should not change. This can be motivated by the veil of ignorance argument. If members
of a society agree upon a certain core allocation without being aware of their own role, then
it is plausible that the selected allocation will not be modified when the set of alternatives
shrinks.

Dietzenbacher et al. (2017) showed that the procedural egalitarian solution satisfies
symmetry. We show that the procedural egalitarian solution also satisfies core contraction
independence and derive a third axiomatic characterization in terms of coalitional rationality,
aggregate monotonicity, and these two properties.

Symmetry fi(N, v) = fj(N, v) for all (N, v) ∈ TUNes and each i, j ∈ N for which v(S∪{i}) =
v(S ∪ {j}) for all S ⊆ N \ {i, j}. #

Core contraction independence f(N, v) = f(N, v′) for all (N, v), (N, v′) ∈ TUNes for
which f(N, v) ∈ C(N, v′) and C(N, v′) ⊆ C(N, v). #

8Arin et al. (2008) called this latter property independence of irrelevant core allocations.
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Theorem 3.7
The procedural egalitarian solution is the unique solution on TUNes satisfying coalitional ra-
tionality, aggregate monotonicity, symmetry, and core contraction independence.

Proof. The procedural egalitarian solution satisfies coalitional rationality and symmetry. By
Lemma A.3, the procedural egalitarian solution satisfies aggregate monotonicity. By Lemma
A.4, the procedural egalitarian solution satisfies core contraction independence. Let f be a
solution on TUNes satisfying coalitional rationality, aggregate monotonicity, symmetry, and
core contraction independence. Let (N, v) ∈ TUNes . We show that f(N, v) is uniquely defined.

Define Q0 = ∅ and β = minS∈2N\{∅}
v(S)
|S| . Let k ∈ N. Define

αk = max
S∈2N :S*Qk−1

{
v(S)−

∑
j∈S∩Qk−1

fj(N, v)

|S \Qk−1|

}

and Qk =
⋃

argmax
S∈2N :S*Qk−1

{
v(S)−

∑
j∈S∩Qk−1

fj(N, v)

|S \Qk−1|

}
∪Qk−1.

We show by induction that for all k ∈ N, fi(N,w) = αk for each i ∈ Qk \ Qk−1 and any
(N,w) ∈ TUNes for which

v(N) ≤ w(S) ≤
∑

i∈Qk−1

fi(N, v) + |N \Qk−1|αk if S = N ;

w(S) = v(S) if S ⊆ Qk;

|S|β ≤ w(S) ≤ v(S) otherwise.

Define (N, v′1) ∈ TUNes by

v′1(S) =

{
|N |α1 if S = N ;

|S|β otherwise.

Then v′1(N) ≥ v(N) and v′1(S) ≤ v(S) for all S ⊂ N . By symmetry, fi(N, v
′
1) = α1 for all

i ∈ N . Let (N,w) ∈ TUNes be such that

v(N) ≤ w(S) ≤ |N |α1 if S = N ;

w(S) = v(S) if S ⊆ Q1;

|S|β ≤ w(S) ≤ v(S) otherwise.

Then w(N) ≤ v′1(N) and v′1(S) ≤ w(S) ≤
∑
i∈S fi(N, v

′
1) for all S ⊂ N . By core contraction

independence and aggregate monotonicity, fi(N,w) ≤ α1 for all i ∈ N . By coalitional
rationality, ∑

i∈S
fi(N,w) ≥ w(S) = v(S) = |S|α1 =

∑
i∈S

α1 ≥
∑
i∈S

fi(N,w)

for all S ∈ 2N \ {∅} for which v(S)
|S| = α1. This means that fi(N,w) = α1 for each i ∈ Q1.
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Let k ∈ N and assume that for all h ∈ {1, . . . , k}, fi(N,w) = αh for each i ∈ Qh \Qh−1
and any (N,w) ∈ TUNes for which

v(N) ≤ w(S) ≤
∑

i∈Qh−1

fi(N, v) + |N \Qh−1|αh if S = N ;

w(S) = v(S) if S ⊆ Qh;

|S|β ≤ w(S) ≤ v(S) otherwise.

