
EVALUATION OF EXPLICIT CONGESTION CONTROL

FOR HIGH-SPEED NETWORKS

A Thesis

by

SAURABH JAIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2007

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4277517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EVALUATION OF EXPLICIT CONGESTION CONTROL

FOR HIGH-SPEED NETWORKS

A Thesis

by

SAURABH JAIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Dmitri Loguinov
A. L. N. Reddy

Committee Members, Shankar Bhattacharyya
Alexander Sprintson

Head of Department, Costas Georghiades

May 2007

Major Subject: Electrical Engineering

iii

ABSTRACT

Evaluation of Explicit Congestion Control

for High-Speed Networks. (May 2007)

Saurabh Jain, B.Tech., Indian Institute of Technology, Roorkee

Co–Chairs of Advisory Committee: Dr. Dmitri Loguinov
Dr. A. L. N. Reddy

Recently, there has been a significant surge of interest towards the design and

development of a new global-scale communication network that can overcome the

limitations of the current Internet. Among the numerous directions of improvement

in networking technology, recent pursuit to do better flow control of network traffic

has led to the emergence of several explicit-feedback congestion control methods. As a

first step towards understanding these methods, we analyze the stability and transient

performance of Rate Control Protocol (RCP). We find that RCP can become unstable

in certain topologies and may exhibit very high buffering requirements at routers. To

address these limitations, we propose a new controller called Proportional Integral

Queue Independent RCP (PIQI-RCP), prove its stability under heterogeneous delay,

and use simulations to show that the new method has significantly lower transient

queue lengths, better transient dynamics, and tractable stability properties.

As a second step in understanding explicit congestion control, we experimentally

evaluate proposed methods such as XCP, JetMax, RCP, and PIQI-RCP using their

Linux implementation developed by us. Our experiments show that these protocols

are scalable with the increase in link capacity and round-trip propagation delay. In

steady-state, they have low queuing delay and almost zero packet-loss rate. We

confirm that XCP cannot achieve max-min fairness in certain topologies. We find that

iv

JetMax significantly drops link utilization in the presence of short flows with long flows

and RCP requires large buffer size at bottleneck routers to prevent transient packet

losses and is slower in convergence to steady-state as compared to other methods. We

observe that PIQI-RCP performs better than RCP in most of the experiments.

v

To my parents

vi

ACKNOWLEDGMENTS

I am sincerely grateful to Dr. Dmitri Loguinov for agreeing to guide my Master’s

thesis and allowing me to do research with him. This work would not have been

possible without his constant motivation and guidance. Every bit of interaction with

him has been a learning experience in some way or the other. His attitude and passion

towards whatever he likes to do has always surprised and inspired me. I also thank

him for making me part of the Internet Research Lab and the regular weekly seminars

that helped me broaden my knowledge of computer networking.

I thank Dr. A. L. N. Reddy for agreeing to become the co-chair of my thesis

committee and being so kind and patient whenever I needed his advice or help es-

pecially without prior appointments. I acknowledge Dr. Shankar Bhattacharyya and

Dr. Alex Sprintson for being members of my thesis committee. I also thank all the

faculty members with whom I had a chance to interact and gain knowledge.

I appreciate the help and company of all the members of the Internet Research

Lab and friends in College Station. I am especially thankful to Rajanikant Maru for

being a great friend and always being cheerfully available whenever I needed his help.

Last, but not least, I am indebted to my parents and family members for all their

support and encouragement.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Objective . 2

B. Contributions of This Work 2

C. Thesis Organization . 4

II BACKGROUND AND RELATED WORK 5

A. Congestion Control . 5

B. Ideal Congestion Control 7

C. Feedback in Congestion Control 8

D. The Big Picture . 9

1. End-to-End Congestion Control 9

2. Active Queue Management 10

a. Additive Feedback 11

b. Max-min Feedback 12

E. Explicit Congestion Control for Max-min Fairness 12

1. XCP . 13

2. MaxNet . 14

3. MKC . 14

4. RCP . 15

5. JetMax . 16

6. Others . 16

III ANALYSIS OF RCP . 18

A. Drawbacks . 18

1. Instability . 18

a. RCP . 19

b. RCP with Higher Link Delays 20

c. RCP with Fixed Bottlenecks 23

d. RCP-1 . 24

e. RCP-2 . 25

2. High Buffering Requirement 27

B. How to Fix RCP? . 28

C. Strengths . 29

viii

CHAPTER Page

IV NEW RATE CONTROL PROTOCOL 30

A. Router Controller . 31

B. Source Controller . 34

C. QI-RCP . 36

1. Continuous Case . 36

2. Discrete Case . 39

D. PIQI-RCP . 46

1. Continuous Case . 46

2. Discrete Case . 53

E. Simulations . 57

1. Single-Bottleneck Topology 57

2. Multiple-Bottleneck Topology 58

3. Abrupt Increase in Traffic Demand 59

4. Peak Queue Size . 60

5. Average Flow Completion Time 60

F. Summary of Results . 62

V LINUX IMPLEMENTATION 63

A. End-Host . 63

1. Window-Based Schemes 65

2. Rate-Based Schemes 66

B. Router . 67

C. Congestion Header Format 69

D. Kernel Tuning . 72

VI LINUX EXPERIMENTS . 73

A. Experiments . 73

1. Single-Bottleneck Topology 73

2. RTT Unfairness . 76

3. Scalability . 78

4. Max-min Fairness in XCP 79

5. Effect of Router Control Interval 80

6. CPU Usage at Routers 80

7. Multiple-Bottleneck Topology 82

8. Performance with Mice Traffic 82

9. Abrupt Change in Traffic Demand 87

B. Summary of Results . 90

ix

CHAPTER Page

VII CONCLUSION AND FUTURE WORK 94

A. Conclusion . 94

B. Future Work . 95

REFERENCES . 97

VITA . 104

x

LIST OF FIGURES

FIGURE Page

1 Behavior and properties of ideal congestion control. 8

2 Past developments in network congestion control. 9

3 Topology Tu. 19

4 Sending rate of flows x1 − x10 in the case of RCP for topology Tu

confirming instability. 20

5 Sending rate of flows x1−x10 and bottleneck id of flows x2−x10 in

the case of RCP for topology Tu with higher link delay confirming

instability. 21

6 Control rate and queue size at links l1 and l3 in the case of RCP

for topology Tu with higher link delay confirming instability. 21

7 RTT of flows x1 − x10 and average RTT at links l1 and l3 in the

case of RCP for topology Tu with higher link delay. 22

8 Sending rate of flows x1 − x10 in the case of RCP with fixed bot-

tleneck assignment indicating instability. 24

9 Sending rate of flows x1 − x10 in the case of RCP-1 (3.2) for

topology Tu indicating stability. 25

10 Sending rate of flows x1 − x10 in the case of RCP-2 (3.3) for

topology Tu with higher link delay indicating stability. 26

11 Performance of RCP in a dumb-bell topology with bottleneck link

capacity 100 mb/s and delay 50 ms with abrupt increase in traffic

demand at t = 15. 28

12 Feedback control system model of explicit congestion control. 31

13 Verification of undelayed stability conditions for QI-RCP. 40

xi

FIGURE Page

14 Verification of stability condition for QI-RCP in the case of flows

with homogeneous RTT D = 10. The necessary and sufficient

condition for stability is α < 1.6523. 43

15 Verification of stability condition for QI-RCP in the case of flows

with heterogeneous RTTs D1 = 10, D2 = 20. The sufficient

condition for stability is α < 1.2080. 45

16 Sending rate of flows x1 − x10 in the topology shown in Fig. 3 for

QI-RCP indicating stability. 46

17 Verification of delayed stability condition for PIQI-RCP in the

case of flows with homogeneous RTT D = 120 ms. The necessary

and sufficient condition for stability is α < 0.78571. 51

18 Verification of delayed stability condition for PIQI-RCP in the

case of flows with heterogeneous RTTs. A sufficient condition for

stability is α < 0.261905. 52

19 Sending rate of flows x1 − x10 in the topology shown in Fig. 3 for

PIQI-RCP indicating stability. 53

20 Sending rate in the case of single-bottleneck topology. 58

21 Queue size in the case of single-bottleneck topology. 58

22 Comparison in multi-link topology. 59

23 Queue size at the router in the case of abrupt increase in traffic

demand at t = 15. 60

24 Comparison of peak queue size. 61

25 Comparison of average flow completion time. 61

26 Implementation methodology of explicit-feedback congestion control. 65

27 Illustration diagram for different netfilter hooks in Linux TCP/IP stack. 68

28 Congestion header format. 70

xii

FIGURE Page

29 Performance in single-bottleneck topology with link capacity 1

gb/s and RTT 50 ms. Flows start at t = 0, 30, and 60. Each flow

lasts for 90 seconds. 74

30 Queuing dynamics of RCP in single-bottleneck topology. 75

31 Performance in the case of flows with heterogeneous RTTs. The

bottleneck link capacity is 1 gb/s. Flow x1 with RTT 220 ms

starts at t = 0 while flow x2 with RTT 30 ms joins the system at

t = 30. 77

32 Experimental verification of XCP’s fairness issue identified in [34]. . . 79

33 Sending rates of three JetMax flows sharing a single bottleneck

with link capacity 1 gb/s and RTT 50 ms. Flows start at t = 0,

30, and 60. Each flow lasts for 90 seconds. The control interval

inside the router is 10 ms. 81

34 Comparison in a multiple-bottleneck link topology. Flows start

at t = 0, 30, and 60. Each flow lasts for 90 seconds. The RTT

of flow x1 is 100 ms while RTT of flow x2 and x3 is 50 ms. The

capacity of link l1 and l2 is 970 and 800 mb/s respectively. 83

35 Performance in the presence of background mice traffic in a dumb-

bell topology. Mice traffic is generated in the system at t = 30. . . . 85

36 Performance with abrupt change in traffic demand. One long flow

starts at t = 0 and ends at t = 120. At t = 30, 10 flows join the

system and leave at t = 113. The bottleneck link capacity is 100

mb/s. All flows have round-trip propagation delay of 50 ms. 88

37 Dynamics of the first flow in the case of RCP and PIQI-RCP with

sudden increase and decrease in traffic demand. One long flow

starts at t = 0 and ends at t = 120. At t = 30, 10 flows join the

system and leave at t = 113. The bottleneck link capacity is 100

mb/s. All flows have round-trip propagation delay of 50 ms. 89

38 Queuing dynamics at the router in the case of RCP with sudden

increase in traffic demand at t = 30. 89

1

CHAPTER I

INTRODUCTION

The Internet has seen an explosive growth in the past two decades. Networking tech-

nologies that drive the Internet have improved significantly over the years. A num-

ber of industries, computational grids, and research laboratories own high-capacity

networks spanning from one part of the globe to another for doing e-commerce, col-

laboration in research [48], data analysis [15], and data collection for geological and

astronomical experiments. This enormous growth would not have been possible with-

out the presence of congestion control in the Internet. Since the inception of the

Internet, congestion control has always been a hot topic among researchers. The

reasons being the importance and complexity of the problem, heterogeneity in net-

working environments, and the scope of more improvements.

The evolution of the Internet has brought concerns [12], [22], [28], [31], [53]

among the research community on the effectiveness of currently deployed TCP-based

congestion control methods in accelerating or maintaining the same level of growth

as seen so far. A number of initiatives [43], [44] are currently under way towards

the design and development of the future Internet that is scalable and more robust.

As regard to this, recent efforts to design better congestion control have led to the

origin of several explicit-feedback congestion control methods [6], [25], [51], [55], [56].

These methods solicit active multi-byte feedback from the routers to the end-hosts

delivering a precise and timely congestion signal that is used to accurately adjust flow

sending rates and hence achieve faster convergence, smaller packet loss rate, high link

utilization, and better fairness between flows. For scalability, feedback is computed in

The journal model is IEEE Transactions on Automatic Control.

2

a distributed fashion with minimal processing and negligible data overheads without

keeping per-flow state.

A. Objective

This thesis aims to advance research in explicit congestion control for high-speed net-

working. We strive to analyze the proposed explicit congestion control methods [6],

[25], [51], [55], [56] based on max-min fairness [36] using theoretical insight and simu-

lation tools. Our goal is to find performance deficiencies with the proposed methods

and suggest modifications to improve their behavior. Apart from the steady-state

properties, we also lay due emphasis on transient performance and system stability.

Current simulation studies [6], [25], [56] have shown that some of the proposed

explicit congestion control methods have the potential to provide a scalable framework

towards the design [43], [44] of a flexible and global-scale communication network that

is better than the Internet today. However, experimental assessment and deployment

experience with these approaches especially in high-capacity networks and multi-link

settings is still unavailable in the current literature. Considering the importance of

experimental studies, this thesis aims to fill this void by investigating the behavior

of these methods in single and multi-link topologies involving practical systems and

high-speed networks.

B. Contributions of This Work

As part of this work, we find that existing literature lacks a thorough analysis of

Rate Control Protocol (RCP) [6] regarding its drawbacks. Our study shows that

RCP can behave in an unstable manner in certain topologies and scenarios when

there are flows with highly heterogeneous round-trip times (RTTs). We also find that

3

RCP has a very high buffering requirement inside routers in order to prevent a large

number of packet losses. We propose Queue Independent RCP (QI-RCP) to address

the stability issue with RCP. However, we find that QI-RCP also requires undesirably

large buffer space inside routers. To address this drawback, we propose Proportional

Integral Queue Independent RCP (PIQI-RCP) and mathematically prove its stability

in single-bottleneck link topologies for flows with heterogeneous RTTs. Comparison of

RCP and PIQI-RCP using ns-2 [42] simulations in both single and multiple-bottleneck

link topologies show that PIQI-RCP is successful in reducing the peak queue size when

there is a flash crowd of flows entering the system simultaneously and has stability

conditions that can easily be satisfied inside routers.

This work also examines the performance of Explicit Control Protocol (XCP)

[25], JetMax [56], RCP, and PIQI-RCP in an experimental environment using real

systems and gigabit networks. Existing experimental studies in this regard are either

completely missing (e.g., in the case of RCP) or have been limited to 10 mb/s bot-

tleneck links [47], [54]. We implement these protocols in the existing Linux TCP/IP

stack [33] in a manner that does not require modifications to existing TCP-based ap-

plications to use these protocols for flow control in the network. Normally, rate-based

protocols have been implemented as application-level libraries using UDP [21], [56] or

both UDP and TCP connections [46]. Instead, we develop rate-based data transmis-

sion functionality inside the Linux kernel required for JetMax, RCP, and PIQI-RCP

to facilitate their deployment and fairly compare them with window-based XCP.

Our experiments in Emulab [9] using a variety of network configurations demon-

strate behavior of these protocols. We confirm that XCP can maintain high link

utilization and provides low queuing delay, but it cannot achieve max-min fairness

in all topologies and has the highest number of per-packet computations inside the

routers. JetMax performs well is almost all scenarios using long flows, has the least

4

buffer size requirement, and does the least number of per-packet computations inside

the routers. However, JetMax looses link utilization in the presence of mice flows.

RCP is able to maintain high link utilization in most of the traffic scenarios and does a

reasonable amount of per-packet computations. However, it needs dramatically large

buffer space to avoid large number of packet losses and shows significant oscillations

in sending rate with abrupt increase or decrease in traffic demand. PIQI-RCP retains

most of the strengths of RCP, has significantly lower transient queue lengths, and is

more robust to abrupt surge in traffic demand.

C. Thesis Organization

The rest of the thesis is organized as follows. In Chapter II, we briefly describe the

past developments in the field of congestion control. While Chapter III depicts the

limitations of RCP, we design and analyze a new rate control protocol in Chapter

IV. Chapter V and VI describe our Linux implementation methodology and the

experimental results respectively. Finally, Chapter VII gives our conclusions and

scope of future work.

5

CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, we first introduce congestion control and discuss its ideal properties.

Since the field of congestion control has been an active area of research for the past

two and half a decade, we next briefly highlight the past developments in this field.

Finally, we describe the proposed congestion control methods that include the focus

of this work.

A. Congestion Control

Assume x1(t), x2(t), . . . , xN(t) be the sending rates of N flows with round-trip time

(RTT) D1, D2, . . . , DN . The path of a flow in the network consists of a number of

intermediate hops also called routers or links. The path of all the flows in the network

can be expressed by routing matrix R, where Ril = 1 indicates that flow i passes

through link l. The set of flows passing through the link l is represented by i ∈ l while

the set of links in the path of flow i is represented by l ∈ i. The forward/backward

delays of flow i to/from the link l is denoted by D→
il and D←

il respectively. With these

settings, congestion control can be defined as a way of regulating the sending rates of

flows to operate the network within certain constraints. The ability to achieve these

constraints determines the performance of a congestion control method. Some of the

definitions required to understand the ideal properties of a congestion control method

are described as follows:

• Input Traffic Rate: The input traffic rate yl(t) at link l is defined as the sum of

6

sending rates of flows passing through the link. It can be expressed as:

yl(t) =
∑

i∈l

xi(t−D→
il), (2.1)

where i ∈ l is the set of flows passing through link l.

• Link Capacity: The capacity Cl of link l determines how fast the link can process

or forward incoming packets of flows passing through the link.

• Queue Length: Any instantaneous increase in the input traffic rate compared to

the link capacity causes queuing of packets. The instantaneous length of queue

ql(t) at link l is called queue length.

• Packet Loss Rate: Once the queue is full, overshoot in input traffic rate com-

pared to the outgoing link capacity causes loss of packets. The packet loss rate

pl(t) at link l can be expressed as:

pl(t) =

[
yl(t)− Cl

yl(t)

]+

. (2.2)

The steady-state packet loss rate is the long term average number of packets

lost in the network, while transient loss rate is the fraction of packets lost before

flows converge to their steady state.

• Efficiency: Efficiency is the ability of a congestion control method to keep the

average input traffic rate ȳl at link l close to link capacity Cl.

