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SUMMARY

Several advances have been made in Data Assimilation techniques applied to blood flow modeling. Typically,

idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present a

general approach, based on a Dirichlet boundary control problem, that may potentially be used in different

parts of the arterial system. The relevance of this method appears when computational reconstructions of

the 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, due to

computational costs. Based on taking a fully unknown velocity profile as the control, the approach uses a

discretize then optimize methodology to solve the control problem numerically. The methodology is applied

to a realistic 3D geometry representing a brain aneurysm. The results show that this DA approach may be

preferable to a pressure control strategy, and that it can significantly improve the accuracy associated to

typical solutions obtained using idealized velocity profiles.
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1. INTRODUCTION

During the last twenty years scientific computing has become an established tool to carry out basic

research about the cardiovascular system, in particular its physiopathology. This is due, on the one

hand, to the increase of computational power and available medical data and, on the other hand, to

the advances in the numerical methods and mathematical models associated to the cardiovascular

system. In fact, when put together, these aspects allow us to give a good description of several

physiological aspects, as well as some of the pathologies of this complex system.

Both medical and scientific communities have also recognized the potential for computational

simulations to become an instrument to be used in clinical practice as a complement of diagnosis

and even prognosis. Particularly for blood flow, which can be considered as a pulsatile fluid

interacting with the vessel wall, mathematical models can be numerically solved. This fact allows to

obtain extended measurements not easily acquired in traditional medical devices. Examples of such

measurements are the Wall Shear Stress (WSS) or the Oscillating Shear Index (OSI). The WSS and

OSI profiles can be indicators of potential atherosclerosis development or brain aneurysm’s rupture,

just to name two severe pathologies. However, diagnosis and prognosis demand patient-specific and

accurate enough simulations, to be considered reliable for medical decisions.

Such a personalization of the results requires the adjustment of both model parameters and

boundary conditions, which need to be measured or estimated. Dealing with this uncertainty remains

an active field of research. Simplified models of networks, representing the cardiovascular system,

can be considered reliable to provide information about the flow rate and the pressure average ([1]).

But, whereas these models require relatively few personalized data, detailed spatial distributions of

WSS and OSI are more demanding, since the knowledge of the three-dimensional velocity profile

describing blood flow becomes determinant.

A detailed distribution of the WSS or OSI is typically only required locally, in a specific district

of an artery. Therefore, one can consider a surrogate strategy based on the coupling of three levels

of detail: a local 3D fluid-structure interaction (FSI) model, a 1D simplified description for adjacent

Copyright c© John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. ()

Prepared using cnmauth.cls DOI: 10.1002/cnm



DATA ASSIMILATION PROBLEM IN BLOOD FLOW SIMULATIONS 3

vessels, and a lumped parameters (0D) model for the remaining vascular tree. This technique, called

geometric multiscale (GM), is analyzed in detail by several authors. We refer to [2], [3] and [4] for

an overview. In these papers, the authors show that GM is a valid approach to obtain a local 3D

description, while still capturing the influence of the systemic behavior. Besides, the procedure

can also be fed with patient-specific data, in order to make average velocities and pressures more

accurate at the level of the simplified networks ([5], [6], [7] and [8]). However, when dealing with

the artificial boundaries of the domain, where the 3D model is coupled with the surrogate models,

the velocity profile is assumed to have an idealized shape, typically constant, or parabolic (see, for

instance, [9] and [10]). Such assumptions prevent the velocity profile, inside the region of interest,

to capture possible secondary flow and helical effects due to the geometric features upstream the

district under analysis ([12],[11]). The lack of precision in the velocity profile -as explained above-

suggests a potential downbeat of the method with regards to WSS or OSI accuracy.

Still concerning WSS quantification, in [13], [14] and [15], significant variability due to changes

in the velocity profile was identified for simulations in brain aneurysms. As possible workaround,

in [16], [17] and [18] it was suggested to extend computational domains in order to obtain more

accurate profiles. Concerning this aspect, we assume the goal of keeping the full model applied only

to the smallest possible realistic domain, mitigating in this way the computational cost associated

to domain extensions. It is worth mentioning that, in a near future, required numerical simulations

should couple FSI models with several transport equations describing a clot or plaque formation

inside an artery, which will necessarily be done at the expenses of increasing the computational cost

([19], [20], [21]). Also, image processing still carries several types of uncertainty. To mention but

one example, the decision on the smoothing parameters of segmented medical images can lead

to an error on the WSS and OSI quantification three times larger than the one resulting from

the uncertainty on model parameters (see [22]). Similar conclusion was highlighted in [23]. This

indicates that uncertainty reduction benefits from the choice of smaller domains.

Once we assume that the computational domain is not big enough to recover the effective real

flow structures, additional information must be considered. A natural approach is to consider
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4 J. TIAGO ET AL.

measurements of the velocity itself and try to adjust the missing boundary conditions. In this way,

the measurements can be matched by the computational solution. At this stage, one could ask why

not to use the measurements of the three velocity components as the boundary condition itself. In

fact, currently it is impossible to obtain velocity measurements covering the entire inlet artificial

section, but only at selected points of the vascular domain. We refer to [24] and [25] for examples of

velocity data obtained with phase-contrast MRI. Therefore, regardless of some attempts made (see

[26] and the works there mentioned), a general strategy, sound enough to be used in different parts

of the cardiovascular system, and which permits to adjust velocity boundary conditions efficiently,

remains to be designed.

The use of data to improve the computational solution is the subject of Data Assimilation (DA),

which includes different types of approaches and has been used in several fields (see [27] for an

overview). The application of DA to hemodynamics has increased in the last decade, mainly for the

purpose of model parameter estimation, including material properties needed to properly define FSI

models. To name but a few references, we mention [28], [29] and [30]. In [28] a sequential approach

was used to identify stiffness parameters in elastic boundary conditions. Also, in [29], a reduced

order variational approach was proposed to estimate the Young modulus of the aortic vessel wall.

In [30], a Bayesian analysis was suggested to estimate boundary resistances in the frame of Fontan

ventrical palliation surgery. For an overview on DA approaches in cardiovascular mathematics, we

refer to [31] or [32]. Several authors also applied DA to the adjustment of boundary conditions.