Define (N, v′k+1) ∈ TUNes by

v′k+1(S) =


∑
i∈Qk

fi(N, v) + |N \Qk|αk+1 if S = N ;

v(S) if S ⊆ Qk;

|S|β otherwise.

Then fi(N, v
′
k+1) = αh for all i ∈ Qh \ Qh−1 and any h ∈ {1, . . . , k}. In other words,

fi(N, v
′
k+1) = fi(N, v) for all i ∈ Qk. By symmetry, this means that fi(N, v

′
k+1) = αk+1 for

all i ∈ N \Qk. Let (N,w) ∈ TUNes be such that

v(N) ≤ w(S) ≤
∑
i∈Qk

fi(N, v) + |N \Qk|αk+1 if S = N ;

w(S) = v(S) if S ⊆ Qk+1;

|S|β ≤ w(S) ≤ v(S) otherwise.

Then fi(N,w) = fi(N, v) for all i ∈ Qk. By core contraction independence and aggregate
monotonicity, fi(N,w) ≤ αk+1 for all i ∈ N \Qk. By coalitional rationality,∑

i∈S\Qk

fi(N,w) =
∑
i∈S

fi(N,w)−
∑

i∈S∩Qk

fi(N,w) ≥ w(S)−
∑

i∈S∩Qk

fi(N,w)

= v(S)−
∑

i∈S∩Qk

fi(N, v) = |S \Qk|αk+1

=
∑

i∈S\Qk

αk+1 ≥
∑

i∈S\Qk

fi(N,w)

for all S ∈ 2N with S * Qk for which
v(S)−

∑
j∈S∩Qk

fj(N,v)

|S\Qk| = αk+1. This means that

fi(N,w) = αk+1 for each i ∈ Qk+1 \Qk.

Calleja, Rafels, and Tijs (2012) introduced a specific solution which satisfies coalitional
rationality, aggregate monotonicity, and symmetry, but does not satisfy core contraction
independence. The solution f which assigns to any game (N, v) ∈ TUNes for a given bijection
σ : {1, . . . , |N |} → N the payoff allocation given by

fσ(i)(N, v) = max

xσ(i)
∣∣∣∣∣∣ x ∈

|N |∏
k=i

Rσ(k), (fσ(1)(N, v), . . . , fσ(i−1)(N, v), x) ∈ C(N, v)


for all i ∈ {1, . . . , |N |}, satisfies coalitional rationality, aggregate monotonicity, and core
contraction independence, but does not satisfy symmetry. The coalitional Nash solution
satisfies coalitional rationality, symmetry, and core contraction independence, but does not
satisfy aggregate monotonicity. The equal division solution satisfies aggregate monotonicity,
symmetry, and core contraction independence, but does not satisfy coalitional rationality.
This means that the properties in Theorem 3.7 are independent.
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Let (N, v) ∈ TUNes . Recall that x ∈ R|N | is obtained from x ∈ RN by permuting its
coordinates in such a way that x1 ≥ . . . ≥ x|N |. A payoff allocation y ∈ R|N | lexicographically

dominates x ∈ R|N |, denoted by y ≺lex x, if there exists a k ∈ {1, . . . , |N |} for which yk < xk
and yi = xi for all i < k. The Lmax solution (cf. Arin, Kuipers, and Vermeulen (2003)) is
defined by

{Lmax(N, v)} =
{
x ∈ C(N, v)

∣∣ ∀y∈C(N,v) : y 6≺lex x
}
.

In other words, the Lmax solution is the unique core element for which the maximal payoffs
to the players are lexicographically minimized. Note that the Lmax solution is a specific
Lorenz undominated element of the core. We show that the procedural egalitarian solution
coincides with the Lmax solution on the class of egalitarian stable games.

Theorem 3.8
The procedural egalitarian solution on TUNes coincides with the Lmax solution.

