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ABSTRACT
We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-

Helmholtz unstable Ñows in dimensions. The modeled Ñows and Ðelds were initially uniform except212for a thin shear layer with a hyperbolic tangent velocity proÐle and a small, normal mode perturbation.
These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic
sections of Ñows containing magnetic Ðelds parallel to the shear layer, but projecting over a full range of
angles with respect to the Ñow vectors. They are intended as preparation for fully three-dimensional cal-
culations and to address two speciÐc questions raised in earlier work : (1) What role, if any, does the
orientation of the Ðeld play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 212dimensions? (2) Given that the Ðeld is too weak to stabilize against a linear perturbation of the Ñow,
how does the nonlinear evolution of the instability depend on strength of the Ðeld? The magnetic Ðeld
component in the third direction contributes only through minor pressure contributions, so the Ñows are
essentially two-dimensional. In Frank et al. we found that Ðelds too weak to stabilize a linear pertur-
bation may still be able to alter fundamentally the Ñow so that it evolves from the classical ““ CatÏs Eye ÏÏ
vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the
magnetic Ðeld plays the role of a catalyst, brieÑy storing energy and then returning it to the plasma
during reconnection events that lead to dynamical alignment between magnetic Ðeld and Ñow vectors. In
our new work we identify another transformation in the Ñow evolution for Ðelds below a critical
strength. That we found to be D10% of the critical Ðeld needed for linear stabilization in the cases we
studied. In this ““ very weak Ðeld ÏÏ regime, the role of the magnetic Ðeld is to enhance the rate of energy
dissipation within and around the CatÏs Eye vortex, not to disrupt it. The presence of even a very weak
Ðeld can add substantially to the rate at which Ñow kinetic energy is dissipated.

In all of the cases we studied magnetic Ðeld ampliÐcation by stretching in the vortex is limited by
tearing mode, ““ fast ÏÏ reconnection events that isolate and then destroy magnetic Ñux islands within the
vortex and relax the Ðelds outside the vortex. If the magnetic tension developed prior to reconnection is
comparable to Reynolds stresses in the Ñow, that Ñow is reorganized during reconnection. Otherwise, the
primary inÑuence on the plasma is generation of entropy. The e†ective expulsion of Ñux from the vortex
is very similar to that shown by Weiss for passive Ðelds in idealized vortices with large magnetic
Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence
of steady, resistive di†usion, but must be seen as a consequence of unsteady fast reconnection.
Subject headings : instabilities È MHD È plasmas È turbulence

1. INTRODUCTION

Weak magnetic Ðelds threading conducting Ñuid media
can play vital dynamical roles, even when traditional cri-
teria, such as relative magnetic and gas pressures, suggest
the Ðelds are entirely negligible. Perhaps the best example of
this is the destabilizing inÑuence of a vanishingly small
magnetic Ðeld crossing a Keplerian accretion disk (Balbus
& Hawley where the mere presence of the Ðeld seems1991),
fundamentally to alter the local Ñow properties. Other
examples abound, however, that could be particularly
important in astrophysics. Among them, we would include
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weak Ðelds penetrating turbulent or otherwise strongly
unstable Ñows, where such Ðelds signiÐcantly alter evolu-
tion and transport properties (e.g., & WelterBiskamp 1989 ;

& Vainstein et al.Cattaneo 1991 ; Nordlund 1992 ; Jun,
Norman, & Stone Sheared motion is a critical1995).
common element in many of these Ñows, and the conse-
quent stretching of a weak, but a large-scale Ðeld can lead to
a locally enhanced role for the Ðeld. The Ñows will also
frequently lead to current sheets and associated magnetic
Ðeld topologies unstable to reconnection, and that is central
to the nonlinear evolution of the systems (e.g., Biskamp

Through these processes the Ðelds can1993 ; Parker 1994).
also have more global consequences. Study of the nonlinear
evolution of the classical Kelvin-Helmholtz (KH) instability
could be particularly useful as a well-deÐned example of
strongly sheared Ñows. Further, since KH unstable bound-
ary layers are probably common, the behavior of the insta-
bility is important for its own sake.