ȳl = lim
T→∞

1

T

∫ T

0

yl(t)dt ≈ Cl (2.3)

• Fairness: Fairness is a very broad term. However, for single-bottleneck link,

fairness means that all flows have identical average sending rate in the steady-

7

state, i.e., x̄i = ȳl/N , where

x̄i = lim
T→∞

1

T

∫ T

0

xi(t)dt. (2.4)

For multiple-bottleneck links, fairness is usually complex to define. Different

ways of defining fairness include majority fairness (Jain’s fairness index) [4],

proportional fairness [27], max-min fairness [36].

• Stability: For this work, we assume control-theoretic stability, i.e., the sending

rate of flow i converges to its equilibrium value x∗i .

lim
t→∞

xi(t) = x∗i (2.5)

• Convergence Rate: Convergence rate is a measure of how fast the system con-

verges to its steady state after any perturbations. Convergence to efficiency

means how soon the input traffic rate converges to the link capacity. Conver-

gence to fairness means how soon all the flows passing through the link equally

share the link capacity.

B. Ideal Congestion Control

As shown in Fig. 1, an ideal congestion control method should be efficient and fair.

It should maintain a high link utilization and ensure that all the flows are equally

sharing the link capacity. It should try to maintain zero steady-state and transient

packet loss rate in order to avoid unnecessary retransmissions. It is also desirable

that the method has fast convergence rate independent of link capacity and round-tip

propagation delay. Another important feature of an ideal congestion control method

is to maintain stability in the system without any oscillations in the sending rate of

the flows.

8

Ideal congestion control

Behavior Properties

Efficient Fair Zero transient
loss

Zero steady-state
loss

Exponential
convergence

Control theoretic
stability

Fig. 1. Behavior and properties of ideal congestion control.

C. Feedback in Congestion Control

Congestion control is a closed-loop feedback control system, where flows in the net-

work respond to the congestion feedback in order to adjust their sending rates. Con-

gestion feedback can be implicit in nature such as detections of loss of a packet or

increase in RTT due to larger queuing delays. Congestion feedback can also be ex-

plicit in nature with the support from the routers. Explicit feedback can be single-bit

in nature using the ECN bit [45] in TCP/IP headers or multi-bit in nature such as

change in the congestion window [25], traffic load factor [52], link price [51], desired

sending rate [7], packet loss rate [55], and estimated fair rate [56].

9

Congestion Control

End-to-End (E2E) Active Queue Management (AQM)

Traditional Traditional Explicit-Feedback

TCP Tahoe,
Reno, NewReno,
Vegas, SACK, D-
SACK, and FACK

High-Speed

TCP Westwood, STCP, HSTCP, HTCP,
BICTCP, FAST, LTCP, CUBIC,

Compound TCP, and TCP Africa

RED, REM, PI,

and AVQ

XCP, MaxNet, MKC,
RCP, JetMax, and VCP

Fig. 2. Past developments in network congestion control.

D. The Big Picture

In 1983, the Internet moved to TCP/IP networking because of the many advantages

associated with it. As documented in [39], Nagle observed congestion in the network

as early as 1983. Since then and till today, congestion control has been an active

area of research. During this vast period, a number of congestion control protocols

have been proposed. As shown in Fig. 2, these protocols can be broadly divided

into two different categories: a) End-to-End Congestion Control; b) Active Queue

Management. They are briefly discussed in the following sections.

1. End-to-End Congestion Control

Congestion control methods that do not rely on routers and use implicit feedback to

detect congestion are called end-to-end (E2E) congestion control methods. Some of

10

the traditional methods in this category are shown in Fig. 2 with TCP Reno being the

most widely deployed in the Internet. These methods are known to lack scalability

[12] with the increase in either bandwidth or delay (or both) in the network. Hence,

as shown in Fig. 2 a number of methods for high-speed networking have recently

been proposed. Some important ones include STCP [28], HSTCP [12], BIC-TCP

[53], HTCP [31], FAST [22], [23], and LTCP [3]. Similar to TCP Reno, most of these

methods are based on packet loss as a sign of congestion except for FAST that is based

on increase in queuing delay or RTT. All of these protocols are based on end-to-end

semantics and have only sender-side modifications. This facilitates their deployment

in the Internet. In fact, most of these methods already have implementations that

are part of the modern Linux kernel (starting with release 2.6.13). A comparative

experimental evaluation available in [32] shows that these methods are able to provide

high link utilization. However, considering other performance metrics of an ideal

congestion control algorithm they are only slightly better or even worse compared to

TCP Reno.

2. Active Queue Management

Active queue management (AQM) is a way of involving routers to aid the end-to-end

congestion control methods. In AQM, a control algorithm runs at the routers that

aims to provide more accurate and early congestion feedback to the end-hosts. As

shown in Fig. 2, some of the proposed traditional AQM methods include Random

Early Discard (RED) [13], [14], Random Early Marking (REM) [2], Proportional

Integral Controller (PI) [18], [19], and Adaptive Virtual Queue (AVQ) [29], [30].

Most of these methods either implicitly drop packets or mark the ECN bit [45] in the

TCP/IP headers to provide early congestion warning. However, it has been shown in

[35] using control theory that these methods are prone to instability as capacity or

11

delay (or both) increases in the network. It has also been claimed that it is unlikely

that any AQM scheme can operate in a stable manner over high-capacity and large-

delay networks.

Another research direction using control-theoretic principles called explicit con-

gestion control that has recently been considered is to use multi-byte explicit-feedback

from the routers. In explicit congestion control, network devices in the path feedback

more accurate multi-byte congestion information to the end-hosts so that they can

adjust their congestion window size Wi(t) or sending rate xi(t) more accurately. Each

router l does per-packet processing to compute the combined traffic rate and apply

this information in a control equation to generate feedback signal pl(t). Types of

feedback suggested in the past include changes in the congestion window [25], traffic

load factor [52], link price [51], desired sending rate [7], packet loss [55], and estimated

fair rate [56]. Congestion feedback ηi(t) received by flow i can be of the following two

forms:

a. Additive Feedback

In the case of additive feedback, the congestion-feedback signal ηi(t) received by flow

i is the sum of feedback pl(t) generated by all the routers in the path of a flow.

ηi(t) =
∑

l∈i

pl(t−D←
il) (2.6)

Additive feedback has been used in the traditional Kelly’s model [27] where flow

i adjusts its sending rate xi(t) as:

xi(t) = xi(t− 1) + κi

(
ωi − xi(t−Di)

∑

l∈i

pl(t−D←
il)

)
, (2.7)

where xi(t− 1) is the previous sending rate, xi(t−Di) is the sending rate one RTT

12

ago, ωi is the price flow i is willing to pay, and κi is the control gain parameter.

Such a system achieves proportional fairness [26] and has been proved in [27] to be

globally asymptotically stable in the absence of delay in the network. Using discrete-

time analysis, the necessary and sufficient conditions for local stability of the system

of users (2.7) in the presence of homogeneous delays has been derived in [24] and a

similar conjecture has been proposed for the sufficient condition for local stability in

the presence of heterogeneous or diverse delays. A proof of the conjecture also using

discrete-time analysis has been provided in [49]. Using continuous-time analysis and

in the presence of heterogeneous delays, the conjecture in [24] has been proved in [50]

by applying the generalized Nyquist stability criterion [5]. A slightly weaker version

of the same conjecture and using continuous-time analysis has been proved in [37].

b. Max-min Feedback

In the case of max-min feedback, metric pl(t) of only the most congested router l in

flow i’s path is echoed back to the end-host as congestion feedback ηi(t) and used to

adjust the congestion window or sending rate.

ηi(t) = max
l∈i

pl(t−D←
il) (2.8)

Max-min fairness [36] is based on using max-min feedback. A number of explicit

congestion control protocols for max-min fairness have been recently proposed. Some

of them have been summarized in the following section.

E. Explicit Congestion Control for Max-min Fairness

In this section, we describe the proposed explicit congestion control methods for max-

min fairness. These methods include the focus of this thesis.

13

1. XCP

Explicit Control Protocol (XCP) [25] is a window-based explicit congestion control

method that uses a decoupled efficiency controller (EC) and fairness controller (FC)

inside the router. EC generates the desired aggregate change φ(t) = αdS(t)− βQ(t)

in the congestion window for all flows, where α and β are constants, d is the average

RTT, S(t) is the available bandwidth, and Q(t) is the persistent queue size at the

bottleneck link. FC then translates φ(t) into per-packet feedback Hi(k), which is

conveyed in the k-th ACK of flow i. Upon arrival of each ACK, flow i sets its

congestion window Wi(k) according to:

Wi(k) = max
(
Wi(k − 1) + Hi(k), s

)
, (2.9)

where s is the packet size and Wi(k) is flow i’s window size after receiving ACK k.

For homogeneous delay, it is shown in [25] that XCP is stable in single-bottleneck

topology if 0 < α < π/4
√

2 and β = α2
√

2. The suggested values [25] of control

parameters are α = 0.4 and β = 0.226.

The stability analysis in the presence of flows with heterogeneous RTTs is not

available for XCP. It has been proved in [34] that XCP may be arbitrarily max-min

unfair in certain network topologies and an improper choice of α and γ may lead

to low link utilization. In [54], it is shown that XCP can become unstable if there

is inadequate buffer provisioning at routers in the path of a flow. It is also shown

that lack of correct estimation of link capacity can prevent XCP from settling at

zero steady-state error. As found in [6], the average flow completion time for XCP is

higher than that of TCP. A recent study [56] shows that XCP can have a very high

convergence time when there are flows with highly heterogeneous RTTs in networks

with small bottleneck link capacity.

14

2. MaxNet

MaxNet [51] is another window-based explicit congestion control method. Each router

l uses an integrator process to compute feedback pl(t) as:

pl(t) = pl(t− T) +
yl(t)− γCl

γCl

, (2.10)

where yl(t) is the input traffic rate, Cl is the link capacity, T is the control interval,

and γ is the target link utilization. The sending rate of flow i is governed by an explicit

demand function Di() of the received congestion-feedback ηi(t) = maxl∈i pl(t−D←
il).

For a logarithmic utility function Ui(xi) = Ki log(xi), flow i updates its congestion

window Wi(k − 1) upon receiving the k-th ACK as:

ξi(k) = ξi(k − 1) + βi

(
Ki

Wi(k − 1)
− ηi(k)

Di

)
T (2.11)

Wi(k) = Wm,i exp

(
ξi(k)− αiηi(k)

MiDi

)
, (2.12)

where Ki, αi, βi, and Mi are constants, Wi(k) is the congestion window after receiving

the k-th ACK, Di is the RTT of flow i, ηi(k) is the received congestion signal, T is

the router control interval, Wm,i is a large constant, and ξi(k) is the value of a state-

variable of flow i after receiving the k-th ACK.

3. MKC

Max-min Kelly Control [55] is obtained by modifying Kelly’s equation (2.7) for max-

min fairness. Flow i adjusts its sending rate xi(n) using

xi(n) = (1− βηi(n))xi(n−Di) + α, (2.13)

15

where α and β are constants, xi(n−Di) is the sending rate one RTT ago, and received

congestion-feedback ηi(n) is:

ηi(n) = max
l∈i

pl(n−D←
il). (2.14)

MKC has been proved to be stable under arbitrary and including random delay

in the network. Exponential MKC (EMKC) uses feedback pl(n) as the packet-loss

rate at link l as:

pl(n) =
yl(n)− Cl

yl(n)
, (2.15)

where yl(n) is the input traffic rate and Cl is the link capacity. EMKC is stable in

the case of flows with heterogeneous RTTs if 0 < β < 2. However, the system has a

non-zero steady state packet-loss rate and slow convergence speed.

4. RCP

Rate Control Protocol (RCP) [6] is a rate-based explicit congestion control scheme

that aims at emulating processor sharing irrespective of traffic characteristics and

network conditions. Each router l computes the desired sending rate Rl(t) for flows

bottlenecked at l using a controller

Rl(t) = Rl(t− T)


1 +

T
(
α(Cl − yl(t))− β ql(t)

dl

)

dlCl


 , (2.16)

where α and β are constants, yl(t) is the input traffic rate, dl is the moving average of

RTTs sampled by router l, Cl is its capacity, ql(t) is the instantaneous queue length

at time t, and T is the router control interval. There is no mathematically tractable

stability analysis of RCP for flows with homogeneous or heterogeneous RTTs. This

is because of the presence of a queue term in the control equation that makes the

model complicated. However, using MATLAB [38] and ns-2 [42] simulations and

16

under several choices of delays, the authors in [6] have developed a stability region

for values of α and β to operate the system in a stable manner.

5. JetMax

JetMax [56] is another rate-based protocol, in which flow i adjusts its sending rate

xi(n) using

xi(n) = xi(n−Di)− τ
(
xi(n−Di)− gl(n−D←

i)
)
, (2.17)

where 0 < τ < 2 is the gain parameter and network feedback gl(n) is the estimated

fair rate at the bottleneck:

gl(n) =
γlCl − ul(n)

Nl(n)
. (2.18)

At time n, Nl(n) is the total number of flows bottlenecked at l and ul(n) is the

aggregate rate of flows receiving feedback from routers other than l. Mathematical

analysis shows that for the single-link case, the number of control steps required to

reach (1−ε)-efficiency and (1−ε)-fairness is dlog1−τ εe. Also, to guarantee monotonic

convergence the condition 0 < τ < 1 must be satisfied. JetMax also uses a number of

protocol enhancements such as proposed rate in order to prevent transient overshoot

when a) a new flow enters the system; b) bottleneck switching has been detected; c)

when a host demands a higher sending rate. It is shown in [56] that JetMax achieves

max-min fairness, zero packet loss, and constant convergence speed to both efficiency

and fairness.

6. Others

Other explicit congestion control methods include Variable-structure congestion Con-

trol Protocol VCP [52]. VCP uses the two explicit congestion notification (ECN) bits

of the IP header. The control algorithm at the router samples input traffic rate

17

and queue level to designate whether the system is in low-load, high-load, or over-

load conditions. This information is passed to the end-hosts using the ECN bits.

Flows operate in the Multiplicative-Increase mode when the system is in low-load

condition, Additive-Increase mode when the system is in high-load condition, and

Multiplicative-Decrease mode when the system is in over-load condition.

18

CHAPTER III

ANALYSIS OF RCP

In this chapter, we demonstrate several drawbacks of Rate Control Protocol (RCP)

[6] and suggest possible ways to eradicate them. We attribute the causes of these

drawbacks to lack of mathematically-tractable stability analysis and an aggressive

control equation at the end-host. We finally summarize the known strengths of RCP.

A. Drawbacks

We categorize the drawbacks of RCP in the following two sections: a) Instability; b)

High Buffering Requirement

1. Instability

In RCP, the control equation at router l is given as

Rl(t) = Rl(t− T)


1 +

T
(
α(Cl − yl(t))− β ql(t)

dl

)

dlCl


 , (3.1)

where α and β are constants, Rl(t) is the control rate, T is the control interval, Cl is

the link capacity, yl(t) is the input traffic rate, ql(t) is the queue length, and dl is the

average round-trip time (RTT) of flows passing through the router. The simulation

and stability analysis of RCP in the case of flows with only homogeneous RTTs is

given in [7]. For flows with heterogeneous RTTs, the stability analysis is available

only using simulations for various choices of delays. The presence of queue term ql(t)

in (3.1) makes the analysis difficult because of the difficulty in modeling it. The

evolution of queue ql(t) is discontinuous in nature (the discontinuity lies at ql(t) = 0)

and hence not differentiable. Also, the interaction of the queue size and average RTT

19

R1

l1 l2

l3

l1: 155 mb/s, 1 ms
l2: 622 mb/s, 100 ms
l3: 100 mb/s, 1 ms

x1

x2-x10

R2

R0

R3

Fig. 3. Topology Tu.

dl in (3.1) is difficult to perceive. Some of these intricacies were neglected by the

authors during their study in [7] and hence RCP can behave in an unstable manner

in certain topologies and scenarios. One such scenario is shown next.

Consider the topology Tu as shown in Fig. 3. Link l1 has capacity of 155 mb/s,

delay 1 ms, and bottleneck id 0. Link l2 has capacity of 622 mb/s, delay 100 ms, and

bottleneck id 2. Link l3 has capacity of 100 mb/s, delay 1 ms, and bottleneck id 4.

Flow x1 passes through links l1 and l2 while flows x2 − x10 traverse links l1 and l3.

At t = 0, flow x1 starts. At t = 30, flows x2 − x10 join the system. The simulation

was performed using ns-2 simulation code and scripts for long flows as provided by

the RCP authors.

a. RCP

The behavior of RCP in the simulation setup described above is shown in Fig. 4.

Till t = 30, when there is only one flow x1, with RTT 202 ms, in the network, the

system behaves in a stable manner. The bottleneck link l1 is completely utilized and

the queue length is zero packets. The control rate at all the routers and the sending

rate of x1 are stable. However, the control rate and queue size at links l1 and l3 start

20

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 50 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 4. Sending rate of flows x1 − x10 in the case of RCP for topology Tu confirming

instability.

oscillating after 9 flows x2 to x10, with RTT 4 ms, enter the system at t = 30. This

also causes the sending rate of flow x1 and x2− x10 to oscillate. From the figure, it is

clear that the system is behaving in an unstable manner.

b. RCP with Higher Link Delays

We increase the delay of all the links in topology Tu by a factor of 10, i.e., make the

delay of link l1 and l3 to be 10 ms and that of link l2 to be 1000 ms. As a result,

the round-trip propagation delay of flow x1 becomes 2.02 s and that of flow x2 − x10

becomes 40 ms. We repeat the simulation to confirm that instability in RCP is not

an artifact of only one set of link delay. The sending rate of flows x1 − x10 shown in

Fig. 5 and the control rate at links l1 and l3 shown in Fig. 6 keeps oscillating. Clearly,

RCP again behaves in an unstable manner.

In this scenario, we examine average RTT dl at bottleneck links l1 and l3 as

shown in Fig. 7. We also examine the RTT of the end flows as shown in Fig. 7. It

21

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) rate of x1

0 50 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) rate of x2 − x10

0 50 100
0

1

2

3

4

time (sec)

bo
ttl

en
ec

k
qu

eu
e

id

(c) bottleneck id of x2−
x10

Fig. 5. Sending rate of flows x1− x10 and bottleneck id of flows x2− x10 in the case of

RCP for topology Tu with higher link delay confirming instability.

