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PERIODIC BEHAVIORS∗

DIEGO NAPP† , MARIUS VAN DER PUT‡ , AND SHIVA SHANKAR§

Dedicated to Jan C. Willems on the occasion of his 70th birthday

Abstract. This paper studies behaviors that are defined on a torus, or equivalently, behaviors
defined in spaces of periodic functions, and establishes their basic properties analogous to classical
results of Malgrange, Palamodov, Oberst et al. for behaviors on Rn. These properties—in particular
the Nullstellensatz describing the Willems closure—are closely related to integral and rational points
on affine algebraic varieties.
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Introduction. In classical control theory the structure of a linear lumped dy-
namical system, considered as an input-output system, is determined by its frequency
response, i.e., its response to periodic inputs. This idea is the foundation of the subject
of frequency domain analysis and the work of Bode, Nyquist, and others, and it is also
the idea underpinning the theory of transfer functions, including its generalization to
multidimensional systems [5, 7, 11, 15].

The more recent behavioral theory of Willems challenges the notion of an open
dynamical system as an input-output system [13]. Instead, a system is considered
to be the collection of all signals that can occur and which are therefore the signals
that obey the laws of the system. This collection of signals, called the behavior of the
system, is the system itself and is analogous to Poincaré’s notion of the phase portrait
of a vector field. Notions of causality and the related input-output structure are not
part of the primary description but are secondary structures to be imposed only if
necessary. The behavioral theory can be seen as a generalization of the Kalman state
space theory, and the ideas of state space theory, as well as those of frequency domain,
can be carried over to the more general situation of behaviors. It is the purpose of
this paper to initiate the study of frequency domain ideas in the theory of distributed
behaviors.

A second motivation for this paper is the following. The theory of behaviors
has so far been developed for signal spaces that live on the “base space” Rn, or on
its convex subsets. The commuting global vector fields ∂1, . . . , ∂n generate the alge-
bra C[∂1, . . . , ∂n] of differential operators with constant coefficients, and distributed
behaviors are defined by equations whose terms are from this algebra. This paper
considers the case where the base space Rn is replaced by a torus Rn/Λ, with Λ a
lattice. Functions on the torus can be identified with Λ-invariant functions on Rn; in
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other words, functions which are periodic with respect to Λ. The torus is an example
of a parallelizable manifold; other manifolds of this type, such as the 3-sphere S3,
would be of interest for behavior theory. Another possibly interesting base space for
behavior theory is Pn(R), the real n-dimensional (nD) projective space. The vector
space of global vector fields on this projective space is isomorphic to the Lie algebra
sln+1, and its enveloping algebra acts as a ring of differential operators on the space
of smooth functions on Pn(R).

In this paper we consider the real torus T := Rn/2πZn. Now C∞(T), the space of
smooth functions on the torus T, is identified with the space of smooth functions on
Rn having the lattice 2πZn as its group of periods. C∞(T) is a Fréchet space under
the topology of uniform convergence of functions and all their derivatives. On it acts
the ring of constant coefficient partial differential operators D := C[∂1, . . . , ∂n], which
makes C∞(T) a topological D-module. The aim of this paper is to develop the basic
properties of system theory in this situation. It turns out that behaviors contained
in C∞(T)q are related to integral points on algebraic varieties in An. A comparison
with the fundamental paper [3] is rather useful.

Functions which are periodic with respect to the lattice 2πZn remain periodic with
respect to lattices which are integral multiples of this lattice. Thus, one can relax
the condition of periodicity with respect to 2πZn by considering smooth functions
on Rn which are periodic with respect to a lattice N2πZn for some integer N ≥ 1,
depending on the function. This space of periodic functions, denoted by C∞(PT), can
be naturally identified with a dense subspace of the space of continuous functions on
the inverse limit PT := lim←Rn/N2πZn, which we call a protorus. Further, C∞(PT) is
the strict direct limit of the Fréchet spaces C∞(Rn/N2πZn); it is therefore a barrelled
and bornological topological vector space, and it is also a topological D-module.

In the situation of this protorus PT, behaviors are related to rational points of
algebraic varieties in An. We consider various choices of signal spaces and their injec-
tivity (or their injective envelopes) as D-modules, and we make explicit computations
of the associated Willems closure for submodules of Dq. For the one-dimensional (1D)
case the results are elementary. For the more important nD case (with n > 1) the
Willems closure is explicitly given for various choices of signal spaces. This involves
knowledge of the existence of (many) rational points or integral points on algebraic
varieties over Q or Z. This connection between periodic behaviors and arithmetic
algebraic geometry (diophantine problems) is rather surprising.

1. Behaviors and the Willems closure. As in the introduction, let D =
C[∂1, . . . , ∂n]. Let Dj = 1

ı ∂j , j = 1, . . . , n, so that also D = C[D1, . . . , Dn]. We
consider a faithful D-module F , i.e., a module having the property that if r ∈ D and
rF = 0, then r = 0. This module is now taken as the signal space. We recall the
usual setup for behaviors.

Let e1, . . . , eq be the standard basis of Dq. Associate to a submodule M ⊂
Dq its behavior M⊥ ⊂ Fq consisting of all elements (f1, . . . , fq) ∈ Fq satisfying∑

rj(fj) = 0 for all
∑

rjej ∈ M. In other words, M⊥ is the image of the map
HomD(Dq/M,F) → Fq, given by � �→ (�(ē1), . . . , �(ēq)), where ēj is the class of ej
in Dq/M. The above defines the set of behaviors B ⊂ Fq. For a behavior B, define
B⊥ := {r =∑ rjej ∈ Dq| ∑ rj(fj) = 0 for all (f1, . . . , fq) ∈ B}.