A control approach was suggested in [33] and [34] for the adjustment of the flow rate boundary

conditions. In [35] and [36] the Weighted Least Squares Finite Element Method (WLSFEM) was

used to include velocity measurements in the simulations. The method was validated for a recasted

form of the Navier-Stokes equations on non-primitive variables. A more flexible technique, based

on a variational formulation, was suggested to use velocity measurements in order to adjust pressure

boundary values at the artificial boundaries ([37], [38],[39]).

In this work, we try to answer some questions concerning the use of the variational formulation.

Particularly, we address its possible use as an instrument to adjust 3D velocity profiles on artificial
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DATA ASSIMILATION PROBLEM IN BLOOD FLOW SIMULATIONS 5

boundaries. Some prospective work considering only idealized velocity profiles, normal to the inlet

section, was done in [40]. These idealized profiles were parametrized using up to 2 degrees of

freedom. This restrictive assumption resulted in a computational problem with substantially reduced

complexity. Here we abandon this non realistic assumption and we consider - for the first time - the

general case, where the velocity profile is allowed to have - for instance- an helical structure. To

this end, we use an extended realistic geometry obtained by segmentation of a brain artery with an

aneurysm, to generate what we consider the ground truth synthetic data. Afterwards, we truncate

the domain into a smaller one, where the ground truth velocity profile is helical. We assume to

have velocity data inside several locations in the pathological region, and we apply the variational

approach to adjust the boundary velocity profile in order to match the artificially measured data.

At this stage, we are forced to remain under two non realistic assumptions, which should be

dropped in future work. Firstly, the model is assumed to be stationary, in order to neglect the fluid

interaction with the vessel walls. Secondly, we assume the velocity data to cover a full section,

even though - as already mentioned above- it can only be obtained pointwise. The later assumption

allows us to remain within an essentially deterministic frame, and eventually prove that the approach

is mathematically sound. If one would have realistic data in mind, a stochastic approach ([39], [30])

should be considered. This should be addressed in the future.

In short, the issues that we try to clarify are the following: can a data assimilation approach, based

on a velocity control problem, be used to obtain a solution that matches measured velocities in a

section of the lumen? Will the results improve if more sections are included? Can this approach be

preferred to the pressure control problem strategy?

This paper is organized as follows. In Section 2 we start by introducing the model for the blood

flow that we will consider; we describe the DA approach and some relevant mathematical issues

about it. Then, in Section 2.1, we present the numerical algorithm to address our problem, including

the Discretize then Optimize methodology used to solve the resulting control problem. In Section 3

we present and discuss the numerical results. The results shown include a comparison with the
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pressure control based approach as well as results in a realistic domain. Finally, in Section 4, we

end up with several concluding remarks.

2. METHODS

The Navier-Stokes equations have been widely accepted as a mathematical model for blood flow

in large and medium size arteries ([41]). As mentioned before, under the stationary assumption

no further interaction with the vessels walls will be considered. Blood flow can also undergo non-

Newtonian characteristics ([42]). Nevertheless, to remain in the frame where mathematical theory

can be directly applied to prove the well posedness of the variational approach, we will consider

blood as a Newtonian fluid. The model for the blood flow can read as follows: let the vector function

u and the scalar function p represent the blood velocity and pressure, respectively. Both quantities

satisfy the momentum and mass balance equations

−ν∆u + u · ∇u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γin,

u = 0 on Γwall,

ν∂nu− pn = 0 on Γout.

(1)

Here Ω represents the vessel domain truncated by two artificial sections which are set to be the

inflow and outflow boundaries, see Figure 1. The vector function g describes the velocity profile on

the inflow boundary Γin. We consider a homogeneous Dirichlet boundary condition on the vessel

wall Γwall and a homogeneous Neumann boundary condition on the outflow boundary Γout. The

kinematic viscosity is represented by ν. The body forces are neglected and hence we take f = 0.

The velocity tracking approach for the DA problem consists of looking for the control function g

such that the following cost functional
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Figure 1. Example: two dimensional domain.

J(u,g) = β1

∫
Ωpart

|u− ud|2 dx+ β2

∫
Γin

|∇sg|2 ds, (2)

will be minimized. Here u is the solution of (1) corresponding to g and ud represents the data

available only on a part of the domain called Ωpart. By fixing the parameters β1 and β2, we decide

whether the minimization of J should emphasize a good approximation of the velocity vector to ud

or a smoother control measured by the norm of the tangential derivative ∇s(.).

The above problem is a particular case of the broader class of variational problems consisting of

different choices for the functional J . We remark that in [37], [38] and [39] a Neumann control of

the type

[−pI + ν(∇u + (∇u)T )]n = −gn (3)

was considered at Γin.

We will now introduce functional spaces for problem (1-2). Let Γ ⊂ ∂Ω and

H1
0(Γ) =

{
v ∈ L2(Γ) | ∇sv ∈ L2(Γ), γ∂Γv = 0

}
.

We constrain the inlet profile as a vector function g ∈ U where

U =
{
g ∈ H1

0(Γin) : such that (1) has a unique weak solution
}
.

We remark that U is not an empty set as we can take, for instance, g such that ‖g‖H1
0 (Γ) ≤ δ for

certain δ small enough ([43]).

Now consider (Ωpi)i to be a monotone sequence of subsets of Ω, such that

Ωp1 ⊂ Ωp2 ... ⊂ Ωpm ⊂ Ω. (4)

Copyright c© John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. ()

Prepared using cnmauth.cls DOI: 10.1002/cnm



8 J. TIAGO ET AL.

In addition, assume also that for all i ∈ {1, ...,m}, we have

∂Ωpi = Γin ∪ Γwalli ∪ Γouti

where, for all i ∈ {1, ...,m}, Γouti are disjoint surfaces corresponding to cross sections of Ω and

Γwalli are nonempty wall segments verifying Γwalli ∩ Γwall = Γwalli . Note that the construction of

each Ωpi in this way ensures that (4) is fulfilled, and that each Ωpi itself represents a part of the

vessel Ω. Therefore, each Γouti is, in fact, a cross section of Ω.

We can now state the following consequence of Theorem 4.5 in [43]:

Corollary 1

Let β1, β2 > 0 and assume that the data ud is known in a part of the domain given by Ωpart = ∪mi=1si

where si = Γouti , for all i ∈ {1, ...,m}. Then there is an optimal solution (u,g) ∈ H1(Ω)× U to

problem (1-2).