0 50 100
0

50

100

150

200

time (sec)

co
nt

ro
l e

qu
at

io
n

ra
te

 (
m

b/
s)

(a) rate at l1

0 50 100
0

1

2

3

4

5x 10
7

time (sec)

qu
eu

e
si

ze
 (

by
te

s)

(b) queue at l1

0 50 100
0

20

40

60

80

100

time (sec)

co
nt

ro
l e

qu
at

io
n

ra
te

 (
m

b/
s)

(c) rate at l3

0 50 100
0

1

2

3x 10
6

time (sec)

qu
eu

e
si

ze
 (

by
te

s)

(d) queue at l3

Fig. 6. Control rate and queue size at links l1 and l3 in the case of RCP for topology

Tu with higher link delay confirming instability.

22

0 50 100
2

3

4

5

time (sec)

R
T

T
 e

st
im

at
e

(s
ec

)

(a) x1

0 50 100
0

1

2

3

time (sec)

R
T

T
 e

st
im

at
e

(s
ec

)

(b) x2 − x10

0 50 100
0

1

2

3

time (sec)

av
er

ag
e

R
T

T
 (

se
c)

(c) l1

0 50 100
0

1

2

3

time (sec)

av
er

ag
e

R
T

T
 (

se
c)

(d) l3

Fig. 7. RTT of flows x1 − x10 and average RTT at links l1 and l3 in the case of RCP

for topology Tu with higher link delay.

23

turns out that because of the oscillating queue size at bottleneck links l1 and l3, the

RTT of flows x1− x10 also keeps fluctuating. For example, the RTT of flow x1 varies

between 2.02 s to 4.6 s and the RTT of flows x2 − x10 vary between 0.04 s to 2.62 s.

Oscillations in the RTTs of flows x1 − x10 cause the average RTTs at the bottleneck

links l1 and l3 to oscillate. The average RTT dl at both l1 and l3 vary between 0.04

s to 2.62 s since majority of the input traffic passing through them is from flows

(x2− x10) that have similar RTT. It should be noted that the average RTT dl at link

l1 is not only oscillatory, but at certain time instants it has a value much smaller

than the maximum RTT (which is the RTT of x1 varying between 2.02 s to 4.6 s)

of flows passing through it. We suspect that this may be a reason that is violating

the stability conditions at l1 since average RTT dl is closely coupled with the control

gain parameters α and β.

During the simulation, we also study the bottleneck assignment of flow x1 and

flows x2 − x10. We find that flow x1 always remains bottlenecked at link l1 but

flows x2 − x10 keep switching their bottleneck link between l1 (bottleneck id = 0)

and l3 (bottleneck id = 4) as shown in Fig. 5. In order to verify whether bottleneck

oscillation is a cause or effect of instability in RCP we next repeat the simulation

with fixed bottleneck assignment.

c. RCP with Fixed Bottlenecks

We configure the router controller of link l1 to assign feedback only to packets from

flow x1 and configure the router controller at link l3 to always assign feedback to

packets from flows x2 − x10. We do the simulation with fixed bottleneck assignment

and the sending rate of flows x1− x10 in this scenario is shown in Fig. 8. The system

still behaves in an unstable manner confirming that bottleneck oscillation is the effect

of an unstable controller rather than the cause as claimed in [1].

24

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 50 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 8. Sending rate of flows x1− x10 in the case of RCP with fixed bottleneck assign-

ment indicating instability.

d. RCP-1

We modify equation (3.1) by dropping the queue term ql(t). The corresponding

equation is

Rl(t) = Rl(t− T)

[
1 +

Tα (Cl − yl(t))

dlCl

]
(3.2)

and has been referred to as RCP-1. This equation has tractable stability conditions

(see chapter IV). The behavior of RCP-1 for the simulation setup as considered

previously is shown in Fig. 9. At t = 0, flow x1 enters the system and quickly

saturates the bottleneck link l1. At t = 30, 9 flows x2 − x10 join the system. The

network quickly recovers from the transient state and converges to a stable steady

state. Clearly the system is stable with no oscillations in the sending rate of any of

the flows. However, a side effect of using control equation (3.2) is a non-zero queue at

link l3. This mainly occurs because at equilibrium (3.2) only provides yl(t) = Cl and

not ql(t) = 0. The question whether stability or zero queue is more important for a

25

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 50 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 9. Sending rate of flows x1 − x10 in the case of RCP-1 (3.2) for topology Tu

indicating stability.

congestion control scheme is beyond the scope of this work. However, in practice it

is always desirable to have zero or low queue size to absorb traffic burst, reduce RTT

of flows and jitter for voice applications.

e. RCP-2

Consider the following control equation at router l

Rl(t) = Rl(t− T)


1 +

Tα
(
Cl − yl(t))− β ql(t)

D

)

DCl


 (3.3)

where D is the maximum RTT of all flows passing through the router. Equation

(3.3) has been referred to as RCP-2. It is identical to the router control equation

(3.1) of RCP with average RTT dl replaced by maximum RTT D. We next study the

behavior of RCP-2 in topology Tu with higher link delays. The simulation result is

shown in Fig. 10 indicating stability. During the simulation, we find that unlike the

26

0 200 400
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 200 400
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 10. Sending rate of flows x1− x10 in the case of RCP-2 (3.3) for topology Tu with

higher link delay indicating stability.

case of RCP, the values of average RTT at links l1 and l3 are not very far from the

maximum RTT of flows passing through the links. Also, the values of average RTT

do not oscillate significantly. Substituting average RTT dl with maximum RTT D has

the effect that whatever change in traffic rate Cl − yl(t) or drain in queue ql(t) that

router l wants to undergo is done over a larger period of time since D > dl. Hence,

when maximum RTT D is used in the control equation as against average RTT dl, a

smaller fraction of the net change is being applied (since T/dl > T/D) during each

control interval T . This reduces the responsiveness of the controller but improves its

stability. Because of the difficulty in modeling RCP, the exact conditions of stability

cannot be found accurately. We speculate here without proof that the conditions for

stability in the case of RCP are also a function of dl and D. We show this for a

modified RCP like controller in the next chapter.

27

2. High Buffering Requirement

In this section, we show the high buffering requirement in the case of RCP to avoid a

large number of packet losses. The end-host control equation in RCP sets the sending

rate xi(t) of flow i equal to the received feedback R(t−D←
i) from the router as

xi(t) = R(t−D←
i). (3.4)

As a result, new flows entering the system directly use the current router control

rate as their sending rate. For a router that is already in its steady state, i.e.,

Cl = yl(t), this causes the input traffic rate to overflow the link capacity and an

increase in the queue occupancy. The problem becomes extremely severe when a

large number of flows join the system simultaneously as indicated by the simulation

result shown next.

Consider a dumb-bell topology with bottleneck link capacity 100 mb/s and link

delay of 50 ms. The system dynamics for this simulation scenario is shown in Fig. 11.

At t = 0, flow x1 enters the system. It saturates the bottleneck link with a sending

rate equal to the router control rate of 100 mb/s. At t = 15, 50 flows x2 − x51 enter

the system simultaneously. New flows entering the system start sending packets at

the rate given to them by the router, i.e., 100 mb/s. The input traffic rate at the

bottleneck link overshoots the link capacity by 51 times since all the 51 flows are

now sending data at the router control rate of 100 mb/s. As shown in Fig. 11, this

increases the queue length to a value of 80868 packets and it takes nearly 7.5 s for the

system to recover and reach its steady state. Hence, unless a huge buffer is provisioned

inside the routers, a large number of packets would be lost. The buffering requirement

increases significantly with the increase in the number of flows entering the system

simultaneously.

28

0 10 20 30 40 50
0

20

40

60

80

100

time (sec)

co
nt

ro
l e

qu
at

io
n

ra
te

 (
m

b/
s)

(a) control rate

0 10 20 30 40 50
0

2

4

6

8

10x 10
4

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(b) queue size

Fig. 11. Performance of RCP in a dumb-bell topology with bottleneck link capacity

100 mb/s and delay 50 ms with abrupt increase in traffic demand at t = 15.

B. How to Fix RCP?

The question that now arises is how to fix the drawbacks of RCP as discussed in the

previous sections? How to modify the control equations (at router, at source, or both)

to have a tractable stability and lower buffering requirement inside the routers?

• We should remove the queue term from the router control equation in order

to avoid modeling difficulties associated with it. However, mechanisms should

also be incorporated to drain queue built up due to any transient effects in the

system.

• We should modify the control equation at the end-hosts so that new flows

joining the system increase their sending rate gradually. This would allow the

router control equation to converge to a new steady-state without significantly

overflowing the queue.

29

C. Strengths

Apart from the drawbacks identified above, RCP has certain strengths as well. First,

RCP requires lower per-packet computation to compute the feedback signal inside

routers than some of its counterparts (e.g., 2 additions and 2 multiplications compared

to 6 additions and 3 multiplications in XCP [25]). Second, RCP has a smaller control

header size (i.e., 16 bytes) compared to XCP’s 20 bytes [10], JetMax’s 32 bytes [56],

and MKC’s 20 bytes [55]. Third, unlike XCP [34], RCP’s steady-state rates achieve

max-min fairness in general network topologies. Finally, RCP [6] has a much smaller

average flow completion time than XCP or TCP, which allows short flows to quickly

utilize available bandwidth and finish their transfers. Considering these strengths, we

strive to improve upon the drawbacks of RCP in the next chapter.

30

CHAPTER IV

NEW RATE CONTROL PROTOCOL

In this chapter, we strive to develop a new congestion control framework based on

modifications to Rate Control Protocol (RCP) [6] to eradicate its weaknesses as

demonstrated in the previous chapter and simultaneously provide a mathematically

tractable stability analysis of the system with single-bottleneck links. Closed form

stability analysis is missing in the case of RCP as studied in [7].

Consider the feedback control system model of explicit congestion control as

shown in Fig. 12. Let G(s) be the plant consisting of N users or flows each with

sending rate xi(t) and RTT Di = D→
i +D←

i . Let C(s) be the router controller whose

goal is to operate the closed loop system in a stable manner within certain constraints.

The output of the plant is the total sending rate y(t) arriving at the router controller

and the input being the per user or flow sending rate R(t) generated by the router.

Consider the router control equation

R(t) = R(t− T)


1 +

T
d

(
α(C − y(t))− β q(t)

d

)

C


 , (4.1)

where R(t) is the calculated rate, T is the control interval, α and β are constants,

C is the link capacity, y(t) is the input traffic rate, q(t) is the queue length, and d

is the average RTT of flows passing through the router. The control equation at the

router is referred to as router controller. Also, consider the control equation for flow

i referred to as source controller and given as:

xi(t) = R(t−D←
i). (4.2)

Equation (4.1) and (4.2) together form an RCP system that has been studied in

31

C(s)

G(s)

+ y(n)

R(n) e(n) = C – y(n)

C

—
Controller Plant

Fig. 12. Feedback control system model of explicit congestion control.

detail in [7].

A. Router Controller

Consider the controller at the router given as:

R(t) = R(t− T) +
Tα(γC − y(t))

Nd
, (4.3)

where γ is a constant and N is the number of flows in the system. Using γC/R(t−T)

as an estimate of N , (4.3) can be written as:

R(t) = R(t− T)

[
1 +

Tα(γC − y(t))

γCd

]
. (4.4)

Equation (4.4) is non-linear and can be linearized to obtain equation (4.3). It

is identical to the router control equation (4.1) of RCP but without the queue term

and link capacity scaled by γ. The absence of the queue term eradicate modeling

difficulties associated with it and helps in carrying out a tractable analysis. Also

working with virtual link capacity γC helps to drain a non-zero queue for 0 < γ < 1.

Theorem 1. Control equation given by (4.3) represents an Integral controller. The

Proportional and Derivative components are absent from the control system.

Proof. We prove the theorem first using continuous analysis and then using discrete

32

analysis. The input to the controller is error signal e(t) = γC − y(t) and its output

is sending rate R(t). As stated in [40], the transfer function C(s) = R(s)/e(s) in

the Laplace domain of a controller that has Proportional, Integral, and Derivative

components can be expressed as:

C(s) =
R(s)

e(s)
= KP +

KI

s
+ KDs, (4.5)

where KP , KI , and KD are the corresponding gains. Hence, the output R(s) of the

controller in the Laplace domain can be written as:

R(s) = KP e(s) +
KI

s
e(s) + KDse(s). (4.6)

Converting equation (4.3) in the form of a differential equation, we get:

Ṙ(t) =
αe(t)

Nd
(4.7)

Taking the Laplace transform of both sides of the above equation, we have:

C(s) =
R(s)

e(s)
=

α

sNd
(4.8)

On comparing the above equation with (4.5), it can be seen that KP = KD = 0

and KI = α/(Nd). Hence (4.3) is an Integral controller.

In the discrete-time domain with T as the sampling period, (4.3) can be written

as:

R(n) = R(n− 1) +
α(γC − y(n))

Nd
(4.9)

Rewriting equation (4.6) in the z-domain using the transformation s = (1 −
z−1)/T , we have:

R(z) = KP e(z) +
KITe(z)

1− z−1
+

KD

T
(1− z−1)e(z). (4.10)

33

Multiplying both sides of the above equation by (1− z−1), we get:

(1− z−1)R(z) = (1− z−1)KP e(z) + KITe(z) +
KD

T
(1− z−1)2e(z). (4.11)

Transforming the above equation to the time domain, we have:

R(n)−R(n−1) = KP (e(n)− e(n−1))+KITe(n)+
KD

T
(e(n)−2e(n−1)+ e(n−2)).

(4.12)

After rearranging terms, the output R(n) of the controller is given by:

R(n) = R(n− 1) +

(
KP + KIT +

KD

T

)
e(n)−

(
KP + 2

KD

T

)
e(n− 1)

+
KD

T
e(n− 2)

= R(n− 1) +

(
KP + KIT +

KD

T

)
(γC − y(n))

−
(

KP + 2
KD

T

)
(γC − y(n− 1)) +

KD

T
(γC − y(n− 2)) (4.13)

On comparison with (4.9), the gain parameters can be evaluated as KP = KD = 0

and KI = α/(NTd). Hence, (4.9) is an Integral controller whose goal is to converge

error e(n) = (γC − y(n)) → 0 or y(n) → γC in the steady state.

Consider the following router controller:

R(t) = R(t− T)

[
1 +

α1T (γC − y(t))

γCd
+

α2T (γC − y(t− T))

γCd

]
. (4.14)

The above equation can be linearized to obtain:

R(t) = R(t− T) +
α1T (γC − y(t))

Nd
+

α2T (γC − y(t− T))

Nd
. (4.15)

Using the continuous analysis in the previous theorem, the above linearized con-

troller has gain parameters KD = 0, KP = −α2T/(Nd), and KI = (α1 + α2)/(Nd).

Hence, equation (4.15) is a Proportional Integral (PI) controller with no Derivative

34

component. Apart from adding the Proportional component, it also has a higher

Integral gain (for α1 = α2 = α) as compared to (4.3). This helps in improving the

system response time and limiting the queue to lower levels. It was also found using

simulations that including the Derivative component does not improve the system

dynamics further.

B. Source Controller

The system dynamics G(s) of RCP has the affect of overflowing the router queue

when new flows join the system. This is undesirable in practice and instead we want

system dynamics that does not significantly overshoot the queue. Intuitively, new

flows should not directly use the sending rate given to them by the router since

it may be incorrect. Because of the usage of a PI controller, we know the system

would converge to a stable steady state with zero error provided the controller is

stable. However, it is desirable to have a transient phase where the router queues are

small. Hence, new flows joining the system should gradually increase their sending

rate. Consider the following Exponentially Weighted Moving Average (EWMA) type

source controller, where upon receiving feedback R(n) the sending rate xi(n) of flow

i is updated as:

xi(n) = xi(n− 1)− τ1 (xi(n− 1)−R(n−D←
i)) (4.16)

This source controller is also used by JetMax and has the property that in the

steady state, the sending rate of a flow converges to the rate received from the router

as feedback. How fast the source rate converges to its steady state depends upon the

choice of τ1.

Theorem 2. For the source controller (4.16) with the router controller in its steady

35

state, the number of control steps required to converge to (1− ε)-efficiency is indepen-

dent of the link capacity and the steady state value.

Proof. For the router already in its steady-state phase, the subsequent feedback values

K are all the same. By expanding the equation (4.16) recursively, the sending rate

can be written as:

xi(n) = (1− τ1)
nxi(0) + Kτ1

[
1 + (1− τ1) + (1− τ1)

2 + · · ·+ (1− τ1)
n−1

]

= (1− τ1)
nxi(0) + Kτ1

[
1− (1− τ1)

n

1− (1− τ1)

]

= (1− τ1)
nxi(0) + K [1− (1− τ1)

n] (4.17)

After rearranging terms, the above equation can be written as:

(K − xi(n)) = (1− τ1)
n(K − xi(0)). (4.18)

Defining ε = (K−xi(n))/(K−xi(0)), the above equation is equivalent to ε = (1−
τ1)

n. Hence, the number of control steps required to converge to K is n = dlog1−τ1 εe,
which depends only upon τ1 and ε and is independent of the link capacity.

Consider the following source controller:

xi(n) = xi(n−1)−τ1(xi(n−1)−R(n−D←
i))+τ2(R(n−D←

i)−R(n−1−D←
i)), (4.19)

where R(n − D←
i) and R(n − 1 − D←

i) are the two most recent feedback received

from the router. If R(n − D←
i) > R(n − 1 − D←

i) then the router is under-utilized

and wants to encourage the flows to increase their sending rate. On the contrary,

if R(n − D←
i) < R(n − 1 − D←

i) then the router is over-utilized and wants the

flows to decrease their sending rate. The term associated with τ2 makes the system

more responsive. It should be noted here that this gain comes by just saving the

last received feedback at the source side without incurring any network overhead.