Although the KH instability is fairly well studied in
ordinary hydrodynamics (e.g., & ShermanCorcos 1984),
comparable study has been much slower in magnetohydro-
dynamics (MHD). That is because the magnetic Ðeld sub-
stantially complicates the physics itself and also because
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computational methods and resources needed for such
studies are only recently up to the task. The linear analysis
of the MHD KH instability is relatively straightforward
and was long ago carried out for a number of simple Ñow
and Ðeld conÐgurations (e.g., Chandrasekhar 1961 ; Miura
& Pritchett Generally, and especially if the velocity1982).
change is not supersonic, the ordinary Ñuid shear layer is
unstable to perturbations with wavevectors in the plane of
the shear layer and with wavelengths greater than the thick-
ness of the layer (e.g., When there is a ÐeldMiura 1990).
component projecting onto the Ñow Ðeld, magnetic tension
provides a stabilizing inÑuence. A simple vortex sheet is
stabilized against linear perturbations whenever
the magnetic Ðeld strength is sufficient that cA [ o (kü Æ U0)/where is the velocity di†erence between the(2kü Æ BŒ 0) o, U0two layers, is the Alfve� n speed, k is the perturbationcAwavevector, and is the direction of the magnetic ÐeldBŒ 0(Chandrasekhar 1961).

et al. hereafter and Bodo,Frank (1996, Paper I) Malagoli,
& Rosner hereafter recently presented comple-(1996, MBR)
mentary nonlinear analyses of the MHD KH instability in
mildly compressible Ñows based on two-dimensional
numerical simulations carried out with new (and di†erent)
Riemann-solverÈbased MHD codes. While not the Ðrst
numerical studies of the MHD KH instability, they rep-
resented big improvements over previous calculations in
both numerical resolution and extent to which Ñow evolu-
tion was followed toward asymptotic states (readers are
referred to for additional, earlier citations). Con-Paper I
sidering perturbed two-dimensional Ñows that were
uniform except for a thin, smooth velocity transition layer,
those two papers emphasized the qualitatively di†erent
behaviors in the nonlinear evolution of unstable Ñows
depending on how close the Ðeld strength is to its critical
strength for stabilization. For Ðelds only slightly below the
critical value, enhancements in the tension of the Ðeld
through linear growth can stabilize the Ñow before it
develops distinctly nonlinear characteristics. For weaker
Ðelds, however, the initial evolution of the instability is very
similar to that for the ordinary KH instability. That results
in the formation of eddies, and hence, to substantial stretch-
ing of the magnetic Ðeld lines as well as reconnection. Paper
emphasized the remarkable fact that in a case with a ÐeldI

2.5 times weaker than critical, reconnection can lead to self-
organization in the Ñow and fairly rapid relaxation to a
quasi-steady laminar and marginally stable Ñow. pre-MBR
sented summaries of simulations extending to somewhat
weaker Ðelds showing evidence for similar behaviors.

Neither nor however, explored thePaper I MBR,
problem in sufficient depth to establish the conditions
necessary for the previously mentioned self-organization. In
addition, it is very important in this situation to understand
how the magnetic Ðelds behave when they are ““ very ÏÏ weak
(a concept whose deÐnition needs clariÐcation, in fact). A
closely related matter is what di†erences, if any, exist
between the behavior of a truly weak Ðeld and a stronger
Ðeld whose projection onto the Ñow vectors is weak. Alter-
natively stated, are there di†erences between the nonlinear
two-dimensional MHD KH instability and the ““ 212-MHD KH instability? Answers to thosedimensional ÏÏ
basic questions are the objective of this paper. We Ðnd: (1)
for the cases we have considered with an initially uniform
Ðeld that the magnetic Ðeld transverse to the plane is unim-
portant and (2) there is a transition from the role of the

magnetic Ðeld as a catalyst to Ñow self-organization to a
role as an added source of energy dissipation that should
vanish directly as the initial magnetic Ðeld strength project-
ed onto the plane vanishes. Ultimately, we must understand
the full three-dimensional problem, in which the pertur-
bation wavevector also lies outside the Ñow direction. On
the other hand, it has been difficult to carry out three-
dimensional MHD simulations with sufficient numerical
resolution to be conÐdent of the results in complex Ñows
such as these. In addition, it will be useful to compare fully
three-dimensional behaviors with two-dimensional Ñows.
We hope that the current work is a signiÐcant, constructive
step toward a full understanding of this problem.

The paper plan is as follows. In we will summarize the° 2
problem setup and relevant results from Paper I. Section 3
contains a discussion of new results, while provides a° 4
brief summary and conclusion. We also include an

presenting an analytical model for di†usive ÑuxAppendix
expulsion from a steady vortex, in order to contrast that
physics with what we observe in the eddies that form in our
simulations.

