804 research outputs found

    A non-overlapping optimization-based domain decomposition approach to component-based model reduction of incompressible flows

    Full text link
    We present a component-based model order reduction procedure to efficiently and accurately solve parameterized incompressible flows governed by the Navier-Stokes equations. Our approach leverages a non-overlapping optimization-based domain decomposition technique to determine the control variable that minimizes jumps across the interfaces between sub-domains. To solve the resulting constrained optimization problem, we propose both Gauss-Newton and sequential quadratic programming methods, which effectively transform the constrained problem into an unconstrained formulation. Furthermore, we integrate model order reduction techniques into the optimization framework, to speed up computations. In particular, we incorporate localized training and adaptive enrichment to reduce the burden associated with the training of the local reduced-order models. Numerical results are presented to demonstrate the validity and effectiveness of the overall methodology

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    A Preconditioned Inexact Active-Set Method for Large-Scale Nonlinear Optimal Control Problems

    Full text link
    We provide a global convergence proof of the recently proposed sequential homotopy method with an inexact Krylov--semismooth-Newton method employed as a local solver. The resulting method constitutes an active-set method in function space. After discretization, it allows for efficient application of Krylov-subspace methods. For a certain class of optimal control problems with PDE constraints, in which the control enters the Lagrangian only linearly, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method is faster than using direct linear algebra for the 2D benchmark and allows for the parallel solution of large 3D problems.Comment: 26 page

    A velocity tracking approach for the Data Assimilation problem in blood flow simulations

    Get PDF
    preprintSeveral advances have been made in Data Assimilation techniques applied to blood flow modeling. Typically,idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present ageneral approach, based on a Dirichlet boundary control problem, that may potentially be used in differentparts of the arterial system. The relevance of this method appears when computational reconstructions ofthe 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, due tocomputational costs. Based on taking a fully unknown velocity profile as the control, the approach uses adiscretize then optimize methodology to solve the control problem numerically. The methodology is appliedto a realistic 3D geometry representing a brain aneurysm. The results show that this DA approach may bepreferable to a pressure control strategy, and that it can significantly improve the accuracy associated totypical solutions obtained using idealized velocity profilesinfo:eu-repo/semantics/submittedVersio

    On Reduced Input-Output Dynamic Mode Decomposition

    Full text link
    The identification of reduced-order models from high-dimensional data is a challenging task, and even more so if the identified system should not only be suitable for a certain data set, but generally approximate the input-output behavior of the data source. In this work, we consider the input-output dynamic mode decomposition method for system identification. We compare excitation approaches for the data-driven identification process and describe an optimization-based stabilization strategy for the identified systems

    Convergence of Successive Linear Programming Algorithms for Noisy Functions

    Full text link
    Gradient-based methods have been highly successful for solving a variety of both unconstrained and constrained nonlinear optimization problems. In real-world applications, such as optimal control or machine learning, the necessary function and derivative information may be corrupted by noise, however. Sun and Nocedal have recently proposed a remedy for smooth unconstrained problems by means of a stabilization of the acceptance criterion for computed iterates, which leads to convergence of the iterates of a trust-region method to a region of criticality, Sun and Nocedal (2022). We extend their analysis to the successive linear programming algorithm, Byrd et al. (2023a,2023b), for unconstrained optimization problems with objectives that can be characterized as the composition of a polyhedral function with a smooth function, where the latter and its gradient may be corrupted by noise. This gives the flexibility to cover, for example, (sub)problems arising image reconstruction or constrained optimization algorithms. We provide computational examples that illustrate the findings and point to possible strategies for practical determination of the stabilization parameter that balances the size of the critical region with a relaxation of the acceptance criterion (or descent property) of the algorithm
    corecore