36

Another information to note is that τ2 affects only when the system is in transient

state, i.e., when the successive received feedback are different. In case, the router has

already reached its steady state, i.e., y(n) = γC, successive feedback values would all

be the same and the source dynamics is mainly governed by τ1.

Another question that now arises is how often should the source controller be

invoked? Some of the possible options are:

• Every Ack: The source responds to feedback generated during every router

control interval and for multiple number of times.

• Every New Feedback: The source responds to feedback generated by the router

and only once per the control interval. It also requires a field in the congestion

header so that flows can identify the new feedback.

• Once per RTT: The source responds to received feedback only once per RTT.

C. QI-RCP

In this section, we propose a congestion control method called Queue Independent

RCP (QI-RCP) consisting of router controller (4.4) and source controller (4.2). We

next prove its stability in both continuous and discrete case using Nyquist stability

criterion.

1. Continuous Case

The linearized QI-RCP system in continuous case can be expressed as:

Ṙ(t) =
α(γC − y(t))

Nd
=

α

Nd

(
γC −

N∑
i=1

R(t−Di)

)
. (4.20)

37

Taking the Laplace transform of the above system, we have:

sR(s) = − α

Nd

N∑
i=1

R(s)e−sDi + K, (4.21)

where K is a constant. The transfer function is then:

R(s) =
K/s

1 + G(s)
, (4.22)

where

G(s) =
α

Nd

N∑
i=1

e−sDi

s
. (4.23)

In the frequency domain, the above transfer function can be written as:

G(jω) =
α

Nd

N∑
i=1

e−jωDi

jω
(4.24)

Theorem 3. For a QI-RCP system consisting of flows with homogeneous RTTs D,

the necessary and sufficient condition for local stability is 0 < α < π/2.

Proof. For Di = D = d, we have:

G(jω) = α
e−jωD

jωD
, (4.25)

We start with α > 0. The values of ωi where G(jω) crosses the real axis can be

found by solving the following equation:

Im[G(jω)] = Im

[
α

cos(ωD)− j sin(ωD)

jωD

]
= 0. (4.26)

This immediately reduces to cos(ωD) = 0, which has roots ωi = π(1 + 2i)/(2D),

where i is an integer. For i = 0, we have ω0 = π/(2D) and the real part of G(jω0) is:

Re

[
α

cos(jω0D)− j sin(ω0D)

jω0D

]
= −α

2

π
. (4.27)

To ensure stability, we must satisfy Re[G(jω0)] > −1, which leads to the con-

38

dition α < π/2. The remaining steps are to show that for i 6= 0 (both positive and

negative values), the condition on α becomes looser and diverges to +/ −∞. Tak-

ing the intersection of all conditions, we find the narrowest that guarantees stability,

which is 0 < α < π/2.

Next, for α = 0, we have a marginally stable system Ṙ(t) = 0 with a single pole

at s = 0. For α < 0, we have to reverse the condition on Re[G(jω)], which leads to

α > π/2, which contradicts the assumption that α < 0. Therefore, no value of α < 0

can keep the system stable.

Theorem 4. For a QI-RCP system consisting of flows with heterogeneous RTTs, a

sufficient condition for local stability is 0 < α < πd/(2D), where D = max{D1, D2,

. . . , DN} and d is the average RTT of the system.

Proof. We are interested in roots ω′i of the following equation:

Im[G(jω)] =
α

Nd

N∑
i=1

cos(ωDi) = 0. (4.28)

Observe that (4.28) cannot have roots in [−ω0, ω0], where ω0 = π/(2D), unless

all delays are equal. We prove this by contradiction. Assume that 0 ≤ ω′0 < ω0 is the

smallest root of (4.28). Then, 0 ≤ ω′0Di < π/2, which means that all cosine terms

in the summation are strictly positive, which contradicts the assumption that ω′0 is a

root of (4.28). Since cosine is a symmetric function, we immediately obtain the same

contradiction for −ω0 ≤ ω′0 < 0. Therefore, it follows that |ω′0| ≥ ω0.

Next, consider the value of Re[G(jω′0)] where ω′0 as before is the smallest root of

(4.28):

Re[G(jω′0)] = − α

Ndω′0

N∑
i=1

sin(ω′0Di). (4.29)

Bounding all sines with 1 and leveraging our prior observation on the relationship

39

to the homogeneous case, we have assuming ω′0 > 0:

Re[G(jω′0)] ≥ − α

ω′0d
≥ − α

ω0d
= −2Dα

πd
. (4.30)

Therefore, the magnitude of the point at which the real axis is crossed can only

be reduced (i.e., moved closer to zero) in the heterogeneous case compared to that in

the homogeneous case. If ω′0 < 0, observe that sin(ω′0)/ω
′
0 = sin(−ω′0)/(−ω′0), which

can be converted to the case of positive ω′0 to produce identical results to those in

(4.30). Finally, noticing that the remaining ω′i are larger than ω′0, it follows that they

can only shift (4.30) further toward zero and thus lead to looser bounds on α. Hence,

a sufficient condition for stability is 0 < α < πd/(2D)

2. Discrete Case

In this section, we analyze the stability of QI-RCP in the discrete case. We first

consider the ideal undelayed scenario and then a more practical setting with delays

in the network.

Theorem 5. For a QI-RCP system in an undelayed scenario, the necessary and

sufficient condition for local stability is 0 < α < 2

Proof. For a QI-RCP system in an undelayed scenario, the source controller is:

xi(n) = R(n− 1)

and the linearized router controller is:

R(n) = R(n− 1) +
α(γC − y(n))

N
.

At equilibrium,

R(n) = xi(n) = R∗ =
γC

N
. (4.31)

40

0 500 1000
0

20

40

60

80

100

control step

co
nt

ro
l r

at
e

(m
b/

s)

(a) α = 1.99

0 500 1000
−2

−1

0

1

2x 10
6

control step

co
nt

ro
l r

at
e

(m
b/

s)

(b) α = 2.01

Fig. 13. Verification of undelayed stability conditions for QI-RCP.

The input traffic rate y(n) seen at the router is:

y(n) =
N∑

i=1

xi(n) =
N∑

i=1

R(n− 1) = NR(n− 1). (4.32)

Substituting the value of y(n) in the router control equation, we have:

R(n) = R(n− 1) +
αγC

N
− α

N
NR(n− 1)

= R(n− 1)(1− α) +
αγC

N
. (4.33)

The above system dynamics has only 1 eigenvalue λ = (1 − α). For a stable

system, |λ| < 1 should be satisfied, which leads to 0 < α < 2.

We verify the stability conditions as derived above using MATLAB. They are

shown in Fig. 13. Clearly the system is stable for α = 1.99 but becomes unstable for

α = 2.01.

Theorem 6. For a QI-RCP system consisting of flows with RTTs D1, D2, . . ., DN ,

the necessary and sufficient condition for local stability is that the roots of the following

41

characteristic equation expressed in the z-domain must lie within the unit circle.

1− z−T +
Tα

Nd

N∑
i=1

z−Di = 0 (4.34)

Proof. For a QI-RCP system in the discrete-time domain, the source controller is:

xi(n) = R(n−D←
i) (4.35)

and the linearized router controller is:

R(n) = R(n− T) +
αT (γC − y(n))

Nd
, (4.36)

At equilibrium,

R(n) = xi(n) = R∗ =
γC

N
. (4.37)

The input traffic rate y(n) seen at the router is:

y(n) =
N∑

i=1

xi(n−D→
i) =

N∑
i=1

R(n−Di). (4.38)

Substituting the value of y(n) in the router control equation, we have:

R(n) = R(n− T) +
TαγC

Nd
− Tα

Nd

N∑
i=1

R(n−Di). (4.39)

Near the equilibrium point R∗ and using X(n) = R(n) − R∗ = R(n) − γC/N ,

the above equation can be written as:

X(n) = X(n− T)− Tα

Nd

N∑
i=1

X(n−Di). (4.40)

Taking z-transform of both sides of the above equation, we get:

X(z) =
K

1− z−T + Tα
Nd

∑N
i=1 z−Di

, (4.41)

where K is a constant. For stability of the system, the poles of the transfer func-

42

tion must lie within the unit circle. Hence, the location of roots of the following

characteristic equation must be within the unit circle.

1− z−T +
Tα

Nd

N∑
i=1

z−Di = 0 (4.42)

While implementing a QI-RCP system, the control algorithm is invoked every T

intervals. The calculated rate is kept constant for the period T after which a new rate

is calculated again. Hence, the only discrete case we need to analyze is T = 1 and

Di ← dDi/T e. Using this information, the QI-RCP system transfer function (4.41)

becomes:

X(z) =
K/(1− z−1)

1 + G(z)
, (4.43)

where,

G(z) =
α

Nd

N∑
i=1

z−Di

1− z−1
. (4.44)

The transfer function G(z) in the frequency domain can be written as:

G(ejω) =
α

Nd

N∑
i=1

e−jω(Di−1)

ejω − 1
. (4.45)

After expanding the exponentials, (4.45) can also be written as:

G(ejω) = − α

2Nd sin(ω/2)

N∑
i=1

[
sin

ω(2Di − 1)

2
+ j cos

ω(2Di − 1)

2

]
(4.46)

Theorem 7. For a QI-RCP system consisting of flows with homogeneous RTT D,

the necessary and sufficient condition for local stability is:

0 <
α

D
< 2 sin

(
π

2(2D − 1)

)
. (4.47)

Proof. When RTTs of all the flows are equal to D (hence d = D), G(ejω) crosses the

43

0 5000 10000
−50

0

50

100

150

control step

co
nt

ro
l r

at
e

(m
b/

s)

(a) α = 1.64

0 5000 10000
−4000

−2000

0

2000

4000

control step

co
nt

ro
l r

at
e

(m
b/

s)

(b) α = 1.66

Fig. 14. Verification of stability condition for QI-RCP in the case of flows with homo-

geneous RTT D = 10. The necessary and sufficient condition for stability is

α < 1.6523.

real axis (i.e., Im[G(ejω)] = 0) for ωi = (2i + 1)π/(2D− 1), where i is an integer. For

i = 0, we have ω0 = π/(2D − 1) and the real part of G(ejω0) is:

Re[G(ejω0)] =
−α

2D sin(ω0/2)
=

−α

2D sin
(

π
2(2D−1)

) . (4.48)

Using arguments in the proof of theorem 3, stability is ensured if and only if:

0 <
α

D
< 2 sin

(
π

2(2D − 1)

)
. (4.49)

We verify the stability condition as derived above using MATLAB. Consider the

case when D = 10. For stability, the necessary and sufficient condition is α < 1.6523.

It can be seen from Fig. 14 that for α = 1.64, the system is stable but becomes

unstable for α = 1.66.

Theorem 8. For a QI-RCP system consisting of flows with heterogeneous RTTs, a

44

sufficient condition for local stability is:

0 <
α

d
< 2 sin

(
π

2(2D − 1)

)
, (4.50)

where D = max{D1, D2, . . . , DN} and d is the average RTT of the system.

Proof. Using (4.46), we find that G(ejω) crosses the real axis (i.e., Im[G(ejω)] = 0)

when:
N∑

i=1

cos
ω(2Di − 1)

2
= 0. (4.51)

It can be seen that none of the roots ω′i of the above equation have absolute

value smaller than ω0 = π/(2D − 1). Due to the periodic nature (with period 2π)

of the frequency domain of a discrete-time system, we can limit our attention to

ω′i ∈ [−π, π]. Also, π is a solution to (4.51) since (2D′
i − 1) is odd for any integer Di.

Based on these arguments, the smallest root ω′0 of (4.51) should satisfy 0 < ω′0 ≤ π

and ω′0 > ω0. Again, because of the monotonicity of the sine function between 0 and

π/2, the condition sin(ω′0/2) > sin(ω0/2) holds. For ω′0, the real part of G(ejω′0) is:

Re[G(ejω′0)] = − α

2Nd sin(ω′0/2)

N∑
i=1

sin
ω′0(2Di − 1)

2

≥ − α

2d sin(ω′0/2)

≥ − α

2d sin(ω0/2)

= − α

2d sin
(

π
2(2D−1)

) (4.52)

The above inequality is obtained by bounding the sines with 1, using sin(ω′0/2) >

sin(ω0/2), and remains valid even if ω′0 < 0. Based on arguments as in the proof of

theorem 4, a sufficient condition for stability is:

0 <
α

d
< 2 sin

(
π

2(2D − 1)

)
(4.53)

45

0 500 1000
0

20

40

60

80

control step

co
nt

ro
l r

at
e

(m
b/

s)

(a) α = 1.2

0 5 10
x 10

4

−200

−100

0

100

200

300

control step

co
nt

ro
l r

at
e

(m
b/

s)

(b) α = 1.896

Fig. 15. Verification of stability condition for QI-RCP in the case of flows with het-

erogeneous RTTs D1 = 10, D2 = 20. The sufficient condition for stability is

α < 1.2080.

We verify the stability condition as derived above using MATLAB. Consider the

case of two flows with D1 = 10 and D2 = 20. A sufficient condition for stability is

α < 1.2080. It can be seen from Fig. 15 that for α = 1.2, the system is stable but

becomes unstable only for α ≥ 1.896 indicating that the condition is not necessary.

We verify that QI-RCP is stable in the topology shown in Fig. 3 where RCP was

unstable as shown in chapter III. The corresponding plots for sending rate of flow x1

and x2 − x10 are shown in Fig. 16.

For T/D ≈ 0, the conditions derived in continuous and discrete case become

equivalent. Though QI-RCP has mathematically tractable stability conditions, it still

uses the aggressive source controller (4.2) used in the case of RCP. This has the effect

of input traffic rate significantly overshooting the link capacity and hence overflowing

the queue size when a flash crowd of long flows join the system simultaneously. We

46

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 50 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 16. Sending rate of flows x1 − x10 in the topology shown in Fig. 3 for QI-RCP

indicating stability.

next strive to improve this.

D. PIQI-RCP

In this section, we propose Proportional Integral Queue Independent RCP (PIQI-

RCP) consisting of router controller (4.14) and source controller (4.19). We next

prove its stability in both continuous and discrete case.

1. Continuous Case

In this section, we analyze the stability of PIQI-RCP in the continuous case. Consider

the control system as shown in Fig. 12. The individual blocks, i.e., the controller and

the plant in the context of PIQI-RCP are analyzed below.

The linearized router controller can be written as:

R(t) = R(t− T) +
Tα1(γC − y(t))

Nd
+

Tα2(γC − y(t− T))

Nd
. (4.54)

47

For simplicity, we assume α1 = α2 = α. We define the error signal e(t) =

γC − y(t) and hence e(t−T) = γC − y(t−T). After substituting the error term and

converting the above equation in the form of differential equation, we have:

Ṙ(t) =
α

Nd
[e(t) + e(t− T)] . (4.55)

Taking the Laplace transform of both sides of the above equation, the transfer

function C(s) = R(s)/e(s) can be written as:

C(s) =
α

sNd

[
1 + e−sT

]
. (4.56)

For small values of sT , we can approximate e−sT = 1 − sT . With this approxi-

mation, the transfer function of the controller can be written as

C(s) =
α

sNd
(2− sT). (4.57)

The plant consists of N flows and each flow i adjusts its sending rate xi(t) as:

xi(t) = xi(t− T)− τ1(xi(t− T)−R(t−D←
i)) + τ2(R(t−D←

i)−R(t− T −D←
i)

= (1− τ1)xi(t− T) + (τ1 + τ2)R(t−D←
i)− τ2R(t− T −D←

i) (4.58)

The total input traffic rate observed at the router is given by:

y(t) =
N∑

i=1

xi(t−D→
i)

=
N∑

i=1

[xi(t− T −D→
i)(1− τ1) + (τ1 + τ2)R(t−Di)− τ2R(t− T −Di)]

= (1− τ1)y(t− T) + (τ1 + τ2)
N∑

i=1

R(t−Di)− τ2

N∑
i=1

R(t− T −Di) (4.59)

48

Converting the above equation in the form of a differential equation, we have:

ẏ(t) =
−τ1

T
y(t− T) +

τ1 + τ2

T

N∑
i=1

R(t−Di)− τ2

T

N∑
i=1

R(t− T −Di). (4.60)

Taking Laplace transform of both sides of the above equation, we get:

sY (s) =
−τ1

T
e−sT Y (s) +

τ1 + τ2

T
R(s)

N∑
i=1

e−sDi − τ2

T
R(s)

N∑
i=1

e−s(T+Di). (4.61)

Hence, the transfer function of the plant G(s) = Y (s)/R(s) can be written as:

G(s) =
Y (s)

R(s)
=

1

T

[
(τ1 + τ2)− τ2e

−sT

s + τ1
T

e−sT

] N∑
i=1

e−sDi . (4.62)

Using the approximation e−sT = 1 − sT for small values of sT , G(s) can be

written as:

G(s) =
1

T

[
τ1 + τ2sT

s + τ1
T

(1− sT)

] N∑
i=1

e−sDi . (4.63)

The overall open loop transfer function combining the controller and the plant

can be obtained from equation (4.57) and (4.63) as given below:

Tf (s) = C(s)G(s) =
α

sNd
(2− sT)

1

T

[
τ1 + τ2sT

s + τ1
T

(1− sT)

] N∑
i=1

e−sDi

=
α

sNdT

[
(2− sT)(τ1 + τ2sT)

s + τ1
T

(1− sT)

] N∑
i=1

e−sDi

=

∑N
i=1 e−sDi

sNd

[
α(−T 2τ2s

2 + s(2τ2T − Tτ1) + 2τ1)

sT (1− τ1) + τ1

]
(4.64)

The transfer function Tcl(s) of the closed loop system is given as:

Tcl(s) =
Tf (s)

1 + Tf (s)
, (4.65)

where the characteristic equation is 1 + Tf (s) = 0 or Tf (s) = −1. We next study the

stability of PIQI-RCP using the model developed above.

Theorem 9. For a PIQI-RCP system with T/D ≈ 0, the necessary and sufficient

49

condition for local stability in the case of flows with homogeneous RTTs D is 0 < α <

π/4.