For any behavior B it follows that B⊥⊥ = B. The Willems closure of a submodule
M ⊂ Dq with respect to F is, by definition, M⊥⊥ ⊂ Dq [9]. Clearly M ⊂ M⊥⊥. It
is well known that M⊥⊥ = M holds if the signal space F is an injective cogenerator.
For more general signal spaces one has the following.
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Lemma 1.1. M⊥⊥/M = {ξ ∈ Dq/M | �(ξ) = 0 for all � ∈ HomD(Dq/M,F)}.
Moreover, M⊥⊥/M is a submodule of the torsion module (Dq/M)tor of Dq/M
(where (Dq/M)tor := {η ∈ Dq/M |∃r ∈ D, r �= 0, rη = 0}).

Proof. By the above definition, η =
∑

ηjej ∈ M⊥⊥ if and only if
∑

ηj�(ēj) = 0
for every � in HomD(Dq/M,F). The latter is equivalent to �(

∑
ηj ēj) = 0 for all

� ∈ HomD(Dq/M,F).
Define the torsion-free module Q by the exact sequence

0 → (Dq/M)tor → Dq/M → Q → 0.

To show that M⊥⊥/M ⊂ (Dq/M)tor amounts to showing that for every nonzero
element ξ ∈ Q there exists a homomorphism � : Q → F with �(ξ) �= 0. As Q is
torsion free, it is a submodule of Dr for some r, and it therefore suffices to verify the
above property for D itself. This amounts to showing that for every r ∈ D, r �= 0,
there exists an element f ∈ F with r(f) �= 0. But this is just the assumption that
F is a faithful D-module.

Corollary 1.1. Suppose either that the signal space F is injective or that the
exact sequence 0 → (Dq/M)tor → Dq/M → Q → 0 splits. Then M⊥⊥/M consists
of the elements ξ ∈ (Dq/M)tor such that �(ξ) = 0 for every � ∈ HomD((Dq/M)tor,F).

Proof. In either of the two cases, every homomorphism � : (Dq/M)tor → F
extends to an element of HomD(Dq/M,F).

Corollary 1.2. Consider two signal spaces F0 ⊂ F . Assume that for every
a ∈ F , a �= 0, there exists a homomorphism m : F → F0 such that m(a) �= 0. Then
the Willems closure of M with respect to F0 equals that with respect to F .

Proof. Consider ξ ∈ Dq/M. If there exists a homomorphism � : Dq/M → F with
�(ξ) �= 0, then, by assumption, there exists a homomorphism �̃ : Dq/M → F0 with
�̃(ξ) �= 0. Since the converse of this statement is obvious, the two Willems closures
of M coincide.

See also [14] for related results.

2. Periodic functions and the protorus. We consider, as in the introduction,
the torus T := Rn/2πZn. An element f : T → C of C∞(T) is represented by its
Fourier series: f(x) =

∑
a∈Zn cae

ı〈a,x〉, where a = (a1, . . . , an), x = (x1, . . . , xn),
and 〈a, x〉 =

∑
ajxj . Further, the coefficients ca ∈ C are required to satisfy the

property that for every integer k ≥ 1 there exists a constant Ck > 0 such that
|ca| ≤ Ck

(1+
∑n

j=1 |aj |)k for all a. (We note that the space of distributions on T has a

similar description, however, with different requirements on the absolute values |ca|.)
The vector space C∞(T) = C∞(Rn/2πZn) has the natural structure of a Fréchet

space; moreover, it is a topological D-module. For positive integers N1 dividing N2,
the natural D-module morphism C∞(Rn/2πN1Zn) → C∞(Rn/2πN2Zn) identifies the
first linear topological space with a closed subspace of the second one. We define
C∞(PT) := lim→ C∞(Rn/2πNZn). This is a strict direct limit of Fréchet spaces and
is a locally convex bornological and barrelled topological vector space. The elements
of D act continuously on it so that C∞(PT) is also a topological D-module. An
element f in it is represented by the series f(x) =

∑
a∈Qn cae

ı〈a,x〉, where the support

of f , i.e., {a ∈ Qn| ca �= 0}, is a subset of 1
NZn for some integerN ≥ 1, depending on f .

Further, there is the same requirement of rapid decrease on the absolute values |ca|
as above.

As in the introduction, call the inverse limit PT := lim← Rn/2πNZn a pro-
torus. PT is a compact topological group. The map PT → Rn/2πNZn embeds
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C∞(Rn/2πNZn) in the space C(PT) of continuous functions on the protorus (which is
a Banach space with respect to the sup norm) for every N . Upon taking the inverse
limit of the exact sequences

0 → 2πZn/2πNZn → Rn/2πNZn → Rn/2πZn → 0

for each N , we get the exact sequence

0 → Ẑn → PT → Rn/2πZn → 0,

where the group lim← 2πZn/2πNZn equals Ẑn, with Ẑ being the well-known profinite

completion lim← Z/NZ. Ẑn sits inside the protorus PT as a compact subgroup and

is totally disconnected. This implies that any continuous map Ẑn → C(PT) is the
uniform limit of locally constant maps.

For f ∈ C(PT) and z ∈ Ẑn, define the function fz by fz(t) = f(z + t). The
map z �→ fz is continuous and therefore a uniform limit of locally constant maps.
Thus f is the uniform limit of functions fi in C(PT), where z �→ (fi)z is locally

constant. This implies that each fi is invariant under the shift NẐn for some integer
N ≥ 1, depending on i; in other words fi is an element of C(Rn/2πNZn), the space
of continuous complex valued functions on Rn/2πNZn. As C∞(Rn/2πNZn) is dense
in C(Rn/2πNZn), it follows that C∞(PT) is a dense subspace of C(PT).