2. BACKGROUND

In order to focus on speciÐc, important physical issues we
have chosen to explore an idealization of the MHD KH
problem, reserving for the future the more general problem.
We present in this section only a bare outline of our method
and some key results from previous work. A full discussion
of the computational setup along with several tests of such
issues as adequate numerical resolution and geometry of the
computational box can be found in Paper I.

2.1. Problem DeÐnition
The geometry of the computations is shown in Figure 1.

The only di†erence from is that in those earlierPaper I
computations we assumed an aligned Ðeld, h \ cos~1

whereas we now relax that constraint too BŒ 0 Æ UŒ 0 o\ 0,
include magnetic Ðelds oblique or orthogonal to the Ñow
plane. We assume the Ñow to be periodic in x and that the y
boundaries are reÑecting (i.e., neither Ñow nor Ðeld lines
cross the y boundaries). This was a conÐguration used ini-
tially by and we followed it in toMiura (1984), Paper I
enable a direct comparison with his results. The inÑuences
of those boundary choices are discussed fully in InPaper I.
brief, the periodic boundary limits coalescence of structures
to scales equal to the box dimension, L . That is more signiÐ-
cant than the existence of the reÑecting boundaries, which
seem to have only minor inÑuence on dynamics in the
(narrow) central regions where Ñow organization and dissi-
pation is largely determined.

The initial background Ñow has uniform density, o \ 1,
gas pressure, p \ 0.6, and an adiabatic index, c\ 5/3, so
that the sound speed, The magneticc

s
\ (cp/o)1@2 \ 1.0.

Ðeld, is also uniform. InB0\ B0(xü cos h] zü sin h), Paper I
we considered cases with (and h \ 0), so thatB0\ 0.4, 0.2

since those were studied by WeMA \ 2.5, 5, Miura (1984).
now add to these a number of new cases as outlined in

To facilitate comparisons we identify the simula-Table 1.
tions from as cases 1 and 2 in with the newPaper I Table 1,
simulations following. The velocity in the background state
is antisymmetric about y \ L /2 according to the relation

u0\ u0(y)xü \ [U0
2

tanh
Ay[L /2

a
B

xü , (1)
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FIG. 1.ÈCartoon illustrating the computational setup for these simula-
tions. There is a central shear layer separating uniform Ñows. Except for
the initial perturbation the Ñow conditions are otherwise uniform. The
magnetic Ðeld projects onto the computational plane at an angle, h.

with This describes a smoothly varying Ñow withinU0\ 1.
a shear layer of full width 2a. For all our simulations pre-
sented here a \ L /25, chosen to make the interactions with
the reÑecting boundaries small. The square computational
box has L \ 2.51. Flow is to the left in the top half-plane
and to the right below that. To this state we add a pertur-
bation, d(o, p, u, B), deÐned to be a normal mode found
from the linearized MHD equations appropriate for the
chosen background, periodic in x and evanescent in y, with

period equal to the length of the computational box, L . This
was done exactly as in We note that whenPaper I. h D 0
there are perturbations in all three vector components of
the magnetic and velocity Ðelds. Under the conditions we
used the computational frame is comoving with the KH
waves. All Ñow and Ðeld quantities are either symmetric or
antisymmetric around two points, which happen with our
choice of phases in d(o, p, u, B) to be at y \ L /2, x \
L /4, 3L /4. Because the velocity Ðeld is antisymmetric
around these points they are the places where strong vor-
tices tend to form.

The equations we solve numerically are those of ideal
compressible MHD; namely,

Lo
Lt

] $ Æ (ou) \ 0 , (2)

Lu
Lt

] u Æ $u ] 1
o

$p [ 1
o

($ Â B) Â B \ 0 , (3)

Lp
Lt

] u Æ $p ] cp$ Æ u \ 0 , (4)

LB
Lt

[ $ Â (u Â B) \ 0 , (5)

along with the constraint $ Æ B \ 0 imposed to account for
the absence of magnetic monopoles (e.g., ThePriest 1984).
isentropic gas equation of state is p P oc. Standard symbols
are used for common quantities. Here, we have chosen
rationalized units for the magnetic Ðeld so that the magnetic
pressure and the Alfve� n speed is simplyp

b
\B2/2 cA \

B/o1@2.
These equations were solved using a multidimensional

MHD code based on the explicit, Ðnite di†erence ““ total
variation diminishing ÏÏ or ““ TVD ÏÏ scheme. The method is
an MHD extension of the second-order Ðnite-di†erence,
upwinded, conservative gasdynamics scheme of Harten

as described by & Jones The multidi-(1983), Ryu (1995).
mensional version of the code, along with a description of
various one and two-dimensional Ñow tests is contained in