Proof. Using (4.64), the open loop transfer function Tf (s) of PIQI-RCP in the case

of flows with homogeneous RTT D (hence average RTT d = D) can be written as:

Tf (s) =
e−sD

sD

[
α(−T 2τ2s

2 + s(2τ2T − Tτ1) + 2τ1)

sT (1− τ1) + τ1

]
= TD(s)T (s), (4.66)

where

TD(s) =
e−sD

sD
(4.67)

T (s) =

[
α(−T 2τ2s

2 + s(2τ2T − Tτ1) + 2τ1)

sT (1− τ1) + τ1

]
(4.68)

Rewriting the open loop transfer function and the equations given above in the

frequency domain using s = jω, we get:

Tf (jω) =
e−jωD

jωD

[
α(T 2τ2ω

2 + jω(2τ2T − Tτ1) + 2τ1)

jωT (1− τ1) + τ1

]
(4.69)

TD(jω) =
e−jωD

jωD
(4.70)

T (jω) =

[
α(T 2τ2ω

2 + jω(2τ2T − Tτ1) + 2τ1)

jωT (1− τ1) + τ1

]
(4.71)

We next study the points where TD(jω) and T (jω) cross the real axis, i.e., their

imaginary parts are equal to zero. After expanding the exponential term in TD(jω),

we get:

TD(jω) =
e−jωD

jωD
=
−1

ωD
(sin ωD + j cos ωD). (4.72)

From the above equation, we observe that TD(jω) crosses the real axis (i.e.,

Im[TD(jω)] = 0) for ωi = (i + 1/2)π/D. While for i = 0, Re[TD(jω)] = −2/π and for

i 6= 0, Re[TD(jω)] converges to ±0 with increase in i. The function T (jω) crosses the

50

real axis for ω′1 = 0 at Re[T (jω)] = 2ατ1/τ1 = 2α and for ω′2 given by:

ω′2 =

[
τ 2
1 − 2τ1 + 2τ1τ2

T 2τ2(1− τ1)

] 1
2

. (4.73)

However, for 0 < τ1 < 1 the value of ω′2 is imaginary for 0 < τ1 +2τ2 < 2. Hence,

selecting small values of τ1 and τ2 (such as τ1 = 0.01 and τ2 = 0.1) that we want in

order to restrict overflowing the queue significantly, we can enforce that T (jω) crosses

the real axis only for ω′1 = 0.

For small ωT (i.e.,T/D ≈ 0), Tf (jω) can be reduced to:

Tf (jω) =
e−jωD

jωD

2ατ1

τ1

= 2α
e−jωD

jωD
, (4.74)

which using Nyquist stability criterion ensures stability if and only if 0 < α < π/4.

We next verify the above stability condition using ns-2 simulation. Consider a

dumb-bell topology with bottleneck link capacity 100 mb/s and delay 50 ms. A new

flow enters the system every 10 seconds and remains in the system for the entire

duration of the simulation. The access links of the flows have capacity of 1 gb/s.

The the access links of all the flows have identical delay of 10 ms. Hence, all the

flows have identical RTT equal to 120 ms. As indicated in the previous theorem, a

necessary and sufficient condition for stability in the case of flows with homogeneous

RTTs is α < π/4 ≈ 0.78571. We carry out the simulations for α = 0.77 and α = 0.80.

The corresponding plots are shown in Fig. 17(a) and 17(b) respectively. The system

clearly becomes unstable for α = 0.80 but is stable for α = 0.77.

Theorem 10. For a PIQI-RCP system with T/D ≈ 0, a sufficient condition for local

stability in the case of flows with heterogeneous RTTs is 0 < α < πd/(4D), where

D = max{D1, D2, . . . , DN} and d is the average RTT of the system.

51

0 50 100 150 200
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) α = 0.77

0 50 100 150 200
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) α = 0.80

Fig. 17. Verification of delayed stability condition for PIQI-RCP in the case of flows

with homogeneous RTT D = 120 ms. The necessary and sufficient condition

for stability is α < 0.78571.

Proof. For T/D ≈ 0, the open loop transfer function (4.64) can be approximated as:

Tf (s) =

∑N
i=1 e−sDi

sNd

2ατ1

τ1

= 2α

∑N
i=1 e−sDi

sNd
. (4.75)

In the frequency domain, the above equation can be written as:

Tf (jω) =
2α

Nd

N∑
i=1

e−jωDi

jω
. (4.76)

Using the analysis in the proof of theorem 4, a sufficient condition for stability

is 0 < α < πd/(4D).

It should be noted here that the router controller has knowledge of both average

RTT d and maximum RTT D through the packet congestion header. Hence, the

stability condition can easily be satisfied. Also within the router control equation,

we can replace average RTT d with maximum RTT D to ensure stability condition

to be independent of RTTs of flows in the system. However this may reduce the

52

0 50 100 150 200 250 300
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) α = 0.26

0 50 100 150 200 250
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) α = 0.27

Fig. 18. Verification of delayed stability condition for PIQI-RCP in the case of flows

with heterogeneous RTTs. A sufficient condition for stability is α < 0.261905.

responsiveness of the controller.

We next verify the stability condition derived above using ns-2 simulation. Con-

sider a dumb-bell topology with bottleneck link capacity 100 mb/s and delay 50 ms.

A new flow enters the system every 10 seconds and remains in the system for the

entire duration of the simulation. The access links of all flows have different delays.

Consider the average RTT d to be 100 ms and the maximum RTT D among all

the flows to be 300 ms. As indicated in the previous theorem, a sufficient condition

for stability in the case of flows with heterogeneous RTTs is α < πd/4D. For the

current scenario, this leads to α < π/12 ≈ 0.261905. We carry out the simulations

for α = 0.26 and α = 0.27. The corresponding plots are shown in Fig. 18(a) and

18(b) respectively. The system clearly becomes unstable for α = 0.27 but is stable

for α = 0.26.

We verify that PIQI-RCP is stable in the topology shown in Fig. 3, where RCP

is unstable as shown in chapter III. The corresponding plot for sending rate of flows

53

0 50 100
0

50

100

150

200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) x1

0 50 100
0

5

10

15

20

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) x2 − x10

Fig. 19. Sending rate of flows x1 − x10 in the topology shown in Fig. 3 for PIQI-RCP

indicating stability.

x1 − x10 is shown in Fig. 19.

2. Discrete Case

In this section, we analyze the stability of PIQI-RCP in the discrete case. We first

consider the ideal undelayed scenario and then a more practical setting with delays

in the network.

Theorem 11. For a PIQI-RCP system in an undelayed scenario, the condition for

local stability is independent of link capacity C and number of flows N in the system.

Proof. In the case of PIQI-RCP, the source controller is:

xi(n) = xi(n− 1)− τ1(xi(n− 1)−R(n− 1)) + τ2(R(n− 1)−R(n− 2))

and the linearized router controller is:

R(n) = R(n− 1) +
α1(γC − y(n))

N
+

α2(γC − y(n− 1))

N
.

54

At equilibrium,

R(n) = xi(n) = R∗ =
γC

N
. (4.77)

The input traffic rate y(n) seen at the router is:

y(n) =
N∑

i=1

xi(n)

= (1− τ1)
N∑

i=1

xi(n− 1) + N(τ1 + τ2)R(n− 1)− τ2NR(n− 2)

= (1− τ1)y(n− 1) + N(τ1 + τ2)R(n− 1)− τ2NR(n− 2) (4.78)

Substituting the value of y(n) in the router control equation and assuming α1 =

α2 = α, we have:

R(n) = (1− α(τ1 + τ2))R(n− 1)−
[
α(1− τ1) + α

N

]
y(n− 1)

+ατ2R(n− 2) +
γαC

N
(4.79)

Hence, the overall system dynamics in matrix form can be expressed as:




R(n)

y(n)

R(n− 1)




=




(1− α(τ1 + τ2))
−α(1−τ1)−α

N
ατ2

N(τ1 + τ2) 1− τ1 −Nτ2

1 0 0







R(n− 1)

y(n− 1)

R(n− 2)




(4.80)

Using symbolic analysis toolbox in MATLAB, we find that the above system

dynamics has 3 eigenvalues λ1, λ2, λ3, which are a complicated polynomial function

of α, τ1, and τ2. The eigenvalues and hence the stability conditions are independent

of link capacity C and number of flows N in the system.

Since, we are mainly interested in stability analysis in the presence of delay, we

next carry out the same. The linearized controller (4.14) in the discrete-time domain

55

can be written as:

R(n) = R(n− T) +
αTe(n)

Nd
+

αTe(n− T)

Nd
. (4.81)

Taking the z-transform of both sides of the equation, the transfer function C(z) =

R(z)/e(z) is:

C(z) =
αT (1 + z−T)

Nd(1− z−T)
. (4.82)

The plant consists of N flows and each adjusts its sending rate using (4.19). The

total input traffic rate y(n) observed at the router is given by:

y(n) =
N∑

i=1

xi(n−D→
i)

= (1− τ1)y(n− T) + (τ1 + τ2)
N∑

i=1

Rl(n−Di)

−τ2

N∑
i=1

Rl(n− T −Di). (4.83)

Taking the z-transform of both sides of the above equation, the transfer function

G(z) = Y (z)/R(z) of the plant can be written as:

G(z) =
(τ1 + τ2)− τ2z

−T

1− (1− τ1)z−T

N∑
i=1

z−Di . (4.84)

The overall open loop transfer function Tf (z) = C(z)G(z) combining the con-

troller and the plant can be obtained from equation (4.82) and (4.84) as given below:

Tf (z) =

[
τ1 + τ2 + τ1z

−T − τ2z
−2T

1− (1− τ1)z−T

] N∑
i=1

αT

Nd

z−Di

1− z−T

= T (z)TD(z), (4.85)

56

where,

T (z) =

[
τ1 + τ2 + τ1z

−T − τ2z
−2T

1− (1− τ1)z−T

]

TD(z) =
N∑

i=1

αT

Nd

z−Di

1− z−T
. (4.86)

In the frequency domain, we have:

Tf (e
jω) = TD(ejω)T (ejω)

T (ejω) =

[
τ1 + τ2 + τ1e

−jωT − τ2e
−jω2T

1− (1− τ1)e−jωT

]

TD(ejω) =
N∑

i=1

αT

Nd

e−jωDi

1− e−jωT
(4.87)

The function T (ejω) crosses the real axis for ω′1 = 0 at Re[T (ejω)] = 2ατ1/τ1 = 2α

and for ω′2 given by:

ω′2 =

[
τ 2
1 − 2τ1 + 2τ1τ2

T 2τ2(1− τ1)

] 1
2

. (4.88)

However, for 0 < τ1 < 1 the value of ω′2 is imaginary for 0 < τ1 + 2τ2 < 2 and

so T (ejω) cannot cross the real axis for ω′2. Hence, selecting small values of τ1 and

τ2 (such as τ1 = 0.01 and τ2 = 0.1) that we want in order to restrict overflowing the

queue significantly, we can enforce that T (ejω) crosses the real axis only for ω′1 = 0.

For small ωT (i.e., T/D ≈ 0), Tf (e
jω) can be reduced to:

Tf (e
jω) =

N∑
i=1

2ατ1T

Ndτ1

e−jωDi

1− e−jωT
=

N∑
i=1

2αT

Nd

e−jωDi

1− e−jωT
. (4.89)

Theorem 12. For a PIQI-RCP system with T/D ≈ 0, the necessary and sufficient

condition for local stability in the case of flows with homogeneous RTTs D is:

0 <
α

D
< sin

(
π

2(2D − 1)

)
. (4.90)

Proof. Using Tf (e
jω) in (4.89) and the analysis in the proof of theorem 7 gives the

57

condition for stability.

Theorem 13. For a PIQI-RCP system with T/D ≈ 0, a sufficient condition for local

stability in the case of flows with heterogeneous RTTs is:

0 <
α

d
< sin

(
π

2(2D − 1)

)
, (4.91)

where D = max{D1, D2, . . . , DN} and d is the average RTT of the system.

Proof. Using Tf (e
jω) in (4.89) and the analysis in the proof of theorem 8 gives the

condition for stability.

E. Simulations

In this section, we study the performance of PIQI-RCP in various simulation setups

and also compare it with RCP. PIQI-RCP with source controller invoked per ACK is

referred to as PIQI-RCP-ACK. The different parameters selected during the simula-

tion unless specified otherwise are τ1 = 0.01, τ2 = 0.1, α = 0.5, β = 1, T = 10 ms,

and γ = 0.95. All simulations involve packet size of 1000 bytes. We unsynchronize

the control interval of routers by randomizing the time when the first control interval

starts.

1. Single-Bottleneck Topology

Consider a dumb-bell topology with bottleneck link of capacity 100 mb/s and delay

50 ms. The access links have capacity 1 gb/s. Every 10 second, a new flow enters

the system. The access link of flow x1 has a delay of 10 ms while the access links of

remaining flows x2, . . . , x10 have a delay of 100 ms. Hence, the RTT of x1 is 120 ms

while the RTT of the remaining flows is 300 ms. The sending rates of flows are shown

in Fig. 20 while the queue size at the bottleneck link is shown in Fig. 21. In the case of

58

0 20 40 60 80 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) RCP

0 20 40 60 80 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) PIQI-RCP

0 20 40 60 80 100
0

20

40

60

80

100

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(c) PIQI-RCP-ACK

Fig. 20. Sending rate in the case of single-bottleneck topology.

0 20 40 60 80 100
0

1000

2000

3000

4000

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(a) RCP

0 20 40 60 80 100
0

200

400

600

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(b) PIQI-RCP

0 20 40 60 80 100
0

500

1000

1500

2000

time (sec)
qu

eu
e

si
ze

 (
pa

ck
et

s)

(c) PIQI-RCP-ACK

Fig. 21. Queue size in the case of single-bottleneck topology.

RCP, the peak queue size shoots to nearly around 3500 packets with overflow in queue

for every new flow entering the system. While for PIQI-RCP, the peak queue size is

only 550 packets with the queue remaining close to 0 after t = 40. PIQI-RCP-ACK

has a better convergence time as compared to PIQI-RCP at the expense of higher

peak queue size. A similar behavior is also observed for bottleneck link capacity 1

gb/s and 10 gb/s.

2. Multiple-Bottleneck Topology

Consider a parking-lot topology, where flow x1 traverses two links of capacity 970 and

800 mb/s respectively and delay 50 ms each. Flow x2 only traverses the first link and

59

0 15 30 45 60 75
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) RCP

0 15 30 45 60 75
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) PIQI-RCP

0 15 30 45 60 75
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(c) PIQI-RCP-ACK

Fig. 22. Comparison in multi-link topology.

flow x3 only the second. The three flows enter the system at t = 0, 15, 30 seconds,

respectively. The sending rate of all flows is shown in Fig. 22. Until t = 15, flow

x1 is bottlenecked at link l2. At t = 15 when x2 enters the system, the bottleneck

of flow x1 switches to link l1 and both x1 and x2 have identical sending rates equal

to 485 mb/s. At t = 30 when x3 enters the system, x1 switches its bottleneck to l2

again, after which x1 and x3 equally share link l2 (i.e., rate 400 mb/s each). Flow x2

captures the remaining bandwidth at link l1, which is the max-min allocation of rates

for this topology. As seen from the figure, the magnitude of transient oscillations is

much smaller in PIQI-RCP compared to RCP, while the convergence time is almost

the same.

3. Abrupt Increase in Traffic Demand

Consider a dumb-bell topology with bottleneck link capacity 100 mb/s and delay 50

ms. The access links have capacity 10 gb/s and delay 10 ms. Flow x1 enters the

system at t = 0 and flows x2, . . . , x51 join the system simultaneously at t = 15. The

queuing dynamics at the router is shown in Fig. 23. In the case of RCP, the router

queue jumps to 80868 packets. While for PIQI-RCP and PIQI-RCP-ACK, this value

60

0 10 20 30 40 50
0

2

4

6

8

10x 10
4

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(a) RCP

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(b) PIQI-RCP

0 10 20 30 40 50
0

2000

4000

6000

8000

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

(c) PIQI-RCP-ACK

Fig. 23. Queue size at the router in the case of abrupt increase in traffic demand at

t = 15.

is 6173 and 6756 packets respectively.

4. Peak Queue Size

In this section, we compare the peak queue size for RCP, PIQI-RCP, and PIQI-

RCP-ACK for the topology considered in the previous simulation setup when about

N flows enter the system simultaneously at t = 15. The comparison is shown in

Fig. 24. PIQI-RCP and PIQI-RCP-ACK have a significantly smaller peak queue size

as compared to RCP. For example, when 250 flows enter the system simultaneously,

RCP has a peak queue size of 501014 packets while PIQI-RCP and PIQI-RCP-ACK

have a peak queue size of nearly 14000 packets, i.e., lower by a factor of 36. Also, the

peak queue size in RCP keeps on increasing with N but stabilizes for PIQI-RCP and

PIQI-RCP-ACK.

5. Average Flow Completion Time

In this section, we compare the performance of RCP, XCP, TCP, PIQI-RCP, and

PIQI-RCP-ACK considering Average Flow Completion Time (AFCT) as the metric.

Intuitively, RCP will fare better in this case since new flows entering the system are

61

1 50 100 150 200 250
10

2

10
4

10
6

number of flows (N)

pe
ak

 q
ue

ue
 s

iz
e

(p
ac

ke
ts

)

RCP
PIQI−RCP−ACK
PIQI−RCP

Fig. 24. Comparison of peak queue size.

0 3000 6000 9000

10
0

10
1

10
2

flow size (pkts)

tim
e

(s
ec

)

XCP
TCP
PIQI−RCP
RCP
PS

(a) PIQI-RCP

0 3000 6000 9000

10
0

10
1

10
2

flow size (pkts)

tim
e

(s
ec

)

XCP
TCP
PIQI−RCP−ACK
RCP
PS

(b) PIQI-RCP-ACK

Fig. 25. Comparison of average flow completion time.

62

given a rate equal to the current control rate at the bottleneck router while new flows

in TCP, XCP, PIQI-RCP, and PIQI-RCP-ACK increase their sending rate gradually.