2.1. Numerical Approximation

In this section we describe the numerical algorithm to solve (1-2). It is based on the Discretize

then Optimize (DO) approach which consists of first discretizing the optimal control problem and

then solving the optimization problem (finite dimensional) resulting from the discretization. An

alternative approach is the adjoint (indirect) approach, or Optimize then Discretize (OD). For certain

type of parabolic problems, [44] and [45] indicated that DO approach may be preferred. In [46]

and [47], the authors pointed out that, in nonlinear problems, such us fluid control problems, OD

could result in a discrete optimal solution failing to be optimal for the continuous problem. In

[48], in the frame of stabilized advection equations, it was shown that both approaches can lead

to different solutions, but, in certain cases, the OD has better asymptotic convergence properties.

These conclusions were reinforced in [49]. Concerning the case of the Navier-Stokes equations,

different perspectives were suggested. We refer to [50] for a DO approach in the frame of boundary

control, and to [51] for a OD approach in the frame of distributed control. It appears that, at the

present stage, no general answer can be given. In particular, concerning problem (1-2), this question

remains without unanswered. In [37], where a pressure type control was considered, the authors
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DATA ASSIMILATION PROBLEM IN BLOOD FLOW SIMULATIONS 9

obtained better performance of the DO, in terms of accuracy of the controlled solution. Based on

these results, we have adopted here the DO approach. Nevertheless, a detailed comparison of these

two approaches should be the subject of future research.

Let us assume that we are looking for u ∈ H1(Ω) and for p ∈ L2(Ω). We consider

V = {v ∈ H1(Ω) : v|∂ΩD
= 0}, where ∂ΩD = Γin ∪ Γwall, Q = L2(Ω). Multiplying the first two

equations of (1) by test functions v ∈ V and q ∈ Q, and integrating by parts, we obtain
∫
Ω

ν∇u : ∇v +
∫
Ω

((u · ∇)u) · v −
∫
Ω

p div v =
∫
Ω

f · v

∫
Ω

q div u = 0

(5)

which is the weak form of system (1). The symbol ”:” represents the inner product of two second-

order tensors.

To discretize problem (2)-(5) we consider Vh and Qh, subpaces of V and Q, with finite

dimensions dim(Vh) = Nu and dim(Qh) = Np, respectively. We assume Vh and Qh to represent

spaces of Lagrange type Finite Elements, associated to a partition τh of Ω. Therefore the dimensions

Nu and Np tend to infinity when h tends to zero. A map between the nodes describing τh and the

basis functions with dimensions both Vh and Qh can be defined.

The discretized unknown variables are now given by

u ≈ uh =

Nu∑
j=1

ujφj ∈ Vh, p ≈ ph =

Np∑
k=1

pkψk ∈ Qh (6)

where uj and pk are unknown coefficients to be determined and φj and ψk are the shape functions

which form a basis of Vh and Qh, respectively.

Assuming that we can associate some basis functions (φi)i=1...No with the nodes in Ωpart, and

some others to the nodes on Γin, which we refer to as (φi)i=1...Ng
, we then approximate the control

function in (2) as

gh =

Ng∑
j=1

gjφj =

Ng∑
j=1

ujφj .

We assume also that ud can be approximated by

ud,h =

No∑
i=1

udiφi .
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Let us begin by discretize the cost functional J given by (2). The first term of J becomes

∫
Ωpart

∣∣∣∣∣
No∑
i

(ui − udi)φi

∣∣∣∣∣
2

dx =

∫
Ωpart

〈
No∑
i

(ui − udi)φi,
No∑
j

(uj − udj)φj

〉
dx

=

∫
Ωpart

No∑
i

(ui − udi)
No∑
j

(uj − udj) 〈φi, φj〉 dx

=

No∑
i

(ui − udi)
No∑
j

(uj − udj)
∫

Ωpart

φiφj dx

= (U−Ud)
TM(U−Ud) = 〈(U−Ud),M(U−Ud)〉

= (U−Ud,U−Ud)M = ‖U−Ud‖2No
(7)

where ‖ · ‖No
is the norm induced by the inner product (·, ·)M and M is a symmetric No ×No

matrix where each element is given by

mij =

∫
Ωpart

φiφj dx, i = 1, ..., No, j = 1, ..., Ng.

For the regularization term we have

∫
Γin

∣∣∣∣∣∣
Ng∑
i

gi∇φi

∣∣∣∣∣∣
2

dx =

∫
Γin

〈
Ng∑
i

gi∇φi,
Ng∑
j

gj∇φj

〉
dx

=

Ng∑
i

gi

Ng∑
j

gj

∫
Γin

∇φi : ∇φj = GTAG

= 〈G, AG〉 = (G,G)A = ‖G‖2A (8)

where ‖ · ‖A is the norm induced by the inner product (·, ·)A. Matrix A is a symmetric Ng ×Ng

matrix whose elements are defined by

aij =

∫
Γin

∇φi : ∇φj dx, i = 1, ..., No, j = 1, ..., Ng,

where ”:” represents the inner product of two second-order tensors.

Then, the discretized form of the cost functional (2) becomes:

J(U,G) = β1‖U−Ud‖2No
+ β2‖G‖2A. (9)
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DATA ASSIMILATION PROBLEM IN BLOOD FLOW SIMULATIONS 11

With respect to system (5), to deal with convected dominated regimes, a GLS (Galerkin-Least-

Squares) stabilization (see [52]) is adopted here. To describe it, let us first consider

a(uh,vh) =

∫
Ω

ν∇uh : ∇vh +

∫
Ω

((uh · ∇)uh) · vh +

∫
Ω

ph div vh

and

b(uh, qh) =

∫
Ω

qh div uh.