Proof. Let (N, v) ∈ TUNes . Denote x = PES(N, v). Define R0 = ∅ and Rk = {i ∈ N |
∀j∈N\Rk−1

: xj ≤ xi} for all k ∈ N. Then Rk−1 ⊆ Rk for all k ∈ N and Rk = N for all
k ≥ |N |. Let y ∈ C(N, v). Let k ∈ N and assume that yi = xi for all i ∈ Rk−1. Let

i ∈ Rk \ Rk−1 and let S ∈ Âv with i ∈ S be such that xi ≤ xj for all j ∈ S. Then S ⊆ Rk
and∑
j∈S\Rk−1

yj =
∑
j∈S

yj−
∑

j∈S∩Rk−1

yj ≥ v(S)−
∑

j∈S∩Rk−1

xj =
∑
j∈S

xj−
∑

j∈S∩Rk−1

xj =
∑

j∈S\Rk−1

xj .

This means that yj > xj for some j ∈ S or yj = xj for all j ∈ S. In general, yi > xi
for some i ∈ Rk \ Rk−1 or yi = xi for all i ∈ Rk \ Rk−1. This means that there does not
exist a k ∈ {1, . . . , |N |} for which yk < xk and yi = xi for all i < k. Hence, the procedural
egalitarian solution coincides with the Lmax solution.

In this section, we axiomatically characterized the procedural egalitarian solution on the
class of egalitarian stable games. Besides, we showed that it unites many egalitarian concepts
defined in the literature. In particular, the procedural egalitarian solution not only coincides
with the Lmax solution (cf. Arin et al. (2003)) and the reduced equal split-off set RESOS
(cf. Llerena and Mauri (2016)), but it is also an element of the strong egalitarian core SEC
(cf. Hougaard et al. (2001)) and the egalitarian core EC (cf. Arin and Iñarra (2001)), which
implies that it is an element of the Lorenz core LC (cf. Dutta and Ray (1989)) and the equal
division core EDC (cf. Dutta and Ray (1991)). These observations are summarized in the
following overview.

Corollary 3.9
Let (N, v) ∈ TUNes . Then

{PES} = {Lmax} = RESOS ⊆ SEC ⊆ EC ⊆ C ⊆ LC ⊆ EDC ⊆ I.9

If (N, v) is convex, then

{PES} = {Lmax} = RESOS = SEC = EC ⊆ C ⊆ LC ⊆ EDC ⊆ I.9
9Here, the argument (N, v) is omitted to improve readability.
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4 Egalitarian stability

This section elaborates more on the domain of egalitarian stable games. Although the
results of the previous section are only valid on this specific subclass of games, we believe
that they are still of significant interest for the study of egalitarianism in the context of
cooperative games in general, and for the trade-off between egalitarianism and coalitional
rationality in particular. Considering this work as a first attempt to analyze the procedural
egalitarian solution from an axiomatic point of view, we at least substantially extend the
scope of the Dutta and Ray (1989) solution, which is in turn only characterized on the
specific subclass of convex games. Naturally, this paper serves as a fundamental basis for an
axiomatic study of the procedural egalitarian solution on the full class of transferable utility
games. Nevertheless, we feel the need to relate the class of egalitarian stable games to other
well-known classes of games in order to shed more light on the implications of our results.
Throughout this section, (N, v) is the generic notation for a transferable utility game.

Dietzenbacher et al. (2017) showed that convex games are egalitarian stable, and that
egalitarian stable games are balanced. There are many other classes of games which strictly
include the class of convex games and are strictly included in the class of balanced games.
One of them is the class of totally balanced games, where the core of each subgame is
nonempty.

Total balancedness
C(S, vS) 6= ∅ for all S ∈ 2N \ {∅}, where vS(R) = v(R) for each R ⊆ S. #

The game (N, v) ∈ TUN in Example 1 and Example 2 is egalitarian stable, but is not totally
balanced since C({1, 3}, v{1,3}) = ∅. The game in Example 3 is not egalitarian stable, but is
totally balanced. This means that egalitarian stability and totally balancedness are logically
unrelated.

A superclass of totally balanced games is the class of games with a population monotonic
allocation scheme. Inspired by Dutta and Ray (1989), Sprumont (1990) introduced this
class of games to deal with the possibility of partial cooperation. A population monotonic
allocation scheme (PMAS) specifies how to allocate the worth of each coalition among its
members in a population monotonic way. Games for which this is possible are called PMAS
admissible.