Jones, & Frank The code contains an †t-basedRyu, (1995).
routine that maintains the $ Æ B \ 0 condition at each time

TABLE 1

SUMMARY OF MHD KH SIMULATIONS

h End
Casea B0\ cA/c

s
b (deg) B

po
\ B0 cos h MAb b0b t

g
c Timec N

x
d

1e . . . . . . . 0.4 0¡ 0.4 2.5 7.5 3.79 20q 512e
2e . . . . . . . 0.2 0¡ 0.2 5.0 30 1.86 20q 512e
3 . . . . . . . . 0.2 45¡ 0.14 5.0 30 1.71 30q 512
4 . . . . . . . . 0.14 0¡ 0.14 7.07 60 1.71 30q 512
5 . . . . . . . . 0.2 90¡ 0.0 5.0 30 1.59 20q 256
6h . . . . . . 0.2 85¡ 0.02 5.0 30 1.59 50q 512
6m . . . . . . 0.2 85¡ 0.02 5.0 30 1.59 30q 256
7 . . . . . . . . 0.02 0¡ 0.02 50 3000 1.59 30q 256
8 . . . . . . . . 0.04 0¡ 0.04 25 750 1.67 30q 256
9 . . . . . . . . 0.07 0¡ 0.07 14.3 245 1.67 20q 256

a All models have used c\ 5/3, L \ 2.51, and a \ L /25.M \U0/cs\ 1, c
s
\ 1,

b The Alfve� n speed, Alfve� n Mach number, and here refer to thecA \B/o1@2, b0\ p
g
/p

b
\ (2/c)(MA/M)2

total initial magnetic Ðeld strength, not just that projected onto the plane of the Ñow.
c The growth time is an approximation to the inverse linear growth rate ; namely t

g
\ 1/! ; q\ t/t

g
.

d Computations were carried out on a square grid of the size indicated, with PeriodicN
y
\N

x
.

boundaries were assumed for x and reÑecting boundaries were assumed for y.
e Cases 1 and 2 were presented and discussed in They are cited here for reference. Each wasPaper I.

computed with two or more numerical resolutions, with the largest listed here.
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step within machine accuracy. That step does not compro-
mise the other conservation relations.

Numerical solution of equations on a discrete grid(2)È(5)
leads, through truncation errors, to di†usion of energy, and
momentum, as well as to entropy generation. Of course,
such e†ects are also present in nature and are important to
deÐning the character of the Ñows. The existence of e†ective
numerical resistivity is necessary, for example, to allow
magnetic reconnection to occur in the calculations. Our
methods exactly conserve total energy, as well as mass,
momentum, and magnetic Ñux, so the exchange between
kinetic, thermal and magnetic energies along with entropy
production is internally consistent. There is fairly good evi-
dence that conservative monotonic schemes, as this one is,
do a good job of approximately representing physical
viscous and resistive dissipative processes that are expected
to take place on scales smaller than the grid (e.g., &Porter
Woodward For the astrophysical environments1994).
being simulated the expected dissipative scales are likely
very much smaller than those that can be modeled directly.
Recent numerical studies of reconnection suggest in the
MHD limit with large kinetic and magnetic Reynolds
numbers that the local energy dissipation rate through
reconnection becomes independent of the value of the resis-
tivity in complex Ñows (e.g., Biskamp However,1993, 1994).
when we depend on numerical dissipation, we must be cau-
tious about the possible role of ““ uncaptured ÏÏ dynamical
structures that could be expected on scales smaller than the
grid scale, or about magnetic Ðeld structures on such scales
that could enhance the number of reconnection sites. In
fact, we shall see that for our KH instability-induced Ñows
involving weak Ðelds (where reconnection topologies are
formed on many scales) total energy dissipation is slightly
““ enhanced ÏÏ when the grid is Ðner. This is opposite to what
we expect from the e†ects of reduced numerical di†usion
alone, but consistent with an increase in the number of
reconnection sites, or ““ X ÏÏ points, allowed when smaller
scale Ðeld structures can be resolved cleanly. Further, we
Ðnd that for a Ðxed numerical resolution, addition of a very
weak magnetic Ðeld substantially enhances the rate of
energy dissipation, again as one expects in response to
reconnection (e.g., Lesch, & Birk Thus, weZimmer, 1997).
see strong evidence for unsteady, local reconnection as in
high Reynolds number, MHD turbulence, but also that our
numerical solutions are not quite converged in terms of
total dissipation.