As the partial sums of a Fourier series expansion converge uniformly, it follows
that for L(D) in D,

L(D)

( ∑
a∈Qn

cae
ı〈a,x〉

)
=
∑
a∈Qn

caL(a)e
ı〈a,x〉.

The basic observation, leading to the computation of the Willems closure, is that L(D)
is injective on C∞(PT) if and only if the polynomial equation L(a) = L(a1, . . . , an) = 0
has no solutions in Qn. (We note, in passing, that the condition L(a1, . . . , an) �= 0 for
(a1, . . . , an) ∈ Qn does not imply that L(D) is surjective; see Theorem 2.1.)

Another observation is that C∞(PT) is not an injective D-module—not even a
divisible module. Indeed, the image of the morphismD1 : C∞(PT) → C∞(PT) consists
of those elements f whose support is contained in {(a1, . . . , an) ∈ Qn| a1 �= 0}. The
kernel of D1 is the subspace of C∞(PT) consisting of those elements f whose support
lies in {(a1, . . . , an) ∈ Qn| a1 = 0}. The cokernel of the morphism D1 is represented
by this same subspace of C∞(PT); the morphism D1 is therefore not surjective.

We also consider the subalgebra C∞(PT)[x1, . . . , xn] of C∞(Rn) obtained by ad-
joining the elements x1, . . . , xn (that is, the coordinate functions) to C∞(PT), and
similarly C∞(T)[x1, . . . , xn], etc. Yet another observation is the following.

Lemma 2.1. C∞(PT)[x1, . . . , xn] =
⊕

a∈Nn C∞(PT)xa1
1 . . . xan

n , where a =
(a1, . . . , an), and similarly C∞(T)[x1, . . . , xn] =

⊕
a∈Nn C∞(T)xa1

1 . . . xan
n .

Proof. Clearly C∞(PT)[x1, . . . , xn] =
∑

a∈Nn C∞(PT)xa1
1 . . . xan

n , so it remains to
show that the sum is direct.

We first observe that C∞(PT)[x1] =
⊕

a∈N C∞(PT)xa
1 ; if not, there would be a

relation
∑

a∈N fax
a
1 = 0, with finitely many of the fa nonzero. Suppose f0 is nonzero;

then the above relation implies that f0 = −∑a>0 fax
a
1 . This is a contradiction

because f0 is in C∞(PT), while the sum on the right-hand side is not. Thus f0 = 0.
This implies that the relation above is of the form x1(

∑
a>0 fax

a−1
1 ) = 0. As the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4656 DIEGO NAPP, MARIUS VAN DER PUT, AND SHIVA SHANKAR

function x1 is zero only on a set of measure 0, it follows that
∑

a>0 fax
a−1
1 = 0,

leading to a contradiction as above.
Suppose now by induction that C∞(PT)[x1, . . . , xn−1] =

⊕
a∈Nn−1 C∞(PT)xa1

1 . . .
x
an−1

n−1 , and suppose that C∞(PT)[x1, . . . , xn−1, xn] = C∞(PT)[x1, . . . , xn−1][xn] is not
a direct sum. Then there is a relation

∑
a∈N fax

a
n = 0, with finitely many of the fa (in

C∞(PT)[x1, . . . , xn−1]) nonzero. This again leads to a contradiction as above. Thus
C∞[x1, . . . , xn] =

⊕
a∈N C∞(PT)[x1, . . . , xn−1]xa

n =
⊕

a∈Nn C∞(PT)xa1
1 . . . xan

n .
This lemma allows us to write an element in C∞(PT)[x1, . . . , xn] uniquely as a

polynomial in the xi’s with coefficients in C∞(PT).
Define C∞(PT)fin to be the D-submodule of C∞(PT) consisting of those elements f

with finite support, i.e., those elements whose Fourier series expansion is a finite
sum. Just as above, C∞(PT)fin is not an injective D-module. However, the following
proposition gives an explicit expression for its injective envelope.

Proposition 2.1. The D-module C∞(PT)fin[x1, . . . , xn] is an injective envelope
of C∞(PT)fin. Similarly, C∞(T)fin[x1, . . . , xn] is an injective envelope of C∞(T)fin.

Proof. The Fundamental Principle of Malgrange and Palamodov states that
C∞(Rn) is an injective D-module. It is also a cogenerator (see Oberst [3]). It
follows that its submodule MIN := C[{eı〈a,x〉}a∈Cn , x1, . . . , xn] is the direct sum of
the injective envelopes E(D/m) of the modules D/m, where m varies over the set
{(D1 − a1, . . . , Dn − an), a = (a1, . . . , an) ∈ Cn} of maximal ideals of D. Thus this
module is again injective and in fact is a minimal injective cogenerator over D, unique
up to isomorphism (see [4] for more details). The elements of MIN are finite sums∑

a∈Cn pa(x)e
ı〈a,x〉, where the pa(x) are polynomials in x1, . . . , xn. Define the map

π : MIN → C∞(PT)fin[x1, . . . , xn] by

π

( ∑
a∈Cn

pa(x)e
ı〈a,x〉

)
=
∑
a∈Qn

pa(x)e
ı〈a,x〉.