Consider a simulation scenario with a single bottleneck link of capacity 2.4 gb/s

and round-trip propagation delay of 100 ms. New flows enter the system as Poisson

arrivals with Pareto distributed flow sizes of mean 30 pkts and shape parameter 1.4.

The offered load is 0.9. The comparison is shown in Fig. 25. It can be seen that

PIQI-RCP and PIQI-RCP-ACK have a lower (higher) AFCT as compared to TCP

and XCP (RCP).

F. Summary of Results

From the analysis and simulation results as shown in this chapter, we infer that PIQI-

RCP overcomes the stability issue of RCP and simultaneously has a significantly lower

buffering requirement at the routers. The parameters τ1, τ2 in the source controller of

PIQI-RCP can be tuned to further reduce the buffering requirement at the expense of

convergence time. PIQI-RCP compromises slightly on average flow completion time

which still happens to be better compared to TCP and XCP.

63

CHAPTER V

LINUX IMPLEMENTATION

The first step in experimental evaluation is to design an efficient implementation that

can perform well in high-speed networks. We present implementation details of XCP,

JetMax, RCP, and PIQI-RCP in this chapter and show their performance in gigabit

networks in the following chapter.

For our implementation, we use Linux kernel 2.6.12 available with Fedore Core 4

[11] Linux distribution. To compute feedback more accurately, we recompile the ker-

nel by making relevant changes to the Makefile to support floating point operations.

Starting Linux kernel 2.6.0, kernel threads can be pre-empted. Whenever a kernel

thread is pre-empted, the floating point registers are not saved due to additional mem-

ory overheads. Hence, portions of our code that require floating point computations

have been protected by locking the CPU to prevent kernel thread preemption. CPU

locking and unlocking can be done using the get cpu() and put cpu() kernel routines.

Linux, similar to various other UNIX variants such as FreeBSD [16], also supports the

concept of modules, which are pieces of binary code that can be dynamically plugged

in (out) the running kernel to support (unsupport) different features and protocols

without rebooting the system. We implement most of the end-host and AQM-router

functionality as modules and their implementation details follow next.

A. End-Host

End-hosts apply changes to their congestion window or sending rate using the feed-

back received from their bottleneck router. To facilitate the computation of feedback

at the routers, end-hosts provide them congestion-related information such as their

64

current RTT estimate, congestion window or sending rate. Inspired by the discussions

in [10], we decide to employ a new header called congestion header that can be placed

between the transport (e.g., TCP) and the IP headers of a packet. Fields within the

congestion header are used to communicate congestion-related information and feed-

back between end-hosts and routers. The congestion header is placed (removed) in

every outgoing (incoming) packet by the end-host module. Other possibilities that

have been suggested to communicate congestion-related information and feedback in-

volve using TCP Options [47], [54] or IP Options. More about the drawbacks of these

possibilities can be found in [10].

We assign different dummy protocol numbers in the IP header for XCP, JetMax,

RCP, and PIQI-RCP. The actual protocol numbers need to be assigned by Internet As-

signed Numbers Authority (IANA) [20] when these protocols are deployed. We choose

these numbers to be 201, 202, 203, and 204 for XCP, JetMax, RCP, and PIQI-RCP

respectively. End-host modules register (unregister) themselves with the TCP/IP

stack corresponding to their protocol number whenever they are loaded (unloaded)

into the kernel. Every incoming packet from the Network Interface Card (NIC) driver

is passed to the IP layer for processing. Depending upon the protocol number, the

IP layer passes the packet to the corresponding module that has registered for it.

The end-host module captures the feedback information in the congestion header and

applies the corresponding changes using its control equation. If the end-host is a data

receiver, the module saves the feedback in the congestion header and returns it back

to the sender as part of acknowledgement packets. Similarly, every outgoing packet

from the application layer is processed by the TCP layer, which delegates the packet

transmission to the default end-host module for appending the congestion header and

filling in the congestion-related information. The end-host module then hands over

the packet to the IP layer for further processing and finally it is passed to the NIC

65

Data

Data

tcp_transmit_skb() tcp_v4_rcv ()

ip_local_deliver() ip_queue_xmit()

Data AQM sender AQM receiver

TCP

IP

TCP

TCP AQM

TCP AQM IP

AQM

Fig. 26. Implementation methodology of explicit-feedback congestion control.

driver for transmission. This mechanism and the corresponding function entry/exit

points at different layers are shown in Fig. 26.

Since most of the operations as mentioned above are done inside the core ker-

nel and modules, they are transparent to the applications. This design facilitates

deployment of these protocols in future networks without requiring any change to

the current applications. We next provide more details about the implementation of

window-based and rate-based schemes for end-hosts.

1. Window-Based Schemes

Since TCP is a window-based transport protocol, very few changes are required to

the core kernel to implement window-based congestion control algorithms such as

XCP. We implement most of the end-host congestion control functionality for XCP

as part of a kernel module. TCP’s slow start and congestion avoidance mode are

66

disabled so that they do not interfere with XCP’s control algorithm. To implement

rate-based congestion control algorithms in the window-based TCP/IP stack, changes

are required to the kernel source code. More information about these changes follow

next.

2. Rate-Based Schemes

Implementation of rate-based schemes (e.g., JetMax, RCP, and PIQI-RCP) utilize a

similar methodology as described above. Additionally, we modify the TCP/IP stack

to make its original window-based data transfer operation rate-based. The basic

idea is to pace the transmission of data packets at the rate computed by the AQM

module based on the network feedback from the routers. To accomplish this goal, it

is necessary to first understand how data is transmitted in the original TCP/IP stack.

Data sent by the application layer is sliced into chunks of MSS (Maximum Segment

Size) and queued into a buffer by the transport layer. To each chunk is appended a

transport header. The normal behavior is to transmit them instantaneously when the

number of packets in the flight is less than the congestion window and the advertised

receiver window. We disable this immediate transmission for data packets, but allow

control packets (such as SYN, FIN, and RST) to be transmitted immediately.

In addition, we implement a control timer function to periodically process the

queue holding data packets. When the timer expires, the timer interval and the num-

ber of data packets to transfer per instance are recalculated based on the designated

data rate. Since a queued data packet cannot be sliced for transfer, to maintain the

exact sending rate, the control interval is adjusted properly to take this into account.

Moreover, even though Linux supports delaying an event to a resolution of 1 µs, we

chose the minimum timer interval to be 1 ms, since these small resolutions are achieved

using CPU busy waiting and waste a lot of CPU cycles. This also helps to reduce the

67

load on the system when thousands of connections are invoked concurrently.

B. Router

Routers in explicit congestion control algorithms need to provide feedback to end-

hosts indicating the actual level of congestion. They gather information about the

input traffic rate and queue size by per-packet processing and then feed this informa-

tion into a control equation at regular intervals to generate feedback that is inserted

into every packet’s congestion header. To realize this functionality, methods [54] sug-

gested in the past involve using Qdisc. However, for a flexible implementation, we

take advantage of netfilter [41], which is an excellent packet filtering framework in

the Linux network stack commonly used to develop firewall software such as Iptables.

Using netfilter, custom user defined functions known as “hook” can be invoked at five

different places in the IP and Route module of the network stack. These points are

clearly illustrated in Fig. 27 and are described below:

• NF IP PRE ROUTING: Incoming packets entering the IP layer but before get-

ting processed in the Route module can be intercepted by registering hook

functions at this point.

• NF IP LOCAL IN: Incoming packets, to be delivered to the local host, after

being processed at the Route module can be intercepted at this point before

delivering them to the transport layer higher up.

• NF IP FORWARD: Incoming packets, which should be forwarded to another

host after being processed at the Route module can be intercepted at this point.

• NF IP LOCAL OUT: Outgoing packets from the local host can be intercepted

at this point before they get processed by the Route module.

68

ip_rcv()

ip_local_deliver ()

Route

NF_IP_LOCAL_IN

NF_IP_PRE_ROUTING

NF_IP_FORWARD Route

ip_queue_xmit ()

ip_finish_output2 ()

NF_IP_POST_ROUTING

NF_IP_LOCAL_OUT

IP

Fig. 27. Illustration diagram for different netfilter hooks in Linux TCP/IP stack.

• NF IP POST ROUTING: Outgoing packets from the local host or incoming

packets that have to be forwarded can be intercepted at this point after they

have been processed by the Route module.

We develop modules to implement the AQM functionality of XCP, JetMax,

RCP, and PIQI-RCP. Each module has a hook function to intercept packets at

NF IP POST ROUTING. At this location, outgoing packets from the local machine

or incoming packets from other network interfaces that need to be forwarded are

processed. We assign the hook function the lowest priority so that they are invoked

only after all the kernel routines for processing the packet have been finished. The

hook function collects the information present in the congestion header of the packets,

update the module’s data structure with this information, and insert feedback into

the packets. A timer function is used to invoke the AQM-router’s control equation

at regular intervals and generate the feedback signal that would be inserted into the

69

packets during the subsequent interval. For XCP, this interval is the average round-

trip time of flows passing through the router, for RCP and PIQI-RCP it is 10 msec,

and for JetMax it is 100 msec.

C. Congestion Header Format

The congestion header for XCP, JetMax, RCP, and PIQI-RCP used in our implemen-

tation is shown in Fig. 28. The common fields in all the headers include: 1) Protocol

is the protocol number of the Transport layer above the AQM-layer. For example,

for TCP this value is 6; 2) Length is the size in bytes of the congestion header be-

tween the TCP and the IP header; 3) Version is the protocol version of the AQM

algorithm; and 4) Unused may be required later for possible protocol extensions. Its

value should be set to zero.

For XCP, the congestion header is identical to the one suggested in [10]. RTT

represents the end-host’s current estimate of round-trip time measured in msec. X

stores the inter-packet transmission delay of a flow measured in msec. Delta repre-

sents the desired throughput of a flow expressed in bytes per msec. Routers modify

this field to represent the allocated change in throughput expressed in bytes per msec.

Data receivers copy the value stored in the Delta field of the received packets into

the Reverse field and send it in acknowledgement packets. The total size of XCP’s

congestion header is 20 bytes.

JetMax’s congestion header is elaborately discussed in [56]. RT stores the router

Id of the current bottleneck router. The value of RC is incremented at every router

encountered in a flow’s path. It helps in calculating the value of RT and RS. Packet

Loss is used to store the virtual packet loss rate at routers as the packet passes

through them. Router, which has the highest packet loss rate is considered as the

70

Protocol Length Version Unused

RTT

X

Delta

Reverse

32 bits

20 bytes

(a) XCP

Length Version Flags

Packet Loss

Rate

Proposed Size

Inter-Packet Interval

RT

Reverse Packet Loss

Reverse Rate

32 bits

32 bytes

Protocol

RC RS RS_F

(b) JetMax

Rate

Reverse

RTT

32 bits

16 bytes

Protocol Length Version Unused

(c) RCP

Rate

Reverse Rate

RTT

Protocol Length Version Id

Interval Number

Reverse Interval Number

24 bytes

32 bits

(d) PIQI-RCP

Fig. 28. Congestion header format.

71

bottleneck router of a flow. Bottleneck switching takes place whenever a router has a

packet loss rate that is higher than the current bottleneck router of a flow. RS stores

the router Id of the bottleneck router when a bottleneck switch is detected. Data

receivers copy the value of RS in the received packets into the RS F field and send it

in acknowledgement packets. Rate is modified by the bottleneck routers and is used

to assign the allocated sending rate. Proposed Size is used by flows to propose a new

sending rate and request routers in the path for approval. Inter-Packet Interval

field stores inter-packet transmission delay for a flow expressed in msec. It assists

router’s estimation of number of flows in the system. Data receivers copy the value

of Packet Loss and Rate in the received packets to Reverse Packet Loss and

Reverse Rate field respectively and send it in acknowledgement packets. The total

size of JetMax’s congestion header is 32 bytes.

In RCP’s congestion header, Rate field is modified by routers to assign the

control rate to a flow as feedback. RTT represents the end-host’s current estimate

of round-trip time measured in msec. If the end-host is a data receiver, it copies

the value stored in the Rate field of the received packets into the Reverse field and

sends it in acknowledgement packets. The total size of RCP’s congestion header is

16 bytes.

PIQI-RCP’s congestion header is similar to that of RCP except for addition

of three new fields such as Interval Number, Reverse Interval Number, and

ID. Interval Number is assigned by the router to indicate the control interval

number corresponding to the assigned Rate feedback value. This field is copied into

the Reverse Interval Number field while sending the acknowledgement packets.

Interval Number helps the end-host to identify the uniqueness of the received

feedback and invoke the control algorithm once per the router control interval. ID is

the id of the bottleneck router. The total size of PIQI-RCP’s congestion header is 24

72

bytes.

D. Kernel Tuning

The default Linux kernel’s network stack has many parameters that require tuning

in order to support gigabit throughput for wide-range of RTTs. This is required to

fairly evaluate the limitations of the protocol. We increase the maximum size of both

socket read and write buffers (rmem max, wmem max) from a default value of

131071 bytes to 107374182 bytes, per-connection memory space defaults (tcp rmem,

tcp wmem, tcp mem) from (4096, 87380, 174760) bytes to (4096, 107374182,

107374182) bytes, size of backlog queue (netdev max backlog) in the receive path

from 300 to 10000 slots, and transmit queue in the forward path (txqueuelen) from

1000 to 10000 slots. The size of transmit and receive ring buffers of the NIC was

also increased from 256 slots to the maximum possible value of 4096 slots. This is

mainly required to absorb bursts of incoming packets during gigabit transfers in the

case of XCP. We also disable the TCP segmentation offload and checksum verification

feature of NICs to support a new congestion header for our implementation. More

information about the Linux network stack can be found in [17].

Using the implementation described in this chapter, we next provide our exper-

imental results in the following chapter.

73

CHAPTER VI

LINUX EXPERIMENTS

In this chapter, we describe the results of experiments we conducted in different

setups using our implementation of XCP, JetMax, RCP, and PIQI-RCP. Our goal is

to demonstrate that efficient implementation of explicit congestion control algorithms

can be realized in high-speed networks and verify several key properties of these

protocols. All experiments were performed in Emulab [9] using Dell Poweredge 2850

servers with 3.0 GHz 64-bit Xeon processors, 2 GB of RAM, and multiple gigabit

network cards. Throughout this chapter, we set parameters α = 0.4 and β = 0.226

for XCP, τ = 0.6 for JetMax, α = 0.1 and β = 1 for RCP, and α = 0.5, τ1 = 0.01,

τ2 = 0.1, γ = 0.95 for PIQI-RCP. In all the plots, the sending rate is obtained by

averaging the IP layer throughput every two round-trip times (RTTs) for JetMax,

RCP, and PIQI-RCP and is approximated by cwnd/srtt for XCP using packet size

of 1500 bytes. For link capacity of 1 gb/s, the achievable IP layer throughput is 970

mb/s.

A. Experiments

1. Single-Bottleneck Topology

We first examine the performance of these protocols in high-speed networks with a

single bottleneck link. Consider a dumb-bell topology where three flows pass through

a single bottleneck link of capacity 1 gb/s and round-trip propagation delay of 50

ms. Each flow is connected to the bottleneck link through a different access link of

capacity 1 gb/s and negligible delay. Flows start at t = 0, 30, 60 and each lasts for

90 seconds.

74

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) XCP

0 40 80 120 160
0

200

400

600

800

1000

time (sec)
se

nd
in

g
ra

te
 (

m
b/

s)

(b) JetMax

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(c) RCP

0 40 80 120 160
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(d) PIQI-RCP

Fig. 29. Performance in single-bottleneck topology with link capacity 1 gb/s and RTT

50 ms. Flows start at t = 0, 30, and 60. Each flow lasts for 90 seconds.

75

0 40 80 120 160
0

2000

4000

6000

8000

10000

time (sec)

qu
eu

e
si

ze
 (

pk
ts

)

Fig. 30. Queuing dynamics of RCP in single-bottleneck topology.

Dynamics of the actual sending rates of these protocols are illustrated in Fig. 29.

All the methods are able to maintain high sending rates and the router can easily

process the traffic. During the experiment, we also monitor the IP layer queue inside

the bottleneck router and find that XCP and JetMax are successful in controlling

their queue length at very low levels. However, as shown in Fig. 30, RCP experiences

significant queue buildup (up to 9415 packets) when new flows join the system. This

phenomenon is attributable to the fact that when a flow starts, the bottleneck router

cannot tell whether it is a new flow and will assign the old (i.e., before the flow

joins) fair rate to this flow, which immediately increases its sending rate to this

value upon receiving the feedback and overshoots the bottleneck link capacity. This

problem is especially serious in the real Internet, where sessions are regularly joining

and leaving the system and the transient queue buildups can potentially overflow

any router buffer. RCP-AC [8] has been recently proposed to mitigate this at the

expense of increased header size, more per-packet computations inside the router, and

compromise on average flow completion time.

Unlike RCP, PIQI-RCP is able to maintain almost zero queue since new flows

76

entering the system start with a small sending rate that increases gradually. This

allows the router enough time to converge to a new steady-state feedback value with-

out significantly overshooting the queue. As shown in the figure, PIQI-RCP has a

slightly smaller throughput as compared to other methods since the router control

algorithm operates on the virtual link capacity γC with γ = 0.95. This is required to

drain any queue buildup over a period of time.

2. RTT Unfairness

TCP Reno and many other end-to-end high-speed TCP variants suffer from severe

RTT unfairness [53]. Two flows with different RTTs passing through a common bot-

tleneck may share bandwidth in a very unfair fashion. Explicit congestion control

algorithms based on max-min fairness are very robust in this scenario. Flows bottle-

necked at a common router share equal rates irrespective of their RTTs. Although

this has already been shown extensively in ns-2 simulations, we confirm this in a prac-

tical scenario. In this experiment, we use a dumb-bell topology where the bottleneck

link has a capacity of 1 gb/s and propagation delay of 15 ms. The access link for flow

x1 connecting to the bottleneck router has a capacity of 1 gb/s and delay of 95 ms,

while the access link for flow x2 connecting to the bottleneck router has a capacity of

1 gb/s and negligible delay. Hence the round-trip propagation delay of flow x1 is 220

ms and that of flow x2 is 30 ms, i.e., they differ by a factor of seven.