Below we will express all of our results in time units
deÐned by the growth time of the linear instability, t

g
\

!~1, as estimated from graphs presented by & Prit-Miura
chett That is, we express time as We Ðnd(1982). q\ t/t

g
.

that especially the initial saturation of the instability, but
also the relaxation processes are fairly uniformly expressed
in these units. The time units, are listed for each case int

g
,

along with the duration of the simulation in unitsTable 1,
of q. The Ñows examined in the present paper all have t

g
B

1.6È1.7. For comparison the sound crossing time in the box
is (since and the Alfve� n wave crossingt

s
\ L \ 2.51 c

s
\ 1)

time is (since The normalized turnovertA \ MA t
s

U0\ 1).
time for a large eddy is roughly t

E
D L /(U0/2) D 2t

s
.

2.2. Magnetic Field Evolution
Since it enters prominently into our later discussions, it is

helpful here to remind readers in a simple way of what we
can expect for the local evolution of the magnetic Ðeld in

these simulations. A full analysis of all the subtleties is
beyond our scope here, so readers are referred to detailed
discussions such as those by Mo†att (1978), Priest (1984),
and follows Ðelds when theBiskamp (1993). Equation (5)
resistivity is exactly zero. As already mentioned, our Ðnite
di†erence code will introduce e†ects that mimic a Ðnite res-
istivity, although it is not possible to deÐne an exact value
for the resistivity, g. The e†ective resistivity will also depend
on grid resolution, decreasing roughly as N~2 within
smooth Ñows. Despite these limitations we can make good
heuristic use of the resistive MHD extension of the induc-
tion For our purposes it is interesting to castequation (5).
that equation in the following form:

d ln ( oB o/o)
dt

\ 1
2

d ln p
b

dt
[ d ln o

dt

\ B Æ [(B Æ $)u][ gj2] g$ Æ ( j Â B)
B2 , (6)

where d/dt is the Lagrangian time derivative, the Ðrst term
on the right represents Ðeld ampliÐcation by stretching, and
the last two terms containing the resistivity account for
magnetic ““ annihilation ÏÏ and ““ di†usion.ÏÏ We have also
used The current density, j \ $] B.equation (2).
The term gj2 is a dissipative term that balances the Joule
heating in the analogous energy equation for the gas (e.g.,

The last term is written as an expression involvingPaper I).
the Lorentz force, j Â B, to show that it represents the
transport of momentum Ñux in response to resistivity ; i.e.,
the slippage of Ðeld lines.

A frozen-in Ðeld results when g \ 0. That leaves only the
time derivatives and one term on the right of Ifequation (6).
there is Ñow compression or expansion only perpendicular
to B then the right side of vanishes and leads toequation (6)
oB o/o \ constant or Those are the most commonp

b
Po2.

statements of Ðeld compression. However, more generally
one needs to include the other ideal MHD term on the right
that accounts for ““ stretching.ÏÏ In fact, Ðeld enhancements
due to compression are much more limited than those due
to stretching, especially in mildly compressive Ñows, such as
those we are studying.

We also can see from that resistive inÑuencesequation (6)
on magnetic energy are associated with both Joule heating
and momentum transport. In fact reconnection leads to
both irreversible heating of the local plasma and to its accel-
eration. The physics of reconnection is complex and beyond
the scope of this paper. However, it may be helpful to esti-
mate the dissipation rate using and the Sweet-equation (6)
Parker description of reconnection (e.g., Biskamp (1994) ;