Clearly π is a C-linear projection; it also commutes with the operators Dj ,
j = 1, . . . , n. Thus π is a morphism of D-modules which splits the inclusion i :
C∞(PT)fin[x1, . . . , xn] → MIN. It follows that C∞(PT)fin[x1, . . . , xn] is a direct sum-
mand of MIN, and hence an injective D-module. Moreover, the extension of mod-
ules C∞(PT)fin ⊂ C∞(PT)fin[x1, . . . , xn] is essential. Indeed, consider a term f =
xm1
1 · · ·xmn

n eı〈a,x〉 with a ∈ Qn. As (Dj − aj)(xje
ı〈a,x〉) = 1

ı e
ı〈a,x〉, it follows that

(D1 − a1)
m1 · · · (Dn − an)

mn(f) = ceı〈a,x〉 for some nonzero constant c. Thus we
conclude that C∞(PT)fin[x1, . . . , xn] is an injective envelope of C∞(PT)fin.

Observations 2.1. (1) C∞(PT) ⊂ C∞(PT)[x1, . . . , xn] is not an essential exten-
sion. Indeed, consider f = x1

∑
a∈Zn cae

ı〈a,x〉 in C∞(PT)[x1, . . . , xn] with ca ∈ C and

all ca �= 0. For any L(D) ∈ D, L(D)f = x1

∑
caL(a1, . . . , an)e

ı〈a,x〉 + (an element of
C∞(PT)). Thus L(D)f ∈ C∞(PT) implies L = 0 (no nonzero polynomial can vanish
at every integral point).

(2) The polynomials in x1, . . . , xn have no interpretation as functions on the
protorus PT, but are functions on the space Rn, which can be seen as the universal
covering of the protorus.

Lemma 2.2. Let n = 1. Then C∞(T)[x] is an injective D = C[D]-module, where
D = 1

ı
d
dx . Thus for a /∈ Z, the map D − a is bijective on C∞(T)[x]. For a ∈ Z the

kernel of D − a on C∞(T)[x] is Ceıax.
There is exactly one injective envelope of C∞(T) in C∞(T)[x], and it consists of

the elements
∑

j≥0 fjx
j such that fj has finite support for j ≥ 1.
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Similar statements hold for C∞(PT) replacing C∞(T) and Q replacing Z.
Proof. Since n = 1, injectivity is equivalent to divisibility. Thus it suffices to

show that (D − a) : C∞(T)[x] → C∞(T)[x] is surjective for every a ∈ C. But if

g =
∑k

j=1 gjx
j is an element of C∞(T)[x], where the gj are in C∞(T), then an f

such that (D − a)f = g is, by the “variation of constants” formula, given by f(x) =
eıax

∫ x

0 e−ıatg(t)dt, which is again in C∞(T)[x].
Now, the theory of Matlis [1], applied to the case of this injective module C∞(T)[x],

states that it admits a decomposition

C∞(T)[x] =
⊕
a∈Z

C[x]eıax
⊕

V ,

where the torsion module tor(C∞(T)[x]) of C∞(T)[x] equals
⊕

a∈ZC[x]e
ıax and where

the module V � C∞(T)[x]/tor(C∞(T)[x]) is injective and torsion free (see also [4]). In
general V is not unique, and one can speak only of an injective envelope of C∞(T)
in C∞(T)[x]; nonetheless it turns out for the case at hand that there is exactly one
injective envelope as described in the statement.

This follows from the fact that an injective envelope of Ceıax is C[x]eıax; thus
as Ceıax is contained in C∞(T), the above decomposition implies that any injective
envelope E of C∞(T) in C∞(T)[x] must satisfy⊕

a∈Z
C[x]eıax + C∞(T) ⊆ E =

⊕
a∈Z

C[x]eıax
⊕(

V
⋂

E
)
.

But if an element f =
∑k

j=0 fjx
j in C∞(T)[x] belongs to E , then 0 �= L(D)f ∈ C∞(T)

for some L(D) in D. Now suppose that k ≥ 1. Since L(D)f = (L(D)fk)x
k + (terms

of lower degree in x), it follows that L(D)fk = 0 and therefore that fk has finite
support {a1, . . . , as}. Then M(D) := (D − a1) · · · (D − as) satisfies M(D)fk = 0.
After replacing f by M(D)f , induction with respect to k implies that f1, . . . , fk all
have finite support. Thus⊕

a∈Z
C[x]eıax + C∞(T) ⊆ E ⊆

⊕
a∈Z

C[x]xeıax
⊕

C∞(T),

which implies equality throughout. This proves the second statement.
The corresponding statements for the protorus follow from the fact that C∞(PT)

is the union of its subspaces C∞(R/N2πZ), N ≥ 1.
Proposition 2.2. The spaces C∞(T)fin[x1, . . . , xn] ⊂ C∞(T)[x1, . . . , xn] define

the same Willems closure. The same statement holds for the inclusion of the two
signal spaces C∞(T)fin ⊂ C∞(T). These statements remain valid for PT replacing T.

Proof. For a b ∈ Zn, define the homomorphism

mb : C∞(T)[x1, . . . , xn] → C∞(T)fin[x1, . . . , xn]

by mb(
∑

a∈Zn pa(x)e
ı〈a,x〉) = pb(x)e

ı〈b,x〉. The first statement now follows from Corol-
lary 1.2. The other cases are similar.

Theorem 2.1. For n>1, the D-modules C∞(T)[x1, . . . , xn] and C∞(PT)[x1, . . . , xn]
are not divisible (and therefore not injective).