Fig. 31 shows the dynamics of the two flows. Flow x1 starts at t = 0. In the case

of XCP and JetMax, it achieves the bandwidth almost instantaneously. However, for

RCP flow x1 takes nearly 10 seconds to saturate the link capacity. This is because

when flow x1 initially joins the system, the computed rate at the router is very low.

As the flow starts sending data, the control algorithm computes a new rate. It takes

a number of iterations or control cycles before the router’s rate computation gives a

77

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) XCP

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)
se

nd
in

g
ra

te
 (

m
b/

s)

(b) JetMax

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(c) RCP

0 20 40 60 80
0

200

400

600

800

1000

1200

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(d) PIQI-RCP

Fig. 31. Performance in the case of flows with heterogeneous RTTs. The bottleneck

link capacity is 1 gb/s. Flow x1 with RTT 220 ms starts at t = 0 while flow

x2 with RTT 30 ms joins the system at t = 30.

78

rate close to the link capacity. This can be improved by choosing a higher value of α

in the control equation, but doing so would have its own side effects in other scenarios.

When flow x2 joins the system at t = 30, the two flows converge to their fair share

with equal rates. Again, XCP and JetMax converge almost instantly while RCP takes

some time to clear the buildup queue and give both flows their fair share. PIQI-RCP

has better convergence time than RCP, where not only does x1 saturates the virtual

link capacity faster, the system converges to its steady-state almost instantaneously

when x2 joins the system.

XCP, being a window-based protocol, emits packets into the network in bursts.

To support high throughput, flows with larger RTT have to maintain a large con-

gestion window. Because of these two reasons, flows having small RTT experience

high variance in queuing delay. This can be easily seen in Fig. 31(a). Flow x2, with

small round-trip propagation delay entering the system at t = 30, experiences small

oscillations in its sending rate when co-existing with flow x1.

3. Scalability

With extensive ns-2 and testbed experiments, we have confirmed that the explicit

congestion control algorithms such as XCP, JetMax, RCP, and PIQI-RCP are highly

scalable with increase in link capacity and round-trip propagation delay. Even a single

flow can easily saturate the link without requiring multiple additional flows. This is

in sharp contrast to TCP Reno and many other end-to-end high-speed TCP variants

[12], [28], [31], [53], where throughput of a flow is still a function of its RTT. For the

sake of brevity, the corresponding plots have not been shown.

79

x1

x2,…,xn2

(a) topology

0 300 600 900
0

0.2

0.4

0.6

number of sources sharing l1

al
lo

ca
te

d
ra

te
 /

m
ax

−
m

in
 r

at
e

theory
experiment

(b) result

Fig. 32. Experimental verification of XCP’s fairness issue identified in [34].

4. Max-min Fairness in XCP

Recall that it is demonstrated in [34] that XCP does not achieve max-min fairness

in general and its stationary resource allocation can be arbitrarily unfair in certain

topologies. We next verify this by considering the topology shown in Fig. 32(a),

which is composed of two links l1 and l2 and n2 flows where n is a given constant.

One flow passes only through link l1 and the other n2−1 flows traverse both links. In

addition, we set link capacities, to be C1 = 155 and C2 = C1(n − 1)/n mb/s. Using

the definition of max-min fairness, the n2 − 1 long flows should be congested at link

l2 with stationary sending rate x∗2 = 155/n(n + 1) mb/s and the other flow should

converge its sending rate to x∗1 = 155/n mb/s.

To examine whether XCP achieves max-min fairness in this topology, we plot in

Fig. 32(b) ratios x̃1/x
∗
1 and x̂1/x

∗
1 for different values of n, where x̃1 is the sending

rate of the short flow predicted by the model developed in [34] and x̂1 is the actual

sending rate measured in our Linux experiment. Clearly, these ratios indicate how

80

close the system is to max-min fairness, i.e., the closer the ratios are to 1, the more

max-min fair the system is. As shown in the figure, the system departs from the max-

min fair state when the number of flows increases. Our experimental measurements

match the results predicted by the model developed in [34] and the corresponding

ns-2 simulations.

5. Effect of Router Control Interval

The length of the router control interval is a tradeoff between the response time and

how accurately the control algorithm can capture network dynamics. In the case of

XCP, the router control interval is set to be the minimum of average round-trip time

of all flows passing though the router and 500 ms, but greater than 10 ms, while

for RCP, PIQI-RCP, and JetMax the suggested value is 10 ms, 10 ms, and 100 ms

respectively. Most of the experiments in the paper involving JetMax have been done

using the suggested value for the router control interval of 100 ms. However, we have

confirmed using ns-2 simulations and testbed experiments that JetMax can work well

with a control interval as low as 10 ms. There may be small fluctuations in rate but

the system quickly stabilizes. Consider the experiment corresponding to the setup

shown in Fig. 29 for JetMax but with a router control interval of 10 ms rather than

100 ms. The corresponding rate dynamics of flows and estimation of Nl is shown in

Fig. 33. The plots indicate the stability of rate that end-hosts can maintain even with

a small router control interval.

6. CPU Usage at Routers

Due to per-packet processing for examining the congestion header of every incoming

packet, computation of feedback for every control interval, and stamping feedback

on every outgoing packet at the routers, it may be believed that explicit congestion

81

0 50 100 150
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) sending rate

0 50 100 150
0

1

2

3

4

time (sec)

N
l

(b) estimation of Nl at router

Fig. 33. Sending rates of three JetMax flows sharing a single bottleneck with link

capacity 1 gb/s and RTT 50 ms. Flows start at t = 0, 30, and 60. Each flow

lasts for 90 seconds. The control interval inside the router is 10 ms.

control would involve significant computational overhead, especially in high-capacity

links, that can undermine their deployment. However, our experiments show that

the overhead involved in these computations is not very significant. Specifically,

for a gigabit transfer from one sender to a receiver through a router, the average

load on the router is around 30% for all the protocols such as TCP, XCP, JetMax,

RCP, and PIQI-RCP. Hence, for 70% of the time, the router is idle. Out of the

30% load, most was utilized in the handling of IRQs (Hardware Interrupt Requests)

and Software Interrupts. This indicates that the computational overhead involved

is relatively small as compared to processing the interrupts invoked to enqueue and

dequeue packets. The experiment was repeated a number of times and in all cases

we observed similar behavior.

82

7. Multiple-Bottleneck Topology

We next examine the performance of these protocols in a parking-lot topology, which

is composed of two bottleneck links (l1, l2) and three flows (x1, x2, x3). Capacity of

these two links are C1 = 970 and C2 = 800 mb/s, and the round-trip propagation

delay of each link is 50 ms. Flow x1 passes through both the links but flows x2 and x3

respectively utilize l1 and l2. Flow x1 starts first and converges its rate to the capacity

of l2, i.e., 800 mb/s. When x2 joins 30 seconds later, x1 switches its bottleneck to l1

and both the flows converge to an even share of C1/2 = 485 mb/s. As x3 starts at time

t = 60 s, x1 changes its bottleneck back to l2 and converges its sending rate together

with x3 to C2/2 = 400 mb/s. Flow x2 then utilizes the remaining bandwidth on link

l1, i.e., 570 mb/s. Finally, when x1 terminates at t = 90 s, flows x2 and x3 change

their sending rates to the capacity of each link. As demonstrated in Fig. 34(a)-(d),

all methods are stable and max-min fair in this case with their dynamics following

the theoretical understanding. In the case of PIQI-RCP, the sending rate of flows

x1− x3 are scaled by γ = 0.95 since the router controller operates on the virtual link

capacity γC with γ = 0.95.

8. Performance with Mice Traffic

Studies have shown that the majority of flows in the Internet are short lived flows,

called mice, that transfer only few packets. Coupled with these short flows, there are a

few long-lived flows, called elephants, that remain longer in the system as they transfer

a large number of packets. In such a scenario, it becomes necessary to understand

how the system will perform when the traffic is a combination of both short and long

lived flows. The test setup in this case is a dumb-bell topology with 2 senders and 1

receiver. The long flow starts from one of the two sender machines at t = 0, while

83

0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) XCP

0 40 80 120
0

200

400

600

800

1000

time (sec)
se

nd
in

g
ra

te
 (

m
b/

s)
(b) JetMax

0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(c) RCP

0 40 80 120
0

200

400

600

800

1000

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(d) PIQI-RCP

Fig. 34. Comparison in a multiple-bottleneck link topology. Flows start at t = 0, 30,

and 60. Each flow lasts for 90 seconds. The RTT of flow x1 is 100 ms while

RTT of flow x2 and x3 is 50 ms. The capacity of link l1 and l2 is 970 and 800

mb/s respectively.

84

mice traffic is generated from the other at t = 30. Both sets of traffic pass through a

common bottleneck link with capacity 1 gb/s and round-trip propagation delay of 50

ms. The pattern of mice traffic follows Poisson arrivals with mean inter-arrival time

of 0.2 seconds and Pareto distributed traffic size with shape parameter 1.4 and mean

of 100 packets. The results are shown in Fig. 35.

In the case of XCP, the link utilization for first 30 seconds is close to 100% when

only the long flow is present in the system. But when mice traffic is started, the

link utilization drops slightly. The input traffic rate at the router fluctuates between

800− 970 mb/s. The loss in link utilization is because a part of the feedback sent by

the router to short flows is not utilized as they exit from the system after transferring

a small number of packets. The system still operates at high utilization since XCP is

conservative in giving bandwidth to new flows entering the system.

In the case of RCP, the link utilization remains very high with occasionally

overshooting the link capacity by huge margins for small period of time. This is

evident from Fig. 35. For the first 30 seconds, the input traffic rate at the router is

very stable around the link capacity. Fluctuations arise in the system after mice traffic

comes into play at t = 30. New flows entering the system are given the control rate

computed in the last control interval. As a result, when many flows enter the system

simultaneously, the input traffic rate exceeds the link capacity with high queue levels.

This makes the router reduce the rate to be fed back in the next control interval

in order to drain the queue, which would temporarily reduce link utilization. This

behavior can be seen at t = 55. Hence, in the case of RCP, high queue size at the

router is recommended in order to absorb the sudden rise in traffic and prevent high

packet losses.

PIQI-RCP also shows high link utilization in this scenario. Throughout the

experiment, the input traffic rate is very close to the set virtual link capacity. Unlike

85

0 100 200 300
0

200

400

600

800

1000

1200

time (sec)

y l (
m

b/
s)

(a) XCP

0 100 200 300
0

200

400

600

800

1000

1200

time (sec)
y l (

m
b/

s)

(b) JetMax

0 100 200 300
0

500

1000

1500

time (sec)

y l (
m

b/
s)

(c) RCP

0 100 200 300
0

500

1000

1500

time (sec)

y l (
m

b/
s)

(d) PIQI-RCP

Fig. 35. Performance in the presence of background mice traffic in a dumbbell topology.

Mice traffic is generated in the system at t = 30.

86

RCP, the input traffic rate does not significantly overshoot the link capacity. This is

primarily because new flows entering the system start with a small sending rate that

increases gradually upon receiving feedback from the router.

In contrast to other methods, JetMax behaves very differently in the presence of

mice traffic. JetMax was primarily designed considering long flows that remain in the

system for a longer period of time and have much data to transfer. They primarily

govern the stability of the system. Another objective of JetMax is to provide fairness

among all flows in the system while maintaining nearly zero queue level and packet

loss rate. Link utilization may drop when there is a combination of long and short

flows. The primary reasons are:

• In order to provide fairness to all flows in the system, they are all given equal

fair rate as feedback. Short flows will not completely utilize the rate given to

them by the router as they do not have much data to send.

• In order to provide almost zero queue level and packet loss, new flows entering

the system propose a rate that gets approved by the routers only when existing

flows have reduced their sending rate correspondingly. This approach works

extremely well when the system has only long flows but has side effects in the

presence of short flows. By the time existing flows have reduced their sending

rate, new flows may exit the system or not completely utilize the approved rate

due to lack of data to send.

As seen in Fig. 35, until t = 30, JetMax operates at high utilization levels when

there is only one long flow in the system. However, when mice traffic is started the

router perceives that a lot of flows have entered the system, the reason being that the

estimation of the number of flows Nl in the system is independent of the input traffic

rate and depends only upon the sum of inter-packet transmission delay set in the

87

congestion header by the flows. In the presence of mice traffic, the system is unable

to differentiate between short and long flows and so feeds back an equal rate to all

of them. This causes the long flow to significantly decrease its sending rate, i.e., the

long flow gets penalized in the presence of short flows. For the current setup, the link

utilization fluctuates between 10− 20%. The experiment is also repeated for τ = 1.0

rather than the suggested value of τ = 0.6 to observe similar behavior. However, the

buffer size at the router remains zero with no packet drop throughout the experiment.

9. Abrupt Change in Traffic Demand

In this experiment, we examine the performance of the system with abrupt increase

or decrease in traffic demand. Dumb-bell topology is used with two machines on one

side of the bottleneck acting as sender and one machine on the other side acting as

receiver. All the access links are 1 gb/s while the bottleneck link has capacity 100

mb/s and round-trip propagation delay 50 ms. At t = 0, one long flow is started for a

duration of 120 seconds. At t = 30 another 10 flows abruptly enter the system. These

10 flows continue to remain in the system until t = 113, when they all suddenly exit.

The performance in this scenario is shown in Fig. 36. The dynamics of the first flow,

which lasts for 120 seconds, in the case of RCP and PIQI-RCP is shown in Fig. 37.

From the figures, it can be clearly inferred that XCP and JetMax are robust in the

face of sudden increase or decrease in traffic demand. The link utilization may drop

momentarily when a large number of flows join or leave the system simultaneously,

but the system converges very fast to its steady-state. RCP performs the worst in

this case. At time t = 30, the average input traffic rate overshoots to around 300

mb/s and the queue size jumps to around 11000 packets as shown in Fig. 38. This is

because at this time, the router’s control algorithm has the per flow rate computed

to be 100 mb/s. All the incoming flows are given this rate. When flows start sending

88

0 50 100
0

20

40

60

80

100

120

time (sec)

in
pu

t t
ra

ffi
c

ra
te

 (
m

b/
s)

(a) XCP

0 50 100
0

20

40

60

80

100

120

time (sec)
in

pu
t t

ra
ffi

c
ra

te
 (

m
b/

s)
(b) JetMax

0 50 100
0

100

200

300

400

time (sec)

in
pu

t t
ra

ffi
c

ra
te

 (
m

b/
s)

(c) RCP

0 50 100
0

100

200

300

400

time (sec)

in
pu

t t
ra

ffi
c

ra
te

 (
m

b/
s)

(d) PIQI-RCP

Fig. 36. Performance with abrupt change in traffic demand. One long flow starts at

t = 0 and ends at t = 120. At t = 30, 10 flows join the system and leave at

t = 113. The bottleneck link capacity is 100 mb/s. All flows have round-trip

propagation delay of 50 ms.

89

0 50 100
0

50

100

150

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(a) RCP

0 50 100
0

50

100

150

time (sec)

se
nd

in
g

ra
te

 (
m

b/
s)

(b) PIQI-RCP

Fig. 37. Dynamics of the first flow in the case of RCP and PIQI-RCP with sudden

increase and decrease in traffic demand. One long flow starts at t = 0 and

ends at t = 120. At t = 30, 10 flows join the system and leave at t = 113. The

bottleneck link capacity is 100 mb/s. All flows have round-trip propagation

delay of 50 ms.

0 50 100
0

5000

10000

time (sec)

qu
eu

e
si

ze
 (

pa
ck

et
s)

Fig. 38. Queuing dynamics at the router in the case of RCP with sudden increase in

traffic demand at t = 30.

90

at this rate, the queue at the router significantly builds up. With the rise in both

the input traffic rate and queue size, the router’s control equation computes a very

low rate. This rate, when assigned to the flows, make them drastically reduce their

sending rate and hence cause the drop in link utilization. The system remains in

this transient state (i.e., both overshoot and undershoot) for about 7 seconds (i.e.,

140×50 ms = 140 RTTs) before reaching its steady-state. Also, when a large number

of flows leave the system at t = 113, RCP takes nearly 3 seconds (i.e., 60 RTTs) to

reach its steady state. In the case of PIQI-RCP, the overshoot in average input traffic

rate at t = 30, as compared to RCP, is significantly lower. As can be seen from

the figure, it increases to around 128 mb/s only momentarily and the system quickly

converges to its steady-state. The excessive traffic, for a short period, gets absorbed

in the network device queues without overshooting the router queue.

B. Summary of Results

Using the experimental results, the comparison of XCP, JetMax, RCP, and PIQI-RCP

has been summarized below considering different performance metrics.

• Link Utilization: All the methods can provide high link utilization using long

flows. We could not carry out our experiment using link capacities higher

than 1 gb/s because of lack of availability. However, because of the improved

design of these protocols, we are convinced that these methods can provide

high utilization in higher capacity links. Even a single flow can saturate the

entire link provided the end-host system does not act as bottleneck in pumping

traffic into the network. Unlike other methods, JetMax drops link utilization in

the presence of low rate mice traffic. Some suggested remedies to improve the

performance of JetMax in such scenarios are listed below:

91

– If routers can identify long and short flows through some means then short

flows can be treated as unresponsive flows and given a basic rate while

long flows are the only ones that are considered as possibly responsive and

hence controlled.

– If short flows can indicate their desired sending rate accurately then the

router can feedback a rate to them that is the minimum of desired sending

rate and the calculated fair rate. In case the desired sending rate is lower

than the calculated fair rate, the flow can be considered unresponsive and

existing long flows in the system would then be made to reduce their cur-

rent sending rate by smaller amounts corresponding to the desired sending

rate of the new flow.

We leave the study of these two approaches as part of future work.