Lesch, & Birk Assuming anParker (1994) ; Zimmer, 1997).
incompressible Ñow steadily carrying oppositely directed
Ðelds into a current sheet of thickness, d, givesequation (6)
us a magnetic energy annihilation rate and associated dissi-
pation rate per unit volume, where u isQ\ gj2D 12(u/d)B2,
the inÑow speed. In this picture plasma Ñows out from the
reconnection region at the Alfve� n speed, so mass conserva-
tion leads to the relation between the current sheet thick-
ness, d, and its width, Then, So,l \ d(cA/u). QD 12B2(cA/l).
the integrated dissipation rate through reconnection
depends on the Ðeld energy advected into reconnection sites
and the summed volumes of all the reconnection sites. The
current density within the current sheet can be estimated as
j B B/d, so that the aspect ratio of the reconnection region
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is where is known as the Lund-d/l D 1/NL1@2, NL \ (lcA)/g
quist number of the plasma and is obviously related to the
magnetic Reynolds number. Consequently, the dissipative
volume scales as In two dimensions, dissipativel2/NL1@2.reconnection regions form out of tearing mode instabilities
within a current sheet when the aspect ratio, d/l, is small

and hence, when the magnetic Reynolds(Biskamp 1994),
number is large. Thus, reconnection is not really steady, and
the number of sites and their individual volumes will
depend on the magnetic Reynolds numbers in the Ñow.
Those are, indeed, the behaviors we see in our simulations.

2.3. Issues
We already alluded in the introduction to the basic char-

acter of nonlinear MHD KH instability properties found
from previous work. Our intent here is to explore more fully
the behaviors of weak magnetic Ðelds in this situation. In
preparation for that we note from past work several key
features for two-dimensional symmetry :

1. When there is no magnetic Ðeld or if the Ðeld is
orthogonal to the Ñow direction a shear layer will ““ role up.ÏÏ
For the periodic Ñows considered here the result is a stable
““ catÏs eye ÏÏ vortex whose length equals the imposed period-
icity on the space and whose height the length. As longD13as the Ñow is subsonic or ““ submagnetosonic ÏÏ no shocks are
involved and the vortex decays only through viscous di†u-
sion. We will not deal with the supersonic or super-
magnetosonic cases here (for some work on those see, e.g.,

& Woodward and referencesPedelty 1991 ; Miura 1990,
therein).In many astrophysical applications the kinetic Rey-
nolds number of the Ñow is very large, so we wish to con-
sider similar cases, so that dissipative decay times are long.
For our simulations, the empirical viscous decay time of the
Ñow is at least 4 orders of magnitude longer than the dura-
tion of our computations (see case 5 energy evolution curves
in below). Thus, the catÏs eye represents a ““ quasi-Fig. 3
steady relaxed state,ÏÏ in which the shear layer has spread
vertically by horizontal localization of vorticity and become
stable. Of course, for nonperiodic systems there will be con-
tinued spreading due to additional vortex mergers, while in
three dimensions the Ñows will be unstable to perturbations
directed along the third direction. Those inÑuences are
beyond the scope of our present investigation, however.

2. In the other extreme, if the magnetic tension force pro-
duced by a perturbation in the shear layer exceeds the ““ lift ÏÏ
force produced by the perturbation, the perturbed Ñow is
stabilized. For wavevectors aligned with the Ñow that con-
dition exists in a linear perturbation whenever the Ðeld is
strong enough that ThenM

AA
\ U0/(B0 cos h) \ M

Ac
\ 2.

only viscous di†usion contributes to spreading of the orig-
inal shear layer. As before, we can neglect that inÑuence
over Ðnite times and describe the shear layer as remaining
in a quasi-steady relaxed state from the start. For the
present computations the critical magnetic Ðeld to stabilize
a linear perturbation is Ðelds slightly weakerB

c
\ 0.5.For

than critical, a small, but Ðnite amplitude perturbation may
lead to the same stabilization condition, perhaps after a
small amount of quasi-linear growth to the instability. Such
was the result obtained for the so-called ““ strong-Ðeld ÏÏ case
of where That calculation is listed asPaper I, MA \ 2.5.
case 1 in here. Under these conditions the Ñow isTable 1,
never far from laminar and there is a modest amount of
spreading in the shear layer before it also reaches a quasi-