Using this notation, the stabilized version of (5) consists of finding uh ∈ Vh and ph ∈ Qh such

that


a(uh,vh) + L1

h(uh, f ,vh) = (f ,vh)

b(uh, qh) = L2
h(ph, qh)

(10)

where L1
h and L2

h are defined by

L1
h(uh, f ,vh) =

∑
K∈τh

(L(uh, ph)− f , ϕ(uh,vh))

and

L2
h(ph, qh) = (− 1

λ
ph, qh)

blueso that L1
h verifies

L1
h(uh, f ,vh) = 0. (11)

Here τh represents a partition of Ω with characteristic length h, λ is a penalty parameter (see [53])

and L and ϕ are given by

L(u, p) = −ν∆u + (u · ∇)u +∇p

ϕ(uh,vh) = δ((uh · ∇)vh + ν 4 vh).
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The parameter δ should be suitably chosen. In this work, the parameter is taken from [54] (see

[55] for more details). Notwithstanding, δ can be optimized in the frame of optimal control problems

([48] and [56]).

In order to obtain the discretization of system (10), let us first discretize the convective term of

a(uh,vh) and its counterpart in L1
h(uh, f ,vh):

∫
Ω

((uh · ∇)uh) · vh +
∑
K∈τh

∫
K

((uh · ∇)uh) · ϕ(uh,vh).

Using the approximations (6) and after some computations, the above expression can be written

as  Nu∑
j=1

uj

Nu∑
k=1

uk

∫
Ω

(φj · ∇)φk · φi


i=1,...,Nu

+

∑
K∈τh

Nu∑
j=1

uj

Nu∑
k=1

uk

∫
K

(φj · ∇)φk ·

(
δ

(
Nu∑
l=1

ulφl · ∇φi + ν∆φi

))
i=1,...,Nu

= (N(U) +N (U))U

where U = (u1, ..., uNu
)T and N(U) and N (U) are matrices whose elements are defined by

[N(U)]i,j =

 Nu∑
k=1

uk

∫
Ω

(φj · ∇)φk · φi

 ∀ i, j = 1, ..., Nu

[N (U)]i,j =
∑
K∈τh

Nu∑
k=1

uk

∫
Ω

(φj · ∇)φk ·

(
δ

(
Nu∑
l=1

ulφl · ∇φi + ν∆φi

))
∀ i, j = 1, ..., Nu.

We now turn our attention to the diffusion term:

∫
Ω

ν∇uh : ∇vh +
∑
K∈τh

∫
K

−ν∆uh · ϕ(uh,vh).

Replacing uh by its corresponding finite approximation we can writeν Nu∑
j=1

uj

∫
Ω

∇φj : ∇φi


i=1...Nu

+

Nu∑
j=1

uj
∑
K∈τh

∫
K

−ν∆φj ·

(
δ

(
Nu∑
l=1

ulφl · ∇φi + ν∆φi

))
= (Q+Q)U, ∀i = 1, ..., Nu
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DATA ASSIMILATION PROBLEM IN BLOOD FLOW SIMULATIONS 13

where

[Q]ij = ν

∫
Ω

∇φj : ∇φi, ∀i, j = 1, ..., Nu

[Q]ij =
∑
K∈τh

∫
K

−ν∆φj ·

(
δ

(
Nu∑
l=1

ulφl · ∇φi + ν∆φi

))
, ∀i, j = 1, ..., Nu

Acting similarly for the pressure term, we obtain for the first equation in (10),

(Q+Q)U + (N(U) +N (U))U + (BT + B)P = F

where

[BT ]i,j =

∫
Ω

ψjdiv φi ∀ i = 1, ..., Nu; j = 1, ..., Np.

[B]ij =
∑
K∈τh

∫
K

∇ψj ·

(
δ

(
Nu∑
l=1

ulφl · ∇φi + ν∆φi

))
, ∀i = 1...Nu; j = 1, ...Np.

as for L2
h, we consider

∑
E∈ΩE

∫
ΩE

(
1

λ
ph, qh

)
which, by replacing ph by its corresponding finite approximation, gives

Np∑
k=1

pk
∑
K∈τh

∫
K

1

λ
ψiψk = 0 ∀i = 1, ...Np.

Hence, adding the discretized terms of L1 and L2, system (10) becomes
(Q+Q)U + (N(U) +N (U))U + (BT + B)P = F

BU = B1P + blueboundary conditions

(12)

where

[B1]i,j = −
∑
K∈τh

∫
K

1

λ
ψiψj ∀i, j = 1...Np.
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We remark that vector U = (Ug,G) includes the controlled velocity coefficients G and the

uncontrolled ones Ug which also depend on G. Therefore, the stabilized problem can be recast

into the general form

min
G

F (G) = J(U(G),G) (13)

C(G) ≥ 0, (14)

where (14) represents the problem constraints (12), including boundary conditions. In spite of (13-

14) being finite dimensional, it is a large scale optimization problem with nonlinear constraints and

a quadratic cost. To solve this problem, we use the Sequential Quadratic Programming algorithm,

as described in [57]. +The algorithm is available in the SNOPT library ([58]) and was tested in

several benchmark large scale problems. The iterative procedure requires the evaluation of F (G)

which, in turn, implies solving the nonlinear system (12). To solve it, the damped Newton method -

as described in [59] - was used.

We will now briefly describe the algorithm and we refer to [57], for more details.

Let us assume that the solution G of (13)-(14) verifies the Karush-Kuhn-Tucker (KKT) optimality

conditions

DC(G)Tλ = DF (G)

C(G)Tλ = 0

C(G) ≥ 0

λ ≥ 0

where DF and DC are the gradients of F and C, respectively, and λ is the vector of the Lagrange

multipliers. If one is able to find a good initial estimate G0 (and corresponding λ0), close enough to

the optimal G, the following algorithm produces a sequence that is globally convergent ([57]).

We remark that step 2 of Algorithm 1, which concerns the solution of the linear quadratic problem,

is conducted using the library SQOPT ([61]).
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Algorithm 1 SNOPT

while Optimality tolerance of KKT less than threshold do

1- Determine a quasi-Newton approximation Hk for the Hessian of the modified Lagrangian

L(G,Gk, λk) = F (G)− λTk [C(Gk)−Gk −DC(Gk)(G−Gk)].

2- Solve the auxiliary Linear Quadratic problem

min
C
Q(G,Gk, λk) = F (Gk) +DFT (Gk)(G−Gk)− 1

2
(G−Gk)THk(G−Gk)

Gk +DC(Gk)(G−Gk) ≥ 0 (15)

to obtain the intermediate iterate (Ḡk, λ̄k, s̄k), where ŝk is the vector of the slack variables

associated to the linear constraints in (15).