Proof. It suffices to show that C∞(T)[x1, x2] is not divisible. Towards this let �
be any Liouville number, and consider L = D1 + �D2 in D. Let g =

∑
a∈Z2 cae

ı〈a,x〉

be any element in C∞(T), so that for every integer k ≥ 1, there is a constant Ck such
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that |ca| ≤ Ck(1 + |a1|+ |a2|)−k holds for all a ∈ Z2. If C∞(T)[x1, x2] were divisible,
then L would define a surjective morphism on it, and so there would be an element
f =

∑
a∈Z2 pa(x)e

ı〈a,x〉 in it such that L(f) = g. Thus∑
a∈Z2

(D1pa(x) + �D2pa(x) + (a1 + �a2)pa(x))e
ı〈a,x〉 =

∑
a∈Z2

cae
ı〈a,x〉,

which implies by Lemma 2.1 that pa(x) is a constant for all a in Z2, and that
(a1 + �a2)pa = ca.

As � is Liouville, it is irrational, and hence a1+�a2 �= 0 for all a = (a1, a2) �= (0, 0).
It follows that the pa are equal to ca

a1+�a2
for a �= 0.

By assumption this solution belongs to C∞(T )[x1, x2] for every g in C∞(T) and
thus for every choice of the {ca} that are rapidly decreasing. It would then follow that
|a1 + �a2| ≥ c(1 + |a1| + |a2|)−N for some N ≥ 1, some c > 0, and all (a1, a2) ∈ Z2.
This is a contradiction, for since � is a Liouville number, there cannot be such a
bound.

3. Signal spaces for periodic 1D systems. In this section T = R/2πZ and
D = C[D] with D = 1

ı
d
dx . For various signal spaces F we compute the Willems

closure M⊥⊥ of a module M ⊂ Dq. Write (Dq/M)tor = ⊕D/(D − ai)
ni . By

Lemma 1.1, M⊥⊥/M ⊂ (Dq/M)tor, and using Corollary 1.1 and Lemma 2.1, we
have the following:

1. For F = C∞(T),

M⊥⊥/M = (⊕ai /∈ZD/(D − ai)
ni)⊕ (⊕ai∈Z (D − ai)D/(D − ai)

ni).

2. For F = C∞(T)[x], or for the injective envelope of C∞(T) in it,

M⊥⊥/M = ⊕ai /∈Z D/(D − ai)
ni ,

and M⊥⊥ consists of the elements r ∈ Dq such that Lr is in M for an L ∈ D
without zeros in Z.

3. For F = C∞(PT),

M⊥⊥/M = (⊕ai /∈Q D/(D − ai)
ni)⊕ (⊕ai∈Q (D − ai)D/(D − ai)

ni).

4. For F = C∞(PT)[x], or for the injective envelope of C∞(PT) in it,

M⊥⊥/M = ⊕ai /∈Q D/(D − ai)
ni ,

and M⊥⊥ consists of the elements r ∈ Dq such that Lr is in M for an L ∈ D
without zeros in Q.

Case 2 can be rephrased by stating that M = M⊥⊥ if and only if the support
of the module (Dq/M)tor lies in Z ⊂ A1 = C. The signal space F = C∞(T)[x] gives
rise to a rather restricted set of behaviors in Fq. Indeed, the modules M = M⊥⊥

corresponding to behaviors in Fq are of the form L · W ⊂ M ⊂ W , where W is a
direct summand of Dq and L ∈ D, and L �= 0 has all its zeros in Z.

Case 4 can be rephrased by stating that M = M⊥⊥ if and only if the support of
(Dq/M)tor lies in Q ⊂ A1 = C. This gives rise to a somewhat richer set of behaviors
in Fq.

4. Signal spaces for periodic nD systems. In this section T = Rn/2πZn and
n ≥ 2. For various choices of signal spaces, we investigate the set of behaviors and
the corresponding Willems closure.
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4.1. C∞(PT)[x1, . . . , xn] and C∞(PT)fin[x1, . . . , xn]. According to Propo-
sition 2.2 we may restrict ourselves in this subsection to the injective signal space
F = C∞(PT)fin[x1, . . . , xn]. We start with examples illustrating some of the features
of the Willems closure.

Example 4.1 (F = C∞(PT)fin[x1, x2], i = (D2
1, D1D2) ⊂ D = C[D1, D2]). For

L ∈ D and pλe
ı〈λ,x〉 ∈ F it follows that L(pλe

ı〈λ,x〉) = {L(D1+λ1, D2+λ2)(pλ)}eı〈λ,x〉.
Thus, to determine the behavior of the ideal i we have to consider the two equations

(D1 + λ1)
2pλ = 0, (D1 + λ1)(D2 + λ2)pλ = 0, where pλ ∈ C[x1, x2].

If λ1 �= 0, then the only solution is pλ = 0.

If λ1 = 0, λ2 ∈ Q, λ2 �= 0, then the solutions are p(0,λ2) ∈ C[x2].

If λ1 = λ2 = 0, then the solutions are p(0,0) = a0 + a1x1 with a0 ∈ C[x2] and
a1 ∈ C.

The behavior B = i⊥ is then B0 + B1, where B0 := C + Cx1 and B1 := {∑λ2∈Q
p(0,λ2)e

ıλ2x2 | all p(0,λ2) ∈ C[x2]}.
One easily sees that B⊥0 = (D2

1 , D2), (D
2
1 , D2)

⊥ = B0 and B⊥1 = (D1), (D1)
⊥ =

B1. Thus B0 and B1 are behaviors and correspond to the primary decomposition
i = (D2

1, D2)∩ (D1) of the ideal i. Note also that the behavior of the ideal (D2
1 , D2)+

(D1) = (D1, D2) is C, which is the intersection of the behaviors B0 and B1. (The
lattice structure of behaviors under the operations of sum and intersection is studied
in more detail for the classical spaces in [10].)