steady relaxed state consisting of a broadened, laminar
shear layer (a point made both in and by InPaper I MBR).
either case 1 or case 2, the total magnetic energy changed
very little during the Ñow evolution. In we pointedPaper I
out that for the symmetry imposed the mean vector mag-
netic Ðeld is time invariant ; i.e., SBT \ constant, so any
relaxed state with a relatively uniform Ðeld will automati-
cally contain magnetic energy close to that of the initial
conditions. This condition just reÑects the conservation of
magnetic Ñux on the grid. The ““ relaxed ÏÏ magnetic energy is
very slightly enhanced, because the Ðeld is not quite
uniform at the end. A small amount of kinetic energy dissi-
pation takes place in case 1 before the Ñow becomes relaxed.
That amount is mandated by total energy conservation, the
approximate magnetic energy conservation in this case, and
the fact that on a Ðxed space the kinetic energy in a broad,
symmetric shear layer is less than in a thin one. So, any
evolution leading to a broadened, laminar shear layer
requires an increased thermal energy determined by the
Ðnal width of the layer, independent of how it got there. In
our idealization the mass in the box is also exactly con-
served, so the mean density is constant. Consequently, to
Ðrst order there is no change in thermal energy by way of
reversible, adiabatic processes. Most of the increased
thermal energy must result from entropy-producing dissi-
pation of some kind. Putting it simply, for these Ñows to
relax entropy must be generated. These energy consider-
ations apply to all of the calculations in our study if the
relaxed state is a laminar Ñow. (It turns out that the kinetic
energy of the catÏs eye vortex is less than that for the initial
Ñow, as well. So, its formation must also generate entropy.)

3. For initial Ðelds too weak to prevent formation of the
catÏs eye vortex through magnetic tension, the shear layer
will role up as for unmagnetized Ñuid Ñow. In Paper I,
however, we saw that when the initial Ðeld is only a few
times weaker than the critical value for linear stabilization,
there follows a dramatic transformation in the Ñow as the
catÏs eye develops. considered a Ñow withPaper I MA \ 5.
We list it in the current as case 2. As the vortex rolesTable 1
up in such cases, magnetic Ðeld lines are stretched around it,
thus increasing magnetic energy at the expense of kinetic
energy of the Ñow. The greatest magnetic pressures are pro-
duced in thin Ñux tubes formed between the vortex and its
twins in periodic extensions of the space (see Figs. and4a 6
below). Especially within the vortex and around its perim-
eter, this evolution leads to magnetic reversals, beginning
after about one turnover time for the vortex. The reversed
Ðelds are unstable to tearing mode reconnection. So, once
that happens the magnetic Ðeld quickly reorganizes itself,
releasing the magnetic stresses and stored magnetic energy.
For case 2 this leads, as well, to disruption of the catÏs eye
and eventually to an almost steady, laminar Ñow, after for-
mation and disruption of several weaker vortices. That,
Ðnal, quasi-steady relaxed state, was similar to the initial
conditions, except that the shear layer was broad enough to
be stable against perturbations on scales that Ðt within the
periodic box. The relaxed shear layer had a linear velocity
proÐle (see for similar points). There are additionalMBR
interesting characteristics of the relaxed state. Remaining
Ñuctuations in the magnetic and velocity Ðelds were almost
exactly correlated, so that they could be described as lin-
early polarized Alfve� n waves. The magnetic energy returned
to a level slightly above the initial conditions, with the Ðnal
excess representing a pair of apparent ““ magnetic Ñux
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tubes ÏÏ bounding a hot central core of the shear layer con-
taining most of the entropy generated during the relaxation
process. This Ðnal condition was reached by about q\ 20.
The relaxed shear layer was broader in this case than case 1
(see also so that the kinetic energy was also smaller.MBR),
Thus, even accounting for the slight increase in magnetic
energy, we could correctly predict that case 2 with a weaker
Ðeld was necessarily more dissipative than case 1. That extra
dissipation could come about only through the e†ects of
reconnection. Other aspects of this case will be visited pre-
sently, since we will encounter them again in some new
cases examined here.

Thus, from the calculations reported in and inPaper I
it is obvious that weak magnetic Ðelds can play aMBR

major role in the evolution of MHD KH unstable Ñows. It
is also apparent that these roles involve the exchange of
energy and momentum from the gas to the magnetic Ðeld
and then back to the gas through Maxwell stresses and
reconnection. But it is not yet clear what are the crucial
steps in that exchange, nor how it depends on the initial
strength of the Ðeld, so that the ordinary KH behavior
results, if it does, in the limit that the magnetic Ðeld becomes
vanishingly small. In addition, although the linear MHD
KH instability is not a†ected by the presence of a (possibly
strong) Ðeld transverse to the Ñow (but still aligned to the
plane of the shear), a Ðeld oblique to the Ñow can carry
““ circularly ÏÏ polarized Alfve� n waves. Since we found that
the two-dimensional version of the problem generated lin-
early polarized Alfve� n waves, it may be important to see if
the nonlinear problem depends at all on the orientation of
the Ðeld, or just on the strength of the Ðeld projected onto
the plane as in the linear problem.

