11,580 research outputs found

    Stabilization of multidimensional behaviors

    Get PDF
    We consider three types of stabilizability defined for discrete nD systems within the behavioral framework, namely: trajectory stabilizability, set-controllability to a stable behavior and stabilizability by interconnection. As a first step, we introduce and fully characterize the underlying stability notion. Then, we formalize the definitions of these properties and investigate what is the relationship among them

    Periodic behaviors

    Get PDF
    This paper studies behaviors that are defined on a torus, or equivalently, behaviors defined in spaces of periodic functions, and establishes their basic properties analogous to classical results of Malgrange, Palamodov, Oberst et al. for behaviors on R^n. These properties - in particular the Nullstellensatz describing the Willems closure - are closely related to integral and rational points on affine algebraic varieties.Comment: 13 page

    Too Many Teens: Preventing Unnecessary Out-Of-Home Placements

    Get PDF
    The child welfare system was created to care for abused and neglected children. But too often, teenagers are landing in the system because they simply aren't getting along with their parents. This paper traces Casey's efforts to learn from communities that are preventing teens from landing in the system by helping families while the teen remains at home. A survey of the states, interviews with experts, secondary research and visits to several communities show common elements of successful programs.The paper presents information on related laws and policies, funding sources and programs for families while including the infrastructure and services needed to support such initiatives

    A Behavioral Approach to the Control of Discrete Linear Repetitive Processes

    No full text
    This paper formulates the theory of linear discrete time repetitive processes in the setting of behavioral systems theory. A behavioral, latent variable model for repetitive processes is developed and for the physically defined inputs and outputs as manifest variables, a kernel representation of their behavior is determined. Conditions for external stability and controllability of the behavior are then obtained. A sufficient condition for stabilizability is also developed for the behavior and it is shown under a mild restriction that, whenever the repetitive system is stabilizable, a regular constant output feedback stabilizing controller exists. Next a notion of eigenvalues is defined for the repetitive process under an action of a closed loop controller. It is then shown how under controllability of the original repetitive process, an arbitrary assignment of eigenvalues for the closed loop response can be achieved by a constant gain output feedback controller under the above restriction. These results on the existence of constant gain output feedback controllers are among the most striking properties enjoyed by repetitive systems, discovered in this paper. Results of this paper utilize the behavioral model of the repetitive process which is an analogue of the 1D equivalent model of the dynamics studied in earlier work on repetitive processes

    Use of harm reduction strategies in an occupational therapy life skills intervention

    Full text link
    Thesis (M.S.)--Boston UniversityObjectives of Study: Harm reduction intervention strategies have the potential to support positive health outcomes. However, no studies have explored how these strategies can be implemented in an occupational therapy intervention. This study addresses this knowledge gap by examining harm reduction strategies that were discussed during group and individual sessions of an occupational therapist-led life skills intervention for people who have a mental illness and are or were homeless. Methods: This study is a secondary analysis of a larger study that used a longitudinal repeated measures design to implement a life skills intervention. This secondary analysis uses a mixed methods design. Qualitative methods were used for data collection and initial analysis. Quantitative methods were then used to analyze differences between settings. Results: Three major themes emerged from the data: Financial, Physical, and Psychosocial Hann Reduction. The most prevalent theme was Financial Harm Reduction. All three themes were present throughout all of the different life skills intervention modules. There was no significant difference in the themes used between settings. Limitations and Recommendations for Further Research: This study was limited to what was documented in the therapy notes. Although the notes may not include every discussion that occurred, these results suggest that harm-reduction strategies can be utilized in an occupational therapy intervention. Additional research is needed to investigate how harm reduction can be implemented in other areas of occupational therapy practice

    The MHD Kelvin-Helmholtz Instability II: The Roles of Weak and Oblique Fields in Planar Flows

    Get PDF
    We have carried out high resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 2 1/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. The calculations consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully 3D calculations and to address two specific questions raised in earlier work: 1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 2 1/2 D. 2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field. The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially 2D. Even a very weak field can significantly enhance the rate of energy dissipation. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that thisComment: 23 pages of ApJ Latex (aaspp4.sty) with 10 figures, high resolution postscript images for figs 4-9 available through anonymous at ftp://ftp.msi.umn.edu/pub/twj To appear in the June 10, 1997 Ap

    Causal and Stable Input/Output Structures on Multidimensional Behaviours

    No full text
    In this work we study multidimensional (nD) linear differential behaviours with a distinguished independent variable called "time". We define in a natural way causality and stability on input/output structures with respect to this distinguished direction. We make an extension of some results in the theory of partial differential equations, demonstrating that causality is equivalent to a property of the transfer matrix which is essentially hyperbolicity of the Pc operator defining the behaviour (Bc)0,y We also quote results which in effect characterise time autonomy for the general systems case. Stability is likewise characterized by a property of the transfer matrix. We prove this result for the 2D case and for the case of a single equation; for the general case it requires solution of an open problem concerning the geometry of a particular set in Cn. In order to characterize input/output stability we also develop new results on inclusions of kernels, freeness of variables, and closure with respect to S,S' and associated spaces, which are of independent interest. We also discuss stability of autonomous behaviours, which we beleive to be governed by a corresponding condition

    Stability Properties of 1-Dimensional Hamiltonian Lattices with Non-analytic Potentials

    Full text link
    We investigate the local and global dynamics of two 1-Dimensional (1D) Hamiltonian lattices whose inter-particle forces are derived from non-analytic potentials. In particular, we study the dynamics of a model governed by a "graphene-type" force law and one inspired by Hollomon's law describing "work-hardening" effects in certain elastic materials. Our main aim is to show that, although similarities with the analytic case exist, some of the local and global stability properties of non-analytic potentials are very different than those encountered in systems with polynomial interactions, as in the case of 1D Fermi-Pasta-Ulam-Tsingou (FPUT) lattices. Our approach is to study the motion in the neighborhood of simple periodic orbits representing continuations of normal modes of the corresponding linear system, as the number of particles NN and the total energy EE are increased. We find that the graphene-type model is remarkably stable up to escape energy levels where breakdown is expected, while the Hollomon lattice never breaks, yet is unstable at low energies and only attains stability at energies where the harmonic force becomes dominant. We suggest that, since our results hold for large NN, it would be interesting to study analogous phenomena in the continuum limit where 1D lattices become strings.Comment: Accepted for publication in the International Journal of Bifurcation and Chao
    corecore