10 research outputs found

    HFAQM: A hybrid fair active queue management mechanism to improve fairness and stability for wireless local area network

    Get PDF
    Active Queue Management (AQM) is a proactive scheme that controls network congestion by avoiding it before it happens. When implementing AQM in wireless networks, several contemporary issues must be considered, such as interference, collisions, multipath-fading, propagation distance and shadowing effects, which affect the transmission rate of the links. These issues in WLAN networks with the existence of different types of flow have a direct effect on fairness. The main idea behind the wireless network is using the flexibility of radio waves to transfer data from point to point that is giving WLAN the flexibility and mobility: wireless nodes can connect, disconnect or even move from one access point to another rapidly. However, this affects the stability of the WLAN network. This research aims to reduce unfairness and instability by proposing a Hybrid-Fair AQM (HFAQM) scheme. HFAQM comprises two mechanisms: Congestion Indicator Mechanism (CIM), and Control Function Mechanism (CFM). CIM was designed to improve fairness in WLANs by hybridizing queue delay with arrival rate as parameters to calculate the congestion level. Whereas, CFM was developed to improve network stability by using an adaptive control function with the ability to drop and mark packets to overcome the rapidly changing characteristics of WLAN network. A series of experimental studies were conducted to validate the proposed mechanisms and four variants of AQM schemes, RED, REM, AVQ and CoDel, were chosen to evaluate the performance of HFAQM through simulation. The findings show that HFAQM’s main achievement is 99% fairness and improved stability by 10% from the closest scheme, with better throughput, queue length, queue loss, and outgoing link utilization as secondary achievements. The proposed scheme provides significantly better fairness and stability in WLAN environment, with the existence of different types of flow

    A Fairness Investigation on Active Queue Management Schemes in Wireless Local Area Network

    Get PDF
    Active Queue Management (AQM) is scheme to handle network congestion before it happened by deciding which packet has to be dropped, when to drop it, and through which port have to drop when it has become or is becoming congested. Furthermore, AQM schemes such as Random Early Detection (RED), Random Early Marking (REM), Adaptive Virtual Queue (AVQ), and Controlled Delay (CoDel) have been proposed to maintain fairness when unresponsive constant bit rate UDP flows share a bottleneck link with responsive TCP traffic. However, the performance of these fair AQM schemes need more investigation especially evaluation in WLANs environment. This paper provides an experimental evaluation of different AQM schemes in WLAN environment with presence of two different types of flows (TCP flows and UDP flows) to study the behavior of these AQM schemes which might punish some flows unfairly. The simulation method has conducted in this paper by using Network Simulation 2 (ns-2) with the topology of bottleneck scenario. The result has shown that REM and AVQ both obtain higher fairness value than RED and Codel. However, CoDel has given the lowest fairness comparing with RED scheme which have given a moderated value in terms of fairness in WLANs environment. Besides, AQM schemes must be chosen not only based on its performance or capability to indicate the congestion and recovering overflow situation but also considering fairness with different types of flows and the environment as well, such as WLANs environment

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Stable, Scalable, Fair Congestion Control and AQM Schemes that Achieve High Utilization in the Internet

    No full text
    Virtual queue-based active queue management schemes have been proposed to provide low-loss, low-delay service in the Internet. In an earlier work, we had proposed a particular scheme called the Adaptive Virtual Queue (AVQ) algorithm where the capacity of the virtual queue is adapted to the traffic conditions to achieve a desired level of utilization in the network. Here, we study the choice of the parameters of the congestion-controllers at the sources and the AVQ scheme at the links that is required to ensure stability. In particular, we consider a system in which users with diverse round-trip delays and fairness requirements access a general topology network. For this system, we show that, by choosing the speed of adaptation at the sources and the links appropriately, one can guarantee the stability of the network

    JetMax: Scalable Max-Min Congestion Control for High-Speed Heterogeneous Networks