Example 4.2 (F = C∞(PT)fin[x1, x2]). Let p ⊂ D denote the prime ideal gener-
ated by the operator L(D1, D2) = (D2

1 −D2
2) + π(D1D2 − 1). The rational points of

the variety V(p) ⊂ A2 defined by the ideal p are {(1, 1), (−1,−1)}. The behavior B :=
p⊥ ⊂ F has the form B1 ·eı(x1+x2)⊕B−1 ·e−ı(x1+x2), where B1 and B−1 are the kernels
of the operators L1 := L(D1+1, D2+1) = D2

1−D2
2+πD1D2+(2+π)D1+(−2+π)D2

and L2 := L(D1 − 1, D2 − 1), respectively, acting on C[x1, x2].

Let C[x1, x2]≤n denote the vector space of the polynomials of total degree ≤ n.
Observe that the map L1 : C[x1, x2]≤n → C[x1, x2]≤n−1 is surjective. It follows that
B1 ∩ C[x1, x2]≤n has dimension n + 1. Thus B1 is an infinite dimensional subspace
of C[x1, x2], and the same holds for B−1. An explicit calculation showing B⊥ = p is
possible. However, the statement p⊥⊥ = p follows at once from Theorem 4.1.

Proposition 4.1. Let F = C∞(PT)fin[x1, . . . , xn], and let M be a submodule
of Dq. Then the Willems closure M⊥⊥ of M with respect to F consists of the
elements x in Dq for which the ideal {r ∈ D| rx ∈ M} is not contained in any
maximal ideal of the form (D1 − b1, . . . , Dn − bn) with (b1, . . . , bn) ∈ Qn. In other
words, M⊥⊥ is the largest submodule M+ of Dq containing M such that the support
S ⊂ An of M+/M satisfies S ∩Qn = ∅.

Proof. M⊥⊥/M consists of the elements ξ such that �(ξ) = 0 for all � ∈
HomD(Dq/M,F). Let i := {r ∈ D| rξ = 0}. Since F is injective, one has that
ξ ∈ M⊥⊥/M if and only if HomD(D/i,F) = 0.

If i lies in a maximal ideal m := (D1 − b1, . . . , Dn − bn) with (b1, . . . , bn) ∈ Qn,
then HomD(D/i,F) �= 0 because HomD(D/m,F) �= 0.

On the other hand, suppose that � ∈ HomD(D/i,F) is nonzero. Then �(1 + i) =∑
a∈Qn pa(x)e

ı〈a,x〉 has a nonzero term t := pb(x)e
ı〈b,x〉, and rt = 0 for all r ∈ i. If

b = (b1, . . . , bn), then (Dj−bj)t = (Djpb(x))e
ı〈b,x〉. Thus for suitable integers mj ≥ 0,

t0 := (D1 − b1)
m1 · · · (Dn − bn)

mn t = ceı〈b,x〉 with c ∈ C∗. Since i · t0 = 0, it follows
that i ⊂ (D1 − b1, . . . , Dn − bn).
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A second formulation of the structure of M⊥⊥ uses the notion of primary decom-
position of modules. Let p ⊂ D be a prime ideal. A submodule M of Dq is called
p-primary (with respect to Dq) if the set Ass(Dq/M) of associated primes of Dq/M
equals {p}. For a general submodule M ⊂ Dq, there exists an irredundant (where
no term can be omitted) primary decomposition M = M1 ∩ · · · ∩ Mt, where Mi

is pi-primary and {p1, . . . , pt} = Ass(Dq/M). For more details we refer to [2]. We
note that the following theorem is an analogue of the Nullstellensatz of [9]. See also
[6, 10, 8] on this topic.

Theorem 4.1 (Nullstellensatz). Let the submodule M ⊂ Dq have an irredundant
primary decomposition M = M1 ∩ · · · ∩ Mt, where Mi is pi-primary. Let V(pi),
the variety defined by pi, contain a rational point for i = 1, . . . , r and not for i =
r+1, . . . , t. Then the Willems closure M⊥⊥ with respect to F = C∞(PT)fin[x1, . . . , xn]
is equal to M1 ∩ · · · ∩Mr. Thus M equals M⊥⊥ if and only if every V(pi) contains
rational points.

Proof. It is easy to see that M0 := M1 ∩ · · · ∩Mr is independent of the primary
decomposition (see [9]). We first claim that the behavior M⊥

0 of M0 in F equals the
behavior M⊥ of M. As M ⊂ M0 it suffices to show that M⊥ ⊂ M⊥

0 . Suppose it is
not. Then there is an f inM⊥ and somem inM0\M such thatm(D)f �= 0. However,
for every r in the ideal (M : m), r(D)(m(D)f) = 0. Taking Fourier transforms—

every element of F is a temperate distribution—gives r(x) ̂(m(D)f)(x) = 0; hence the

support of m̂(D)f is contained in V(r)∩Rn for every r in (M : m). Now ̂(m(D)f)(x) =

m(x)f̂(x), and if f =
∑

a∈Qn pa(x)e
ı〈a,x〉, then f̂(x) =

∑
a∈Qn pa(D)δa—where δa is

the Dirac distribution supported at a—so that the support of m̂(D)f is contained
in Qn and hence in V((M : m)) ∩Qn.

On the other hand, the ideal (M : m) equals ∩t
i=1 (M : m), and asm is inM0\M

it follows that the radical ideal
√
(M : m) is equal to the intersection of a subset

of pr+1, . . . , pt. Thus V((M : m)) is contained in ∪t
i=r+1 V(pi), whose intersection

with Qn, by assumption, is empty. Thus m(D)f = 0, which is a contradiction to the
choice of f and m above.