3- Compute αk+1 ∈ (0, 1] as the minimizer of the merit function

Mγ(G, λ, s) = F (G) + λT (C(G)− s) +
1

2

m∑
i=1

γi(Ci(G)− si)2

along the line

d(α) = (Gk, λk, sk) + α[(Ḡk, λ̄k, s̄k)− (Gk, λk, sk)],

where si, for i = 1...m, are the components of s and γ is a vector of penalty parameters (see [57]

for details on how to choose γ).

4- Set (Gk+1, λk+1, sk+1) = d(αk+1).

5- Compute the optimality tolerance for the KKT conditions.

end while

3. RESULTS AND DISCUSSION

3.1. Controlling pressure versus controlling velocity

As mentioned at the end of Section 1, one of the questions we would like to address is how our

approach compares to the approach based on a Neumann control ([37]). To this end, we started by

reproducing the results there presented for an idealized 2D straight channel Ω = [0, 5]× [−0.5, 0.5]
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with Γin = {0} × [−0.5, 0.5] and Γout = {5} × [−0.5, 0.5]. The observations were assumed to

correspond to the sections {1} × [−0.5, 0.5], {2.5} × [−0.5, 0.5] and {4} × [−0.5, 0.5]. Taking

ν = 1, we considered the ground truth solution to be known exactly and given by u = 1− 4y2 (in

particular u = 0 on Γwall = ∂Ω \ (Γin ∪ Γout). As mentioned above, in [37], the authors considered

the problem of controlling a boundary condition of type (3). We refer to this procedure as solving

problem (P2), by opposition to solving problem (1-2), to which we refer as (P1). We remark that

while in (P1) the control is a vector function (2D), in (P2) it is a scalar function. Thus, to solve (P2),

the cost function should be properly rewritten, and Algorithm 1 may then be applied in a similar

way. In [37], the weights in the cost function were set to be β1 = 1
2 and β2 = 10−9

2 , accordingly

to the Morozov Discrepancy Principle associated to a certain fixed signal-to-noise ratio (see, for

instance, [60]). Since we were interested in comparing specifically the role of the control nature in

the results, we did not include - in this section - any noise on the observations.

To solve (P2), as described above, we fixed a Neumann homogeneous condition at Γout and

we considered P2 − P1, the usual Lagrange linear FEM corresponding to 27K degrees of freedom

(maximum element size h = 1/20) for the velocity. The assembly of the FEM matrices required

to obtain the equivalent to system (12) was done with COMSOL Multiphysics ([62]). Since, at

this stage, the Reynolds number was very small, the matrices corresponding to the convective

and stabilization terms were neglected. To solve the linearized systems at the iteration level, the

PARDISO library was used. The result gave a controlled solution that approximates the exact

solution with a relative error of 0.00112, that is, of order≈ 0.1%. Correspondingly to the conclusions

in [37], this means that the Neumann control was able to successfully adjust the solution to the data.

For this reason, we used this percentage as the reference relative error to fix the weights β1 and β2

in our comparative example - which will be described next.

We considered the previous domain and extended it to obtain the curved vessel represented in

Figure 2 (left). We will refer to this extended domain as the ground truth domain. As it is well known

([4]), in a straight channel, even for at physiological Reynolds numbers, pressure contours tend to
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Figure 2. Ground truth domain (left); Working domain Ω and Ωpart = S1 ∪ S2 ∪ S3 (right).

remain parallel to the cross sections of the computational domain. In a curved vessel, however, that

is no longer true, even for Reynolds numbers bellow typical physiologic values.

blueTo illustrate this, fixed the same model as before, but we slightly increased the Reynolds

number by considering a parabolic profile 10(1− 42) at inlet 1. We then solved system (1) to obtain

the ground truth solution ud. As the Reynolds number was now higher, we considered all the terms

in system (12), including the stabilizing terms. An unstructured mesh corresponding to 43K degrees

of freedom (max h = 1/20) was used. The nonlinear system was solved using the damped Newton’s

method, as mentioned in Section 2. The ground truth solution is represented in Figure 3. We can see

that the pressure contours are no long parallel to cross sections within the curve, and the velocity

profile loses the parabolic shape on those cross sections.

blueOur aim next was to mimic a more realistic situation, where the unknown inlet boundary

condition did not correspond to a parabolic velocity profile, normal at Γin, nor to a pressure

profile, that could be assumed axial dependent. For this reason, we truncated the channel at the

section labeled inlet 2, which became the new artificial inlet of the shorter domain represented in

Figure 2(right). We call this domain Ω and its inlet boundary Γin. Therefore, we put ourselves

into the scenario where we would like to fix a boundary condition at Γin so that the solution in

the shorter domain Ω would match, as much as possible, the ground truth solution ud. For the

observations, we assumed to have measured exactly the velocity profiles of the true solution ud

at Ωpart = S1 ∪ S2 ∪ S3, where S1, S2 and S3 are lines that were chosen arbitrarily inside Ω
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Figure 3. Ground truth solution. On the left: velocity magnitude (m/s). On the right: pressure (Pa).

(Figure 2, left). blueBefore solving both problems (P1) and (P2), we needed to set β1 and β2.

Following what was done above, concerning the example in [37], we fixed β1 = 1
2 and we looked

for β2 so that a relative error

REΩpart,β2 =
‖uβ2 − ud‖L2(Ωpart)

‖ud‖L2(Ωpart)
,

verifies REΩpart,β2
≈ 0.00112. In the expression of the relative error, uβ2

represents the solution

of the control problem associated to β2. We did this by heuristically fixing a sample for β2 and

evaluating the corresponding relative errors obtained using Algorithm 1 with an optimality tolerance

of 10−6. The results are shown in Figure 4 and Table I.

Table I. Relative errors REΩpart,β2
, for both (P1) and (P2) approaches.