    Full text link

    Design and stability analysis of high performance packet switches

    Get PDF
    With the rapid development of optical interconnection technology, high-performance packet switches are required to resolve contentions in a fast manner to satisfy the demand for high throughput and high speed rates. Combined input-crosspoint buffered (CICB) switches are an alternative to input-buffered (IB) packet switches to provide high-performance switching and to relax arbitration timing for packet switches with high-speed ports. A maximum weight matching (MWM) scheme can provide 100% throughput under admissible traffic for lB switches. However, the high complexity of MWM prohibits its implementation in high-speed switches. In this dissertation, a feedback-based arbitration scheme for CICB switches is studied, where cell selection is based on the provided service to virtual output queues (VOQs). The feedback-based scheme is named round-robin with adaptable frame size (RR-AF) arbitration. The frame size in RR-AF is adaptably changed by the serviced and unserviced traffic. If a switch is stable, the switch provides 100% throughput. Here, it is proved that RR-AF can achieve 100% throughput under uniform admissible traffic. Switches with crosspoint buffers need to consider the transmission delays, or round-trip times to define the crosspoint buffer size. As the buffered crossbar switch can be physically located far from the input ports, actual round-trip times can be non-negligible. To support non-negligible round-trip times in a buffered crossbar switch, the crosspoint buffer size needs to be increased. To satisfy this demand, this dissertation investigates how to select the crosspoint buffer size under non-negligible round trip times and under uniform traffic. With the analysis of stability margin, the relationship between the crosspoint buffer size and round-trip time is derived. Considering that CICB switches deliver higher performance than lB switches and require no speedup, this dissertation investigates the maximum throughput performance that these switches can achieve. It is shown that CICB switches without speedup achieve 100% throughput under any admissible traffic through a fluid model. In addition, a new hybrid scheme, based on longest queue-first (as input arbitration) and longest column occupancy first (as output arbitration) is proposed, which achieves 100% throughput under uniform and non-uniform traffic patterns. In order to give a better insight of the feedback nature of arbitration scheme for CICB switches, a frame-based round-robin arbitration scheme with explicit feedback control (FRE) is introduced. FRE dynamically sets the frame size according to the input load and to the accumulation of cells in a VOQ. FRE is used as the input arbitration scheme and it is combined with RR, PRR, and FRE as output arbitration schemes. These combined schemes deliver high performance under uniform and nonuniform traffic models using a buffered crossbar with one-cell crosspoint buffers. The novelty of FRE lies in that each VOQ sets the frame size by an adjustable parameter, Δ(i,j) which indicates the degree of service needed by VOQ(i, j). This value is adjusted according to the input loading and the accumulation of cells experienced in previous service cycles. This dissertation also explores an analysis technique based on feedback control theory. This methodology is proposed to study the stability of arbitration and matching schemes for packet switches. A continuous system is used and a control model is used to emulate a queuing system. The technique is applied to a matching scheme. In addition, the study shows that the dwell time, which is defined as the time a queue receives service in a service opportunity, is a factor that affects the stability of a queuing system. This feedback control model is an alternative approach to evaluate the stability of arbitration and matching schemes

    Evaluation of explicit congestion control for high-speed networks

    Get PDF
    Recently, there has been a significant surge of interest towards the design and development of a new global-scale communication network that can overcome the limitations of the current Internet. Among the numerous directions of improvement in networking technology, recent pursuit to do better flow control of network traffic has led to the emergence of several explicit-feedback congestion control methods. As a first step towards understanding these methods, we analyze the stability and transient performance of Rate Control Protocol (RCP).We find that RCP can become unstable in certain topologies and may exhibit very high buffering requirements at routers. To address these limitations, we propose a new controller called Proportional Integral Queue Independent RCP (PIQI-RCP), prove its stability under heterogeneous delay, and use simulations to show that the new method has significantly lower transient queue lengths, better transient dynamics, and tractable stability properties. As a second step in understanding explicit congestion control, we experimentally evaluate proposed methods such as XCP, JetMax, RCP, and PIQI-RCP using their Linux implementation developed by us. Our experiments show that these protocols are scalable with the increase in link capacity and round-trip propagation delay. In steady-state, they have low queuing delay and almost zero packet-loss rate. We confirm that XCP cannot achieve max-min fairness in certain topologies. We find that JetMax significantly drops link utilization in the presence of short flows with long flow and RCP requires large buffer size at bottleneck routers to prevent transient packet losses and is slower in convergence to steady-state as compared to other methods. We observe that PIQI-RCP performs better than RCP in most of the experiments

    Stable and scalable congestion control for high-speed heterogeneous networks

    Get PDF
    For any congestion control mechanisms, the most fundamental design objectives are stability and scalability. However, achieving both properties are very challenging in such a heterogeneous environment as the Internet. From the end-users' perspective, heterogeneity is due to the fact that different flows have different routing paths and therefore different communication delays, which can significantly affect stability of the entire system. In this work, we successfully address this problem by first proving a sufficient and necessary condition for a system to be stable under arbitrary delay. Utilizing this result, we design a series of practical congestion control protocols (MKC and JetMax) that achieve stability regardless of delay as well as many additional appealing properties. From the routers' perspective, the system is heterogeneous because the incoming traffic is a mixture of short- and long-lived, TCP and non-TCP flows. This imposes a severe challenge on traditional buffer sizing mechanisms, which are derived using the simplistic model of a single or multiple synchronized long-lived TCP flows. To overcome this problem, we take a control-theoretic approach and design a new intelligent buffer sizing scheme called Adaptive Buffer Sizing (ABS), which based on the current incoming traffic, dynamically sets the optimal buffer size under the target performance constraints. Our extensive simulation results demonstrate that ABS exhibits quick responses to changes of traffic load, scalability to a large number of incoming flows, and robustness to generic Internet traffic
    corecore