We now show that M0 is the largest submodule of Dq with the same behavior as
that of M. So let m be any element of Dq \M0, and consider the exact sequence

0 → D/(M0 : m)
m−→ Dq/M0

π−→ Dq/M0 + (m) → 0,

where the morphism m maps the class of r to the class of mr, and π is as usual.
Applying the functor HomD(·,F) gives the exact sequence

0 → HomD(Dq/M0 + (m),F) −→ HomD(Dq/M0,F)

m(D)−→ HomD(D/(M0 : m),F) → 0.

Observe now that V((M0 : m)) is the union of some of the varieties V(p1), . . . ,V(pr);
hence by assumption there is a rational point, say a, on it. Therefore the function
eı〈a,x〉 is in the last term HomD(D/(M0 : m),F) above and which is therefore non-
zero. This implies that the behavior (M0 +m)⊥ is strictly smaller than the behavior
M⊥.

A central notion of the subject is that of a controllable behavior [13, 6]. A behavior
which admits an image representation is controllable, and the next result characterizes
such behaviors.

Theorem 4.2. Let F = C∞(PT)fin[x1, . . . , xn]. Then the behavior M⊥ in Fq of
a submodule M ⊂ Dq is the image of some morphism L(D) : Fp → Fq if and only
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if the varieties of the nonzero associated primes of Dq/M do not contain rational
points.

Proof. Let M(D) be an r×q matrix whose r rows generateM (so that M⊥ equals
the kernel of the morphism M(D) : Fq → Fr). Let L be the submodule of Dq

consisting of all relations between the q columns ofM(D). Suppose that L is generated
by some p elements �1, . . . , �p. Let L(D) be the matrix whose columns are �1, . . . , �p
and which therefore defines a morphism L(D) : Fp → Fq. As F is an injective
module, its image equals the kernel of a morphism M1(D) : Fq → Fr1 , where r1
rows of M1(D) generate all relations between the rows of L(D). Let M1 be the
submodule of Dq generated by the rows of M1(D); then M1/M = (Dq/M)tor so that
Dq/M1 is torsion free. Thus it follows that M⊥ is an image—in fact the image of
L(D) : Fp → Fq —if and only if M⊥ = M⊥

1 , i.e., if and only if the Willems closure
of M equals M1. By the previous theorem this is so if and only if the variety of every
nonzero associated prime of Dq/M does not contain rational points.

4.2. C∞(T)[x1, . . . , xn] and C∞(T)fin[x1, . . . , xn]. In this case it suffices to
consider the signal space C∞(T)fin[x1, . . . , xn]. The results of section 4.1, as well as
the examples, carry over if everywhere one replaces Q by Z and “rational point” by
“integral point.”

4.3. C∞(PT) and C∞(PT)fin. We consider the signal space F = C∞(PT)fin.
Description of i⊥⊥ for ideals i ⊂ D and behaviors in F . Recall that the support

of a series f(x) =
∑

a∈Qn cae
ı〈a,x〉 is the set {a| ca �= 0}. For a = (a1, . . . , an) ∈ Cn

we write (D− a) for the maximal ideal (D1− a1, . . . , Dn− an). Given an ideal i ⊂ D,
let V(i) be its variety in Cn, and let S(i) = V(i)(Q) (i.e., V(i) ∩ Qn seen as a subset
of Cn).

If f(x) =
∑

a∈Qn cae
ı〈a,x〉 ∈ i⊥, then each cae

ı〈a,x〉 ∈ i⊥. Thus f ∈ i⊥ if and only

if the support of f lies in S(i). Further, i⊥⊥ consists of all the polynomials in D which
are zero on the set S(i). In other words, i⊥⊥ =

⋂
a∈S(i) (D − a). Equivalently, i⊥⊥ is

the reduced ideal of the Zariski closure of S(i). The behaviors B ⊂ F are in this way
in 1-1 correspondence with those Zariski closed subsets S of Cn such that S ∩ Qn is
Zariski dense in S.

Description of M⊥⊥ for submodules M of Dq. The elements of Fq are writ-
ten in the form f(x) =

∑
a∈Qn cae

ı〈a,x〉, with ca = (ca1 , . . . , caq ) ∈ Cq. Now m =

(m1, . . . ,mq) ∈ Dq applied to f has the form
∑

a∈Qn 〈m(a), ca〉eı〈a,x〉, with 〈m(a), ca〉 =∑q
j=1 mj(a)caj . (Here, for any m = (m1, . . . ,mq) ∈ Dq we write m(a) = (m1(a), . . . ,

mq(a)) ∈ Cq, where as before mi(a) = mi(a1, . . . , an).)
For a fixed a ∈ Qn, the set V (a) := {m(a) ∈ Cq| m ∈ M} is a linear subspace

of Cq. We conclude that M⊥ consists of the elements f(x) =
∑

a∈Qn cae
ı〈a,x〉 such

that 〈V (a), ca〉 = 0. It now follows that M⊥⊥ consists of the elements r ∈ Dq such
that for each a ∈ Qn, r(a) ∈ V (a).

Example 4.3. n = 2, q = 2, and M ⊂ D2 is generated by (D2
1 , D1D2). Then

V (a) = C(a21, a1a2) for all a ∈ Q2. One finds thatM⊥ ⊂ F2 consists of the expressions∑
a∈Q2 (ca1 , ca2)e

ı〈a,x〉 satisfying a21ca1 + a1a2ca2 = 0. Further, M⊥⊥ = M.

An “algorithm” computing M⊥⊥ for a submodule M of Dq. For every b ∈ Qn

one considers the homomorphism

mb : F = C∞(PT)fin → Ceı〈b,x〉 ∼= D/(D − b)

given by mb :
∑

a cae
ı〈a,x〉 �→ cbe

ı〈b,x〉 (where, as before, (D − b) = (D1 − b1, . . . ,
Dn − bn)). It follows at once that ξ ∈ Dq/M belongs to M⊥⊥/M if and only if
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�(ξ) = 0 for every homomorphism � : Dq/M → D/(D − b) with b ∈ Qn. As in the
proof of Theorem 4.1, we consider an irredundant primary decomposition ∩Mi of M
and try to compute the M⊥⊥

i .