• Buffering Requirement: All the methods strive to have zero or low queue size

in the steady-state. However, in the transient state XCP, RCP, and PIQI-RCP

have higher buffering requirements than JetMax. In the case of JetMax, input

traffic rate never exceeds the link capacity. New flows and existing flows in

the system always have their sending rate approved by the bottleneck router.

This prevents overshooting the queue even in the transient phase. XCP, being

a window-based protocol, is bursty in data transmission and so higher queues

are required at the router to absorb the traffic burst. RCP has the highest

buffering requirement. PIQI-RCP has significantly lower buffering requirements

compared to RCP due to a more responsive router controller and an improved

controller at the end-hosts.

• Impact of RTT: XCP and RCP do not perform well in the case of highly het-

92

erogeneous RTTs. We confirmed this in ns-2 simulations but could not verify

in our Linux experiments due to limitations in emulating large delays. However

for small delays, as confirmed by our experiments, all the methods are scalable

to round-trip propagation delays of end flows. The throughput of a flow is in-

dependent of its RTT. Flows with higher RTT also share the same rate as flows

with smaller RTT.

• Max-Min Fairness: XCP, unlike the other methods, cannot achieve max-min

fairness in all topologies. As shown in [34], in the case of XCP, the bottleneck

link utilization is a function of the control parameter α, shuffling factor γ,

fraction of unresponsive flows ρ, and fraction of unresponsive traffic σ. Max-

min fairness and link utilization can be improved by selecting a very small value

of γ but this would degrade the convergence time of the system. However, for

a given α and γ it is always possible to tune ρ and σ to prevent flows at certain

bottleneck links from attaining max-min fairness.

• Abrupt Change in Traffic: As seen in the experiments, XCP and JetMax are

robust to abrupt increases or decreases in traffic demand. However, RCP does

not fare well considering this metric. There are significant overshoots and un-

dershoots in the input traffic rate and router queue size. The system also takes

a considerable amount of time to converge to its steady-state when faced with

such scenarios. Unlike RCP, PIQI-RCP limits the rise in input traffic rate and

queue size since new flows entering the system start with a smaller sending rate

allowing the router to converge to a new steady-state and existing flows in the

system to simultaneously decrease their sending rate. Also, a higher integral

gain at the router makes it to converge to its steady-state faster. Coupled with

both these improvements, PIQI-RCP is more robust to abrupt changes in traffic

93

demand compared to RCP.

• Congestion Header Size: The congestion header size of XCP, JetMax, RCP, and

PIQI-RCP in our implementation is 20, 32, 16, and 24 bytes respectively. RCP

has the smallest congestion header size while JetMax has the largest. Without

the PROTOCOL, LENGTH, and VERSION fields, the congestion header

size of XCP, JetMax, RCP, and PIQI-RCP is 16, 29, 12, and 21 bytes. Consid-

ering unidirectional data flow, i.e., data packets flow only in one direction and

the other direction has only acknowledgement packets, the congestion header

size can be further reduced to 12, 20, 8, and 13 bytes. In all of our experiments,

we have reported the achievable throughput at the IP layer using packet size

1500 bytes. Hence, the effective data throughput achievable at the application

layer needs to be calculated by also considering the size of the congestion header

and not just the TCP/IP headers.

• Per-Packet Computations: For facilitating congestion control, XCP does 6 ad-

ditions and 3 multiplications, while RCP and PIQI-RCP do 2 additions and 2

multiplications per-packet. JetMax does 3 additions for a packet from a respon-

sive flow and 2 additions for a packet from an unresponsive flow. Also, JetMax

does not require any per-packet multiplication. In all, JetMax requires the least

number of per-packet computations while XCP has the highest.

The above comparison shows that all the proposed methods have drawbacks.

PIQI-RCP performs better that RCP considering most performance metrics and in

almost all experimental setups.

94

CHAPTER VII

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our work and the results we obtained. We also suggest

several open problems that require further study.

A. Conclusion

In this work, we found that RCP could become unstable in certain cases and re-

quired unrealistically large buffers to absorb transient overshoots of link capacity. As

an alternative to RCP, we proposed two new controllers called Queue Independent

RCP (QI-RCP) and Proportional Integral Queue Independent RCP (PIQI-RCP). We

showed that their heterogeneous stability could be easily established in both continu-

ous and discrete cases using common control-theory tools. We further demonstrated

in simulations and experiments that PIQI-RCP required much smaller buffers at

routers and had a lower average flow completion time compared to TCP and XCP.

In the second part of the thesis, we experimentally evaluated the performance

of XCP, JetMax, RCP, and PIQI-RCP using real systems and gigabit networks. We

developed an implementation of these protocols on Linux platform. Our experiments

highlight the strengths and weakness of each of these protocols. While XCP can

sustain high link utilization and is also scalable with respect to high variance of

round-trip times (RTTs), it cannot achieve max-min fairness in all topologies. Also,

it does a much higher number of per-packet computations as compared to other

methods. Though we could not confirm, we still think there may be scalability issues

at routers with higher link capacities. JetMax can also achieve high link utilization in

the case of long-lived flows. It requires the least amount of buffer size and per-packet

computations inside the routers. However, its congestion header size is the largest

95

and link utilization suffers when the input traffic contains mice flows. In the case

of RCP, the link utilization is high and independent of the RTTs of the end-hosts.

The number of per-packet computations are lower as compared to XCP. However,

it requires a much higher queue at the router to handle abrupt increases in traffic

demand. PIQI-RCP retains most of the strengths of RCP and simultaneously reduces

the buffering requirement at the routers while providing better convergence properties.

This advantage comes at the cost of slightly higher average flow completion time.

B. Future Work

Explicit congestion control, being a new direction of research, has numbers of open

issues. Apart from an excellent discussion in [10] (that is mainly for XCP but also

applies to JetMax, RCP, and PIQI-RCP) on deployment related problems, there are

other issues that we think are also important to consider.

Stability conditions in the case of XCP and RCP for heterogeneous delays are

still not available and require further study. Also, multi-link stability analysis of

max-min methods such as XCP, JetMax, RCP, and PIQI-RCP is an important open

problem that requires attention.

Most of the existing protocols involve network delays in their control equation.

For example, XCP requires computing average RTT in order to decide the instant

when the router control algorithm should be invoked. It also requires RTT values

while computing feedback information. RCP and PIQI-RCP also involve average

RTT in their control equation. However, a number of operating systems have limits

on the accuracy of timing and hence RTT estimation. The problem is much worse

in the case of local area networks (LANs), where the RTT is so small that it may

be difficult to accurately measure it. In such a scenario, it is necessary to study the

96

effects of incorrect RTT estimation and effect of flows with extremely small RTT on

the behavior of the system.

JetMax is robust to inaccuracy in RTT estimation. However, it has a large

congestion header size and a complicated algorithm for handling bottleneck switching.

We feel that it may be possible to simplify JetMax by simply considering the fair rate

rather than the probability of packet loss in deciding the bottleneck router. In the

case of JetMax, the link utilization also suffers in presence of low rate mice traffic.

We suggested possible solutions in chapter VI that require further study.

Our experimental work involved link capacities less than or equal to 1 gb/s due to

the lack of availability of higher capacity links. Another effort would be to carry out

experiments using our implementation in link capacities of tens or hundreds of gigabits

per second and study the scalability of these protocols as regard to implementation.

All the methods such as XCP, JetMax, RCP, and PIQI-RCP analyze flow control

in their discussion without considering packet loss control/recovery in detail. Most

of these methods resort to TCP-based loss detection and recovery, i.e., reducing the

congestion window or sending rate by half and restoring the window or rate based on

feedback from routers after recovering from losses. This needs to be analyzed further

as how it would affect the flow and stability properties of the system.

97

REFERENCES

[1] L. H. Andrew, K. Jacobsson, S. H. Low, M. Suchara, R. Witt, and

B. P. Wydrowski, “MaxNet: Theory and Implementation,” Netlab, Caltech,

Tech. Rep., 2006. [Online]. Available: http://netlab.caltech.edu/maxnet/

MaxNet Implementation TechReport.pdf

[2] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: Active Queue Manage-

ment,” IEEE Networks, vol. 15, no. 3, pp. 48–53, Jun. 2001.

[3] S. Bhandarkar, S. Jain, and A. L. N. Reddy, “LTCP: Improving the Performance

of TCP in Highspeed Networks.” Computer Communication Review, vol. 36,

no. 1, pp. 41–50, 2006.

[4] D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks,” Computer Networks and ISDN

Systems, vol. 17, no. 1, pp. 1–14, Jun. 1989.

[5] C. A. Desoer and Y. T. Wang, “On the Generalized Nyquist Stability Criterion,”

IEEE Trans. Automat. Contr., vol. 25, no. 2, pp. 187–196, Apr. 1980.

[6] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Processor

Sharing Flows in the Internet,” in Proc. IEEE IWQoS, Jun. 2005. [Online].

Available: http://yuba.stanford.edu/rcp/RCP-IWQoS.pdf

[7] N. Dukkipati and N. McKeown, “Processor Sharing Flows in the Internet,”

High Performance Networking Group, Stanford Univ., Tech. Rep. TR04-HPNG-

061604, Jun. 2004. [Online]. Available: http://yuba.stanford.edu/rcp/RCP-TR.

pdf

98

[8] N. Dukkipati, N. McKeown, and A. G. Fraser, “RCP-AC: Congestion Control

to make flows complete quickly in any environment,” in Proc. High-Speed

Networking Workshop: The Terabits Challenge, IEEE INFOCOM, Apr. 2006.

[Online]. Available: http://yuba.stanford.edu/rcp/RCP AC-dukkipati.pdf

[9] Emulab, (2005). [Online]. Available: http://www.emulab.net/

[10] A. Falk, Y. Pryadkin, and D. Katabi, “Specification for the Explicit

Control Protocol (XCP),” Oct. 2005, IETF Internet-draft. [Online]. Available:

http://www.isi.edu/isi-xcp/docs/draft-falk-xcp-spec-01.txt

[11] FEDORA CORE, (2005). [Online]. Available: http://fedora.redhat.com/

[12] S. Floyd, “High-speed TCP for Large Congestion Windows,” IETF RFC 3649,

Dec. 2003.

[13] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm

for Increasing the Robustness of RED’s Active Queue Management,” ICIR,

Tech. Rep., Aug. 2001. [Online]. Available: http://www.icir.org/floyd/papers/

adaptiveRed.pdf

[14] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion

Avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993.

[15] I. Foster and R. L. Grossman, “Data Integration in a Bandwidth-Rich World,”

Commun. ACM, vol. 46, no. 11, pp. 50–57, 2003.

[16] FreeBSD, (2005). [Online]. Available: http://www.freebsd.org/

[17] T. Herbert, The Linux TCP/IP Stack: Networking for Embedded Systems.

Boston, MA: Charles River Media, 2004.

99

[18] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and Design of

Controllers for AQM Routers Supporting TCP Flows,” IEEE Trans. Automat.

Contr., vol. 47, no. 6, pp. 945–959, Jun. 2002.

[19] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On Designing Improved

Controllers for AQM Routers Supporting TCP Flows,” in Proc. IEEE INFO-

COM, Apr. 2001, pp. 1726–1734.

[20] IANA, “Internet Assigned Numbers Authority,” (2005). [Online]. Available:

http://www.iana.org/

[21] JetMax@TAMU, (2005). [Online]. Available: http://irl.cs.tamu.edu/projects/

mkc/

[22] C. Jin, D. Wei, and S. H. Low, “FAST TCP: Motivation, Architecture, Algo-

rithms, Performance,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 2490–2501.

[23] C. Jin, D. X. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cot-

trell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, and

S. Singh, “FAST TCP: From Theory to Experiments,” IEEE Network, vol. 19,

no. 1, pp. 4–11, Jan. 2005.

[24] R. Johari and D. K. H. Tan, “End-to-End Congestion Control for the Internet:

Delays and Stability,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 818–832, Dec.

2001.

[25] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High Bandwidth

Delay Product Networks,” in Proc. ACM SIGCOMM, Aug. 2002, pp. 89–102.

[26] F. P. Kelly, “Charging and Rate Control for Elastic Traffic,” Euro. Trans. on

Telecommun., vol. 8, no. 1, pp. 33–37, Jan. 1997.

100

[27] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate Control for Communication

Networks: Shadow Prices, Proportional Fairness and Stability,” J. of Oper. Res.

Soc., vol. 49, no. 3, pp. 237–252, Mar. 1998.

[28] T. Kelly, “Scalable TCP: Improving Performance in High-speed Wide Area Net-

works,” in Proc. PFLDnet, Feb. 2003.

[29] S. Kunniyur and R. Srikant, “Stable, Scalable, Fair Congestion Control and AQM

Schemes That Achieve High Utilization in the Internet,” IEEE Trans. Automat.

Contr., vol. 48, no. 11, pp. 2024–2029, Nov. 2003.

[30] S. Kunniyur and R. Srikant, “Analysis and Design of an Adaptive Virtual Queue

(AVQ) Algorithm for Active Queue Management,” in Proc. ACM SIGCOMM,

Aug. 2001, pp. 123–134.

[31] D. Leith and R. Shorten, “H-TCP Protocol for High-Speed Long Distance Net-

works,” in Proc. PFLDnet, Feb. 2004.

[32] Y. Li, D. Leith, and R. N. Shorten, “Experimental Evaluation of

TCP Protocols for High-Speed Networks,” (2007). [Online]. Available:

http://www.hamilton.ie/net/eval/results HI2005.pdf

[33] Linux, (2005). [Online]. Available: http://www.linux.org/

[34] S. H. Low, L. L. H. Andrew, and B. P. Wydrowski, “Understanding XCP: Equi-

librium and Fairness,” in Proc. IEEE INFOCOM, Mar. 2005, pp. 1025–1036.

[35] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. Doyle, “Dynamics of

TCP/RED and a Scalable Control,” in Proc. IEEE INFOCOM, Jun. 2002, pp.

239–248.

101

[36] P. Marbach, “Priority Service and Max-Min Fairness,” IEEE/ACM Trans.

Netw., vol. 11, no. 5, pp. 733–746, Oct. 2003.

[37] L. Massoulié, “Stability of Distributed Congestion Control with Heterogeneous

Feedback Delays,” IEEE Trans. Automat. Contr., vol. 47, no. 6, pp. 895–902,

Jun. 2002.

[38] MATLAB, (2005). [Online]. Available: http://www.mathworks.com/

[39] J. Nagle, “Congestion Control in IP/TCP Internetworks,” IETF RFC 896, Jan.

1984.

[40] I. J. Nagrath and M. Gopal, Control Systems Engineering. New York: John

Wiley & Sons, 2004.

[41] Netfilter, (2005). [Online]. Available: http://www.netfilter.org/

[42] Ns-2, “Network Simulator,” (2005). [Online]. Available: http://www.isi.edu/

nsnam/ns/

[43] NSF FIND, “Future Internet Design,” (2006). [Online]. Available: http:

//www.nsf.gov/funding/pgm summ.jsp?pims id=12765&org=CNS

[44] NSF GENI, “Global Environment for Network Innovations,” (2006). [Online].

Available: http://www.nsf.gov/cise/cns/geni/

[45] K. K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Con-

gestion Notification (ECN) to IP,” IETF RFC 3168, Sep. 2001.

[46] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, , and Q. Zhang, “Simple

Available Bandwidth Utilization Library for High-Speed Wide Area Networks,”

102

(2003). [Online]. Available: http://www.dataspaceweb.net/papers/sabul-jsc-03.

pdf

[47] M. Suchara, R. Witt, and B. Wydrowski, “TCP MaxNet–Implementation and

Experiments on the WAN in Lab,” in Proc. IEEE ICON, Nov. 2005, pp. 901–906.

[48] TeraPaths, “A QoS Enabled Collaborative Data Sharing Infrastructure

for Peta-scale Computing Research,” (2006). [Online]. Available: http:

//www.atlasgrid.bnl.gov/terapaths/

[49] Y. Tian and H. Yang, “Stability of the Internet Congestion Control with Diverse

Delays,” Automatica, vol. 40, no. 9, pp. 1533–1541, 2004.

[50] G. Vinnicombe, “On the Stability of End-to-End Congestion Control for the

Internet,” Cambridge University, Tech. Rep. CUED/F-INFENG/TR.398, Dec.

2000.

[51] B. P. Wydrowski, L. L. H. Andrew, and I. M. Y. Mareels, “MaxNet: Faster Flow

Control Convergence,” Networking, vol. 3042, pp. 588–599, May 2004.

[52] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One More Bit Is

Enough,” in Proc. ACM SIGCOMM, Aug. 2005, pp. 37–48.

[53] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control (BIC)

for Fast, Long Distance Networks,” in Proc. IEEE INFOCOM, Mar. 2004, pp.

2514–2524.

[54] Y. Zhang and T. Henderson, “An Implementation and Experimental Study of

the eXplicit Control Protocol (XCP),” in Proc. IEEE INFOCOM, Mar. 2005,

pp. 1037–1048.

103

[55] Y. Zhang, S.-R. Kang, and D. Loguinov, “Delayed Stability and Performance

of Distributed Congestion Control,” in Proc. ACM SIGCOMM, Aug. 2004, pp.

307–318.

[56] Y. Zhang, D. Leonard, and D. Loguinov, “JetMax: Scalable Max-Min Congestion

Control for High-Speed Heterogeneous Networks,” in Proc. IEEE INFOCOM,

Apr. 2006.

104

VITA

Saurabh Jain received his Bachelor of Technology (B.Tech.) in electronics and

communication engineering from Indian Institute of Technology, Roorkee, India, in

May 2003. He then worked for a year at Oracle India Pvt. Ltd, Hyderabad, India. He

began pursuing his Master of Science degree in electrical engineering at Texas A&M

University in August 2004 and received his degree in May 2007.

He joined Internet Research Lab, Department of Computer Science, Texas A&M

University in 2005 and his research interests include congestion control in the Internet,

performance analysis of computing and networking systems. He may be contacted

at:

Saurabh Jain

30 Mahabir Bhawan

A.T. Road

Guwahati-781001, Assam

India

The typist for this thesis was Saurabh Jain.