PMAS admissibility
There exists a π assigning to each S ∈ 2N \ {∅} a payoff allocation π(S) ∈ RS in such a way
that

∑
i∈S πi(S) = v(S) for all S ∈ 2N \ {∅} and πi(S) ≤ πi(T ) for all S, T ∈ 2N \ {∅} with

S ⊆ T and each i ∈ S. #

The game in Example 1 and Example 2 is egalitarian stable, but is not PMAS admissible
since it is not totally balanced. The game in Example 3 is not egalitarian stable, but is
PMAS admissible. This is shown in the following example.

Example 7
Let (N, v) ∈ TUN be the game from Example 3. The worth of each coalition and the unique
population monotonic allocation scheme π are presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 1 1 0 1
π (0, ·, ·) (·, 0, ·) (·, ·, 0) (1, 0, ·) (1, ·, 0) (·, 0, 0) (1, 0, 0)

This means that egalitarian stability and PMAS admissibility are logically unrelated. 4
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Egalitarian stability is a prosperity property (cf. Van Gellekom, Potters, and Reijnierse
(1999)), i.e. a game is egalitarian stable if the worth of the grand coalition is sufficiently large.
Imputation admissibility and balancedness are well-known prosperity properties. Another
prosperity property is largeness of the core. Sharkey (1982) introduced this property to
describe games arising from economic problems involving cost allocation. A game has a
large core if any vector satisfying the core inequalities dominates a core element.

Large core
For all x ∈ RN with

∑
i∈S xi ≥ v(S) for all S ∈ 2N , there exists a y ∈ C(N, v) for which

y ≤ x. #

Arin et al. (2003) axiomatically studied the Lmax solution on the class of large core games.
Llerena and Mauri (2016) showed that the Lmax solution is the unique element of the reduced
equal split-off set on the class of large core games. From Theorem 3.8 we know that the
procedural egalitarian solution coincides with the Lmax solution on the class of egalitarian
stable games. We prove that the class of egalitarian stable games strictly includes the class
of large core games.10

Theorem 4.1
All large core games are egalitarian stable.11

Proof. Let (N, v) ∈ TUN be a large core game. Since
∑
i∈S γ̂

v
i ≥ v(S) for all S ∈ 2N , there

exists an y ∈ C(N, v) such that y ≤ γ̂v. Suppose that yi < γ̂vi for some i ∈ N . Let S ∈ Âv
be such that i ∈ S. Then ∑

j∈S
yj <

∑
j∈S

γ̂vj = v(S) ≤
∑
j∈S

yj .

This is a contradiction, so PES(N, v) = γ̂v = y. Hence, (N, v) is egalitarian stable.

The game (N, v) ∈ TUN in Example 4 is egalitarian stable, but does not have a large
core since for x = (0, 5, 0, 6) there does not exist a y ∈ C(N, v) for which y ≤ x. This means
that not all egalitarian stable games are large core games.

Prosperity properties are mainly studied in relation to games with a stable core. In
particular, Sharkey (1982) showed that all large core games have a stable core. A game has
a stable core if any imputation outside the core is dominated by an imputation inside the
core.

Stable core
C(N, v) 6= ∅ and for all x ∈ I(N, v) \C(N, v) there exist a y ∈ C(N, v) and an S ∈ 2N \ {∅}
for which

∑
i∈S yi = v(S) and yi > xi for all i ∈ S. #

The game (N, v) ∈ TUN in Example 4 is egalitarian stable, but does not have a stable core
since for x = (0, 4, 0, 4) there do not exist a y ∈ C(N, v) and an S ∈ 2N \ {∅} for which∑
i∈S yi = v(S) and yi > xi for all i ∈ S.

10Ehud Lehrer and Dries Vermeulen are gratefully acknowledged for raising this question.
11In fact, on the class of large core games, all aspirations (cf. Bennett (1983)) are core elements.
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Another superclass of totally balanced games is the class of exact games. A game is
exact (cf. Schmeidler (1972)) if for each coalition there exists a core element which exactly
distributes the corresponding worth among its members.

Exactness
For all S ∈ 2N there exists an x ∈ C(N, v) for which

∑
i∈S xi = v(S). #

The game in Example 1 and Example 2 is egalitarian stable, but is not exact since it is not
totally balanced.