β2 (P1)

0.5× 10−2 0.02992

0.5× 10−3 0.01005

0.5× 10−4 0.00219

2.5× 10−5 0.00118

0.5× 10−5 0.000259

β2 (P2)

0.5× 10−5 0.02350

0.5× 10−6 0.01757

0.5× 10−7 0.00978

0.5× 10−8 0.00412

0.5× 10−9 0.00129
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Figure 4. Illustration of results in Table I: Relative errors REΩpart,β2
for (P1) (left) and (P2) (right).

blueFrom these conclusions we fixed β2 = 2.5× 10−5 for (P1) β2 = 0.5× 10−9 for (P2).

blueThe solutions obtained for (P1) and (P2) are represented in the second row of Figure 5, and

first row of Figure 6, respectively.

The results show that the solution obtained with the velocity control is qualitatively closer to

the ground truth solution, represented in the first row of Figure 5. To quantify these different

performances, we use the relative error of the controlled solutions with respect to ud, evaluated

at different sites. In Table II we present the values for

REΩ =
‖u− ud‖L2(Ω)

‖ud‖L2(Ω)
,

where ‖ · ‖L2(Ω) is the L2(Ω) norm, and for REΓin
and REΩpart

, which are computed analogously.

We also indicate the final value for the cost functional and the number of cost evaluations. It can

be seen that, while a relative error on the observations site is kept on the same order, the solution

of (P1) is globally more near to ud than the solution of (P2). blueActually, looking closer to the

later pressure profile (Figure 6, 1st row), some oscillations can be seen at the inlet. This indicates

that, although the relative error on the observations was of order 0.1%, the weight β2 = 0.5× 10−9

almost neglected the regularizing effect of the second term in the cost function. An increase in β2

improves the regularizing effect, but at the expenses of distancing from the desired relative error. We

illustrate this by considering the case (P2r) with β2 = 0.5× 10−6, for which the results are shown

in Table II and in the second row of Figure 6.
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(a) Ground truth velocity (b) Ground truth pressure

(c) Velocity for (P1) (d) Pressure for (P1)

Figure 5. First row: ground truth velocity magnitude (m/s) (left) and ground truth pressure (Pa) (right).

Second row: controlled solution (P1) - velocity magnitude (m/s) (left) and pressure (Pa) (right).

Table II. Relative errors, final value for cost functional (J), number of objective evaluations NE for both (P1)

and (P2) approaches.

Approach REΩ REΓin REΩpart Cost NE

(P1) 0.00517 0.02286 0.00118 0.00953 230

(P2) 0.13443 0.57843 0.00129 7.40043e− 4 126

(P2r) 0.10068 0.47189 0.01757 0.03435 68

These results indicate that, if the accuracy of the numerical solution is our aim, in some scenarios

- like the one just illustrated - a velocity control approach can be more convenient. A higher number

of cost evaluations might however be required. Such conclusion does not invalidates the fact that

(P2) is prone to perform well, when pressure contours align with cross section in the region close to

the inlet, as shown in [37] and [38].
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(a) . (b) .

(c) . (d) .

Figure 6. First row: controlled solution obtained with (P2) - velocity magnitude (m/s) (left) and pressure (Pa)

(right). Bottom row: same results obtained with β2 = 0.5× 10−6 (P2r).

Figure 7. Mesh convergence: Relative errors for the control vector, on Γin (left) and velocity vector on the

controlled domain (right). hmax = 1/40, hmax = 1/30, hmax = 1/20 and hmax = 1/10.

blueNext, we assessed the convergence of the solution pair (u,g) with respect to mesh refinement.

We considered the desired solution as the one obtained by solving (P1) with a maximum mesh size
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of h = 1/80. Then, we computed the relative errors both control and velocity solutions, which we

represent in Figure 7. The convergence test resulted positive.

blueUntil now, (P1) was only solved for small Reynolds numbers. This allowed us to illustrate

the advantages of velocity control, while remaining close to the example analyzed in [37]. These

Reynolds numbers were still far for common physiologic values found in the cardiovascular system.

To explore the robustness with respect to such values, we solved (P1) for increasing Reynolds

numbers. The results are presented in Table III. We can see that the number of iterations, required

to solve Algorithm 1, increases significantly with the Reynolds number. Also, since we kept the

weights β1 and β2 fixed, there is an increase of the relative error on the observations site Ωpart.

Naturally, this error propagates to the rest of the solution. To keep the relative error within acceptable

values, let say, around 0.1%, we need to adjust the weight parameters, as it was done above. To

illustrate this, we show the results obtained by considering β2 = 0.1× 10−5 in Table IV. We can

see that with these parameters the relative errors can be of order 0.1%.

Table III. Relative errors, number of SNOPT iterations for β2 = 2.5× 10−5.

Reynolds REΩ REΓin REΩpart Iterations

6.67 0.00517 0.02286 0.00118 230

100 0.00836 0.04528 0.00160 260

200 0.01266 0.07051 0.00214 487

300 0.01465 0.08328 0.00246 498

400 0.01587 0.09151 0.00267 454

Table IV. Relative errors, number of SNOPT iterations for β2 = 0.1× 10−5.

Reynolds REΩ REΓin REΩpart Iterations

100 0.00634 0.0372 0.000812 374

200 0.00983 0.05905 0.00117 680

300 0.01141 0.07013 0.00138 760

400 0.01243 0.0775 0.0015 774
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3.2. The velocity control DA approach applied to a realistic domain

In this section we present the numerical results found after applying the DA approach (P1) to a

realistic geometry obtained from the segmentation of Computed Tomography (CT) data sets of a

saccular brain aneurysm.

As in the previous example, we used an extended ground truth domain to computed the ground

solution ud. This solution was used both to select the measured data and to estimate the accuracy of

the method. The ground truth domain is represented in Figure 8 (left). For the model parameters, we

considered ν = µ
ρ with µ = 3.67× 10−3 Pa.s, a value within the range suggested in [22]. Also,

we took ρ = 1050Kg/m3 and we fixed a laminar inflow profile - normal to the inlet - which

corresponds to a flow rate ofQ = 4× 10−6m3/s. Again, these are typical parameters used for blood

flow simulations (see [22]). At the inlet this values implied a physiological Reynolds number of 367.

No slip boundary conditions were imposed on the vessel wall and zero normal stress (Neumann

homogeneous) was fixed on the outflow boundary. To obtain system 12 and for its numerical solution

we adopted the same choices as in the previous example, except that P1-P1 finite elements were used

instead. We remark that the system was stabilized using GLS.

blue First, we analyzed the case when the same degrees of freedom were used both to generate

ud and for the DA procedure. Subsequently, the ground truth solution was generated using a finer

mesh. The second scenario was considered in order to avoid the so called inverse crime problem.