Let M be p-primary for its embedding in Dq; then M⊥⊥ ⊃ M+pDq, and we may
replaceM by the p-primary moduleM1 := M+pDq sinceM⊥⊥ = M⊥⊥

1 . We observe
that Dq/M1 has, as a module over D/p, no torsion and therefore is a submodule of

(D/p)r for some r ≥ 1. Now M⊥⊥
1 /M1 = ∩(Ker(Dq/M1

�→ D/(D − b))), where the
intersection is taken over all b ∈ V(p) ∩Qn and all homomorphisms �.

Suppose that the set V(p) ∩Qn is Zariski dense in V (p) (this holds in particular

for p = (0)). Then ∩(Ker((D/p)r
�→ D/(D− b))), b ∈ V(p)∩Qn and all �, equals (0).

It follows that M⊥⊥
1 = M1.

Suppose that the set V(p) ∩Qn is empty; then M⊥⊥
1 = Dq.

Suppose that the set S := V(p) ∩ Qn is not empty and is not dense in V(p).
The radical ideal i := ∩b∈S (D− b) defines V(i) ⊂ Cn, which is the closure of S. Now

∩(Ker(Dq/M1
�→ D/(D−b))), where the intersection is taken over all b ∈ V(i)∩Qn and

all �, contains iDq. Thus we may as well continue with the module M2 := M1 + iDq

since M⊥⊥
2 = M⊥⊥

1 .

In general, M2 is not primary and we have to replace M2 again by the elements
of an irredundant primary ∩ (M2)i decomposition of M2. The minimal prime ideals q
containing i are associated primes of Dq/M2. For the corresponding primary factor
(M2)i one has (M2)

⊥⊥
i = (M2)i because V(q) ∩Qn is dense in V(q). If there are no

more primary factors (or if the other primary factors belong to prime ideals r such
that V(r) ∩Qn is dense in V(r)), then M⊥⊥

2 = M2, and we are finished. However, if
M2 has a primary factor M3 corresponding to a prime ideal r such that V(r)∩Qn is
not dense in V(r), then we have to repeat the above process. The Noether property
guarantees that the process ends. Except for the problem of finding rational points
on irreducible subspaces of An, the above is really an algorithm.

Example 4.4 (behaviors related to rational points on algebraic varieties).

(1) n = 2. i = (D2
1 + D2

2 − 1) ⊂ D yields i⊥ = {∑a∈Q2, a2
1+a2

2=1 cae
ı〈a,x〉} and

i⊥⊥ = i.

(2) n = 2. i = (D2
1 − (D3

1+aD2
1+ bD1+ c)) ⊂ D. We suppose that a, b, c ∈ Q and

that the equation defines an affine elliptic curve. We have the following possibilities
(see [12]):

(a) The elliptic curve has no rational point other than its infinite point. Then
i⊥⊥ = D.

(b) The elliptic curve has finitely many rational points. Then i⊥⊥ ⊂ D is the
intersection of the finitely many maximal ideals (D − a) with a ∈ Q2 lying on the
elliptic curve.

(c) The rank of the elliptic curve is positive and i⊥⊥ = i.

(3) n = 3. Let the principal prime ideal p ⊂ D define an irreducible affine surface
S ⊂ A3 over Q. We have the following possibilities:

(a) S(Q) = ∅ and p⊥⊥ = D.

(b) S(Q) is finite (and nonempty); then p⊥⊥ is the intersection of the maximal
ideals (D − a) with a ∈ S(Q).

(c) S(Q) is infinite, and the Zariski closure of this set is a curve on S. Then
p⊥⊥ is the (radical) ideal of this curve.

(d) S(Q) is Zariski dense in S; then p⊥⊥ = p.
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4.4. C∞(T) and C∞(T)fin. We consider the signal space F = C∞(T)fin. As in
section 4.3, there is a 1-1 relation between the behaviors B ⊂ F and the Zariski closed
subsets S of Cn such that S ∩ Zn is dense in S. For an ideal i ⊂ D, the ideal i⊥⊥ is
the intersection of the maximal ideals (D − a) ⊃ i with a ∈ Zn. The descriptions of
M⊥⊥ for a submodule M of Dq are the ones given in section 4.3, with Z replacing Q.

Example 4.5. (1) Let i ⊂ D be an ideal. Let j ⊂ D denote the smallest ideal
containing i which is generated by elements in Z[D1, . . . , Dn]. Then i⊥ = j⊥. Indeed,
i⊥⊥ is generated by elements in Z[D1, . . . , Dn]. Consider, for example, the ideal
i ⊂ C[D1, D2, D3] generated by (D2

1 − D2
2) + π(D2

1 + D3
3) + π2(D1D2D3 − 1). The

ideal j is generated by (D2
1 − D2

2), (D
2
1 + D3

3), (D1D2D3 − 1). Then i⊥ = j⊥ and
S(i) = {(1,−1,−1), (−1, 1,−1)}.

(2) Let i ⊂ C[D1, D2, D3] be generated by D2
1 +D2

2 −D2
3. Then i⊥⊥ = i because

the set S(i) = {(a1, a2, a3) ∈ Z3| a21 + a22 − a23 = 0} is Zariski dense in {(a1, a2, a3) ∈
C3| a21 + a22 − a23 = 0}.
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