Estévez-Fernández (2012) showed that all stable core games with at most five players are
large core games. Biswas, Parthasarathy, Potters, and Voorneveld (1999) showed that all
exact games with at most four players are large core games. This means that all stable core
games with at most five players and all exact games with at most four players are egalitarian
stable. Whether all stable core games and all exact games with an arbitrary number of
players are egalitarian stable is an intriguing open question. Future research could further
study the class of egalitarian stable games in order to better understand the trade-off between
egalitarianism and coalitional rationality.
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Estévez-Fernández, A. (2012). New characterizations for largeness of the core. Games and
Economic Behavior , 76(1), 160–180.

Gellekom, J. van, J. Potters, and J. Reijnierse (1999). Prosperity properties of TU-games.
International Journal of Game Theory , 28(2), 211–227.

Hokari, T. (2000). Population monotonic solutions on convex games. International Journal
of Game Theory , 29(3), 327–338.

Hougaard, J. L., B. Peleg, and L. Thorlund-Petersen (2001). On the set of Lorenz-maximal
imputations in the core of a balanced game. International Journal of Game The-
ory , 30(2), 147–165.

Klijn, F., M. Slikker, S. Tijs, and J. Zarzuelo (2000). The egalitarian solution for convex
games: some characterizations. Mathematical Social Sciences, 40(1), 111–121.

Llerena, F. and L. Mauri (2016). Reduced games and egalitarian solutions. International
Journal of Game Theory , 45(4), 1053–1069.

Megiddo, N. (1974). On the nonmonotonicity of the bargaining set, the kernel and the
nucleolus of a game. SIAM Journal on Applied Mathematics, 27(2), 355–358.

Peleg, B. (1986). On the reduced game property and its converse. International Journal
of Game Theory , 15(3), 187–200.

Schmeidler, D. (1972). Cores of exact games. Journal of Mathematical Analysis and Ap-
plications, 40(1), 214–225.

Shapley, L. (1971). Cores of convex games. International Journal of Game Theory , 1(1),
11–26.

Sharkey, W. (1982). Cooperative games with large cores. International Journal of Game
Theory , 11(3-4), 175–182.

Sobolev, A. (1975). The characterization of optimality principles in cooperative games by
functional equations. Mathematical Methods in Social Sciences, 6, 95–151.

Sprumont, Y. (1990). Population monotonic allocation schemes for cooperative games with
transferable utility. Games and Economic Behavior , 2(4), 378–394.

Young, H. (1985). Monotonic solutions of cooperative games. International Journal of
Game Theory , 14(2), 65–72.

Appendix

Lemma A.1
The procedural egalitarian solution satisfies the equal division upper bound.

Proof. Let (N, v) ∈ TUNes . Let i ∈ N be such that γ̂vi ≥ γ̂vj for all j ∈ N . Let S ∈ Âv with

i ∈ S be such that γ̂vi ≤ γ̂vj for all j ∈ S. This means that γ̂vi = v(S)
|S| and

PESj(N, v) = γ̂vj ≤ γ̂vi =
v(S)

|S|
≤ max
T∈2N\{∅}

v(T )

|T |

for all j ∈ N . Hence, the procedural egalitarian solution satisfies the equal division upper
bound.
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Lemma A.2
The procedural egalitarian solution satisfies max-consistency.

Proof. Let (N, v) ∈ TUNes and let T ∈ 2N \ {∅}. Then PES(N, v) = γ̂v. First, we show by

induction that γ
vPES
T ,k
i = γ̂vi for all k ∈ N and each i ∈ P v

PES
T ,k. Let i ∈ P v

PES
T ,1 and let

S ∈ Âv with i ∈ S be such that γ̂vi ≤ γ̂vj for all j ∈ S. Then

γ
vPES
T ,1
i ≥ χv

PES
T ,1
i (S ∩ T ) =

vPES
T (S ∩ T )

|S ∩ T |
≥
v(S)−

∑
j∈S\T γ̂

v
j

|S ∩ T |

=

∑
j∈S∩T γ̂

v
j

|S ∩ T |
≥
∑
j∈S∩T γ̂

v
i

|S ∩ T |
=
|S ∩ T |γ̂vi
|S ∩ T |

= γ̂vi .