This is the case when the same model and discretization are used both to generate the synthetic data

- from where the observations are chosen - and to solve the control (inverse) problem. Indeed, some

particular inverse crime problems can have a trivial solution ([63]). Although this is not necessarily

the case for fluid control problems (see, for instance, [46] and [47] for some simple examples with

non-trivial solution), we still distinguish between both scenarios. Thus, we can change the observed

data either by generating it using a different (finer) mesh, adding noise to it, or both, as we have

done it this study.
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Figure 8. Ground truth geometry (left); Working geometry Ω (right).

Figure 9. Streamlines representation of the ground truth solution ud.

3.2.1. DA problem - the “inverse crime” situation. The first result concerns the case where ud is

generated using 213K degrees of freedom. The streamlines of the ground truth solution can be seen

in Figure 9. The helical structures downstream the first steep curvature are evident.

We consider Ω to be the subdomain starting in section inlet 2, which is identified in Figure 8, on

the right. We identify this section with Γin in problem (1)-(2). We set the goal of finding a velocity
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boundary condition to use at this section in such a way that the corresponding solution matches ud.

Additionally, we assume to have exact measurements of the velocity on Ωpart = S1 ∪ S2 ∪ S3 ∪ S4

where S1 S2, S3 and S4 are the sections represented in Figure 8. The later assumption, concerning

the exactness of the measurements, will be relaxed in the next study case.

Concerning the choice of the weights for the cost function here we fixed (β1, β2) = (105, 10−3).

This choice will be justified in section 3.2.3, where the presence of noise on the observations will

be considered.

To obtain the finite dimensional problem (13)-(14) we used the same type of FEM and the

same mesh; or, to be more precise, its part corresponding only to Ω. As mentioned in beginning

of section 3.2, both the fact that we assume to know exactly the velocity at Ωpart and that we use the

same mesh, put ourselves in the so called inverse crime scenario, but, in the frame of fluid control,

such scenario is not necessarily trivial. Hence, before dropping this assumptions, we ascertain that

the DA approach can work - at least - in this case. The control problem was solved using Algorithm 1

with an optimality tolerance of 10−5. The simulation run for 1h15m on a Intel Xeon E5504 2.00

GHz using 4 cores. Looking to the first row of Table V, we can see the relative error of the controlled

solution u, with respect to the ground truth solution ud, evaluated at different parts of the domain.

The relative error on Γin gives us a measure of how the control vector differs from the ground

truth solution at the artificial boundary. As we can confirm with the velocity profiles represented in

Figure 10 (b) and (a), respectively, they do not exactly match at Γin. Nevertheless, the relative errors

REΩ and REΩpart show a very good accuracy in the working domain, and almost a perfect match

at Ωpart.

To emphasize the gain achieved by the DA approach, we computed an alternative solution, uQ,

based on the assumption that we can measure, instead of the velocity profile on Ωpart, the exact

flow rate. This rate was then used to define a laminar normal profile at Γin (Figure 10 (c)). The

corresponding solution was done obtained similarly to ud. On the second row of Table V we present

the relative errors of this alternative solution with respect to the true solution ud. It can be found

that the DA approach - resulting in u - is prone for an error reduction, in the whole domain, from
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(a) Ground truth ud. (b) Controlled u. (c) Idealized uQ.

Figure 10. Velocity vectors on Γin inlet 2.

22% to less than 2%, when compared to the idealized solution uQ. In Figure 11 a representation

of the velocity magnitudes for the true solution ud, the controlled solution u and the idealized uQ

is depicted along three sections. The similarities between u and ud are clear. In Figure 12 we can

see the representation of the relative error, for the WSS magnitude, of both u (right) and uQ (left)

with respect to the ground truth solution ud. While for the solution uQ, based on the idealized

laminar profile, the relative error is frequently above 40% and sometimes above 60%, the relative

error associated to the controlled solution only reaches 10% close to the inlet, where the mesh

was chosen deliberately coarse. This indicates an important potential gain of the DA approach in

reducing the error associated to WSS in silico measurements.

Table V. Relative errors and final value for cost functional (J) for (P1) in the realistic domain.

Solution REΩ REΓin REΩpart Cost

u 0.019522 0.176382 0.002823 0.001037

uQ 0.225058 0.40286 0.25353 0.04693

3.2.2. Generating Data with a finer mesh. The results that we present next correspond to the case

where the ground truth solution ud is not generated on the same mesh used for the DA approach

(the control problem). Specifically, the later is conducted using the same mesh, as in the previous

example, while the former is obtained using 412K degrees of freedom. In this way, we dropped one

of the two assumptions placing us in the inverse crime scenario.
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(a) S0: ud (b) S2: ud (c) S3: ud

(d) S0: u (e) S2: u (f) S3: u

(g) S0: uQ (h) S2: uQ (i) S3: uQ

Figure 11. Velocity magnitude (m/s) for the ground truth ud, the controlled solution u and the idealized uQ

represented in several sections.

We remark that the relative error of the ground truth solution from the previous example (213K),

with respect to the new ud computed in this way (412K), is approximately 14%, even if the same

exact boundary conditions are used. As a consequence, to obtain a better match inside the domain,

one must expect that the boundary conditions will not exactly coincide. Once more we assume to

know the velocity at Ωpart = S1 ∪ S2 ∪ S3 ∪ S4 but, this time, in the form of a linear interpolation

of the ground truth data. In the first row of Table VII we can see the relative errors and final cost

functional resulting from the DA approach in this scenario which we refer to as (P3). We see that,

even if the control doesn’t match the data at the artificial boundary Γin, but allows a 50% reduction
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Figure 12. WSS (N/m2): relative error with respect to ud. On the left, uQ. On the right, u.

in REOmega when compared with the error measured for uQ. Also, the relative error on Ωpart is

around 6%, one quarter of the error associated to uQ. In fact, since the solutions obtained for the two

meshes do not coincide (even if imposing the same boundary conditions), minimizing (2) forces the

control to differ from the data on the inlet, in order to accomplish an improved matching on Ωpart.