By coalitional rationality, this means that

∑
i∈S

γ
vPES
T ,1
i ≥

∑
i∈S

γ̂vi ≥ max
R⊆N\T

{
v(S ∪R)−

∑
i∈R

γ̂vi

}
≥ vPES

T (S) =
∑
i∈S

γ
vPES
T ,1
i

for all S ∈ AvPES
T ,1. This implies that γ

vPES
T ,1
i = γ̂vi for each i ∈ P vPES

T ,1.

Let k ∈ N and assume that γ
vPES
T ,k
i = γ̂vi for each i ∈ P vPES

T ,k. Let i ∈ P vPES
T ,k+1 \P vPES

T ,k

and let S ∈ Âv with i ∈ S be such that γ̂vi ≤ γ̂vj for all j ∈ S. Then

γ
vPES
T ,k+1
i ≥ χv

PES
T ,k+1
i (S ∩ T ) =

vPES
T (S ∩ T )−

∑
j∈S∩T∩PvPES

T
,k γ

vPES
T ,k
j

|(S ∩ T ) \ P vPES
T ,k|

≥
v(S)−

∑
j∈S\T γ̂

v
j −

∑
j∈S∩T∩PvPES

T
,k γ̂

v
j

|(S ∩ T ) \ P vPES
T ,k|

=

∑
j∈(S∩T )\PvPES

T
,k γ̂

v
j

|(S ∩ T ) \ P vPES
T ,k|

≥

∑
j∈(S∩T )\PvPES

T
,k γ̂

v
i

|(S ∩ T ) \ P vPES
T ,k|

=
|(S ∩ T ) \ P vPES

T ,k|γ̂vi
|(S ∩ T ) \ P vPES

T ,k|
= γ̂vi .

By coalitional rationality, this means that

∑
i∈S

γ
vPES
T ,k+1
i ≥

∑
i∈S

γ̂vi ≥ max
R⊆N\T

{
v(S ∪R)−

∑
i∈R

γ̂vi

}
≥ vPES

T (S) =
∑
i∈S

γ
vPES
T ,k+1
i

for all S ∈ AvPES
T ,k+1. This implies that γ

vPES
T ,k+1
i = γ̂vi for each i ∈ P v

PES
T ,k+1. Hence,

γ̂v
PES
T = γ̂vT and ∑

i∈T
γ̂
vPES
T
i =

∑
i∈T

γ̂vi = v(N)−
∑

i∈N\T

γ̂vi = vPES
T (T ).
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This implies that T ∈ ÂvPES
T , (T, vPES

T ) ∈ TUNes , and

PES(T, vPES
T ) = γ̂v

PES
T = γ̂vT = PEST (N, v).

Hence, the procedural egalitarian solution satisfies max-consistency.

Lemma A.3
The procedural egalitarian solution satisfies coalitional monotonicity.

Proof. Let (N, v), (N, v′) ∈ TUNes and let S ∈ 2N be such that v(S) ≤ v′(S) and v(T ) = v′(T )

for all T ∈ 2N \ {S}. First, we show by induction that for all k ∈ N, γv
′,k
S ≥ γ̂vS if S ∈ Av′,k,

and γv
′,k

Pv′,k = γ̂v
Pv′,k if S /∈ Av′,k. Let i ∈ P v

′,1 and let T ∈ Âv with i ∈ T be such that
γ̂vi ≤ γ̂vj for all j ∈ T . Then

γv
′,1
i ≥ χv

′,1
i (T ) =

v′(T )

|T |
≥ v(T )

|T |
≥ γ̂vi .

This means that γv
′,1
S ≥ γ̂vS if S ∈ Av′,1. Suppose that S /∈ Av′,1. Then∑

i∈T
γv
′,1
i ≥

∑
i∈T

γ̂vi ≥ v(T ) = v′(T ) =
∑
i∈T

γv
′,1
i

for all T ∈ Av′,1. This means that γv
′,1
i = γ̂vi for each i ∈ P v′,1.

Let k ∈ N and assume that γv
′,k
S ≥ γ̂vS if S ∈ Av′,k, and γv

′,k

Pv′,k = γ̂v
Pv′,k if S /∈ Av′,k.

If S ∈ Av′,k, then S ∈ Av′,k+1 and γv
′,k+1
S = γv

′,k
S ≥ γ̂vS . Suppose that S /∈ Av′,k. Then

γv
′,k

Pv′,k = γ̂v
Pv′,k . Let i ∈ P v′,k+1 \ P v′,k and let T ∈ Âv with i ∈ T be such that γ̂vi ≤ γ̂vj for

all j ∈ T . Then

γv
′,k+1
i ≥ χv

′,k+1
i (T ) =

v′(T )−
∑
j∈T∩Pv′,k γ

v′,k
j

|T \ P v′,k|
≥
v(T )−

∑
j∈T∩Pv′,k γ̂vj

|T \ P v′,k|
≥ γ̂vi .

This means that γv
′,k+1
S ≥ γ̂vS if S ∈ Av′,k+1. Suppose that S /∈ Av′,k+1. Then∑

i∈T
γv
′,k+1
i ≥

∑
i∈T

γ̂vi ≥ v(T ) = v′(T ) =
∑
i∈T

γv
′,k+1
i

for all T ∈ Av′,k+1. This means that γv
′,k+1
i = γ̂vi for each i ∈ P v′,k+1. Hence, γ̂v

′

S ≥ γ̂vS if

S ∈ Âv, and γ̂v
′

S = γ̂vS if S /∈ Âv. This implies that

PESS(N, v′) = γ̂v
′

S ≥ γ̂vS = PESS(N, v).

Hence, the procedural egalitarian solution satisfies coalitional monotonicity.
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Lemma A.4
The procedural egalitarian solution satisfies core contraction independence.

Proof. Let (N, v) ∈ TUNes and (N, v′) ∈ TUNes be such that PES(N, v) ∈ C(N, v′) and
C(N, v′) ⊆ C(N, v). Then PES(N, v′) ∈ C(N, v). Define R0 = ∅ and Rk = {i ∈ N |
∀j∈N\Rk−1

: γ̂vj ≤ γ̂vi } for all k ∈ N. Then Rk−1 ⊆ Rk for all k ∈ N and Rk = N for all

k ≥ |N |. We show by induction that γ̂v
′

Rk
= γ̂vRk

for all k ∈ N. Clearly, γ̂v
′

i = γ̂vi for each
i ∈ R0.

Let k ∈ N and assume that γ̂v
′

i = γ̂vi for each i ∈ Rk−1. Suppose that γ̂v
′

i > γ̂vi for some

i ∈ Rk \Rk−1. Let S ∈ Âv′ with i ∈ S be such that γ̂v
′

i ≤ γ̂v
′

j for all j ∈ S. Then∑
j∈S

γ̂v
′

j =
∑

j∈S∩Rk−1

γ̂v
′

j +
∑

j∈S\Rk−1

γ̂v
′

j ≥
∑

j∈S∩Rk−1

γ̂vj +
∑

j∈S\Rk−1

γ̂v
′

i

>
∑

j∈S∩Rk−1

γ̂vj +
∑

j∈S\Rk−1

γ̂vi ≥
∑

j∈S∩Rk−1

γ̂vj +
∑

j∈S\Rk−1

γ̂vj

=
∑
j∈S

γ̂vj =
∑
j∈S

PESj(N, v) ≥ v′(S) =
∑
j∈S

γ̂v
′

j .

This is a contradiction, so γ̂v
′

i ≤ γ̂vi for each i ∈ Rk \Rk−1. Let i ∈ Rk \Rk−1 and let S ∈ Âv
with i ∈ S be such that γ̂vi ≤ γ̂vj for all j ∈ S. Then S ⊆ Rk and∑

j∈S
γ̂vj ≥

∑
j∈S

γ̂v
′

j =
∑
j∈S

PESj(N, v
′) ≥ v(S) =

∑
j∈S

γ̂vj .

This implies that γ̂v
′

i = γ̂vi for each i ∈ Rk. Hence, the procedural egalitarian solution
satisfies core contraction independence.
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