Looking at the first two rows of Figure 13, we can see that the controlled solution u is accurate on

the sections that belong to Ωpart (i.e., S2 and S3), while it distinguishes from ud in S0, the section

close to the artificial inlet. This finding is consistent with the previous comments.

blueTo check the robustness of the approach with respect to increasing Reynolds numbers, we

repeated the simulations the scenario just described, using different Reynolds numbers. In Table VI

the results are shown. The relative errors on the observations remain of the same order. We remark

that these results can not be directly compared with the results from the previous 2D example, as the

SNOPT library automatically adjusts for the different characteristics of the underlying optimization

problem.

3.2.3. Adding noise to the observations. In real life examples, data measurements frequently

include a certain error in the form of noise, due to the lack of accuracy of observation devices.

As it has been emphasized in [37] and [40], the DA variational approach has an important role in

noise reduction. To mimic this scenario, we now consider the case where the data available at Ωpart
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Table VI. Relative errors, number of SNOPT iterations for different Reynolds numbers.

Reynolds REΩ REΓin REΩpart Iterations

367 0.106451 0.500379 0.067542 372

500 0.104979 0.492143 0.067777 364

1000 0.104229 0.481692 0.068134 363

2000 0.105774 0.495097 0.067668 370

is perturbed with noise. To represent such noise, we randomly generated a sample from a normal

distribution with zero mean and standard deviation given by σ̄ = 0.2U0

3 , where U0 = 0.419507m/s

is the maximum velocity of ud at the inlet boundary. We then computed u as above. As we can see

on the second row of Table VII, the presence of noise is overcome, and an accurate solution, similar

to the one obtained in the case without noise, is obtained at Ωpart. This can be confirmed from

the pictures represented on the first to third rows of Figure 13. These results are in agreement with

the conclusions of [37] and [40]. Additionally, it can be also be seen (5th row) how the idealized

solution uQ differs more from the data, when compared to the controlled solutions.

blueWith regards with the choice of the parameters β1 and β2, we proceeded similarly to the

previous example but, instead of a reference relative error, we used a reference noise L2 norm

corresponding to a magnitude of order δ ≈ 10−4. We tested a sample of parameters. Among

several possibilities verifying ‖uβ1,β2
− ud‖L2(Ωpart) ≈ 10−4, both choices (β1, β2)1 = (0.7144×

105, 10−3) and (β1, β2)2 = (105, 10−3) resulted in similar relative errors, of REΩpart = 0.0646 and

REΩpart
= 0.0675, respectively. The first option was considered because it allowed a normalization

of the first term in the cost function. However, it was the second choice that allowed to computational

solve all the test cases here shown, using exactly the same solver configurations. Therefore, for the

realistic example, we fixed (β1, β2) = (105, 10−3).

3.2.4. Reducing the observed set. Finally, in order to understand the role of the sections chosen to

integrate Ωpart, we consider the case where Ωpart = S3, that is, we assume to have measurements

only at the section located immediately downstream the aneurysm. In fact, as mentioned in
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Section 1, velocity measurements inside the lumen are not trivially obtained, so it is actually more

realistic to assume that we have fewer observations available. We refer to this case as (P4). On the

third row of Table VII we can verify that the overall error increases from 10.6% (4 sections) to 15.5%

(1 section), while the error in Ωpart = S3 slightly decreases. The final value of the cost functional

is smaller than for (P3), which is natural, since it consists of just a part of the cost in (P3). On the

fourth row of Figure 13, we can realize that, whilst the controlled solution remains accurate at S3,

it becomes more distinct from ud when looking further upstream, at S2 and S0. These findings

agree with the intuitive idea that extended measurements along the domain improve the overall

accuracy of the controlled solution. A mathematical result to ensure these principle should rely on

the observability and controllability concepts and should be treated more carefully, in a future work.

Table VII. Relative errors of the controlled solutions obtained by solving (P3) with and without noise, (P4)

and for comparison purposes, of uQ.

Problem REΩ REΓin REΩpart Cost

(P3) 0.106451 0.500379 0.067542 0.004842

(P3) + noise 0.110565 0.526449 0.067358 0.037602

(P4) 0.15527 0.44471 0.05703 0.00149

uQ 0.225058 0.40286 0.25353 0.04693

4. CONCLUSIONS

In this work we have suggested a velocity control approach, as a Data Assimilation (DA) technique

in the frame of blood flow simulations. We have shown that the nonlinear control problem,

inherent to this approach, is mathematically sound at the continuous level. A discretize then

optimize procedure, followed by the application of a large scale sequential quadratic programming

implementation, resumes the methodology.

By applying the approach to a suitable idealized example, we have identified the potential

advantages with respect to a pressure control strategy. This is not a general conclusion, but it is valid
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(a) S0: imported ud (b) S2: imported ud (c) S3: imported ud

(d) S0: P3 (e) S2: P3 (f) S3: P3

(g) S0: Noisy P3 (h) S2: Noisy P3 (i) S3: Noisy P3

(j) S0: P4 (k) S2: P4 (l) S3: P4

(m) S0: uQ (n) S2: uQ (o) S3: uQ

Figure 13. No crime scenario. Velocity magnitude (m/s) in several sections.Copyright c© John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. ()
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in some cases, when the ground truth pressure profiles are not parallel to domain cross sections. The

next step consisted in analyzing a realistic situation where the computational domain was obtained

from medical images of a brain aneurysm. Due to the lack of real velocity measurements, in silico

profiles were generated to supply the required data. The results are promising even when high extra

noise is added to the data: the error relative to the ground true solution is significantly reduced, when

compared to a solution obtained from a laminar idealized profile.

At the present stage, the major drawback concerns the computational cost. In fact, a reliable

WSS estimate requires 5 to 10 times more degrees of freedom. Also, as it was mentioned

before, a definitive approach should allow the coupling with extra models describing fluid

structure interaction and certain pathologies, such as clot formation or plaque growth. Finally, a

straightforward application of this methodology to a time dependent simulation would have this

computational cost associated to each time step iteration. Therefore, even if for the first time, DA

techniques were validated as a means to recover fully general velocity profiles, further improvements

must consider the inclusion of order reduction techniques, such as the ones suggested in [29].

Nevertheless, the authors believe that the results here are the necessary sound basis for such future

improvements.
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