3. RESULTS

To meet the objectives at the end of the previous section
we have carried out a set of seven new simulations. They are
outlined in as cases 3È9. (Once again, cases 1 and 2Table 1
were discussed in The new simulations werePaper I.)
designed to cover a wide range of strengths for the magnetic
Ðeld in the computational plane. They include Ñows that
have exactly the same total Ðeld strength as case 2, but in
which the initial Ðeld is oblique to the computational plane ;
i.e., (cases 3, 5, and 6), as well as Ñows in which theh D 0
Ðeld is entirely in the computational plane but is weaker
than that in case 2 (namely cases 4, 7, 8, and 9). The plane-
projected Ðeld strength for cases 6 and 7 is an order of
magnitude weaker than for case 2. Note that cases 3 and 4
are paired to have the same initial planar Ðeld strengths, as
are cases 6 and 7. This enables us to compare efficiently any
distinct roles of Ðeld strength and orientation with respect
to the plane. In case 5 the Ðeld is orthogonal to the plane, so
we expect (and see) no important role for the magnetic Ðeld.
As others have noted before, compressible inÑuences are
controlled in that case by magnetosonic waves rather than
pure sound waves, so there is a very slight modiÐcation in
response to that in case[M

ms
~1 \ (M~2]MA~2)1@2 \ 1.02

5]. We will not concern ourselves at all with Ñows in which
the Ðeld is strong, by which we mean situations where mag-
netic tension precludes the nonlinear development of the
MHD KH instability.

Figures and provide a broad overview of the evolu-2 3
tion of the new models we computed. They illustrate the
time variation of energy components (thermal, kinetic, and

magnetic), as well as the pressure minimum ratio, bmin\
on the grid at each time. displays results(p/p

b
)min, Figure 2

for the runs that were computed with whileN
x
\ 512,

shows the cases computed with In addi-Figure 3 N
x
\ 256.

tion, to provide a sense of the inÑuence of numerical
resolution for very weak Ðeld cases both case 6h (N

x
\ 512)

and case 6m are shown together in(N
x
\ 256) Figure 2.

Resolution issues were discussed in detail for cases 1 and 2
in where similar energy plots were also given. WePaper I,
shall add a few additional relevant comments below.

There is one distinctive detail about Figures and that2 3
is important to their interpretation. It was apparent to us by
comparing animations of the important dynamical quan-
tities that cases 3 and 4 were virtually indistinguishable
from one another, and likewise for cases 6m and 7. Thus, the
important issues are somewhat easier to see if we eliminate

to Ðrst order in Figures and We plot a reducedB
z

2 3.
energy for the cases with h 0. The magnetic and kineticD
energy plotted include only the planar components ; i.e.,

where andE
b
@ \ / (1/2)B

p
2 dx dy, B

p
\ (B

x
2] B

y
2)1@2, E

k
@ \

To compensate, the total energy is/ (1/2)o(u
x
2] u

y
2)dx dy.

also reduced as where is theETot@ \E
b
@ ] E

t
] E

k
@ , E

tthermal energy. Thus, we ignore the almost constant energy
contributions from and Note, however, it is the totalB

z
v
z
.

energy, not the reduced total energy, that is conserved. In
the deÐnition of total magnetic pressure from all threebmin,components was used, since it is the entire pressure that
exerts a force on the plasma.

We can see that the reduced energy evolution in cases 3
and 4 are almost identical in and the same is trueFigure 2,
of cases 6m and 7 in Thus, we observe inFigure 3. 212dimensions, at least, that the transverse magnetic Ðeld com-
ponent plays no signiÐcant role in nonlinear evolution(B

z
)

of the instability. The rationale for some role comes from
the observation that Ðnite and enable circularly pol-B

z
v
zarized Alfve� n waves in dimensions, while only linearly212polarized Alfve� n waves are allowed in two dimensions. In

other words, there are twice as many degrees of freedom in
dimensions for Alfve� n waves to help disperse pertur-212bations. However, there are two arguments to support our

observation of a minimal role. First, the group velocity
vector for Alfve� n waves along which physical information
propagates is i.e., aligned with the magnetic¿

g
\ B/o1@2 ;

Ðeld (see, e.g., Lifshitz, & Pitaevskii WithLandau, 1984).
invariance of quantities along the z-direction, only the
group velocity components projected onto the x-y plane are
relevant, and they are independent of The second pointB

z
.

is that even though and are Ðnite in dimensions, theB
z

v
z

212above symmetry restricts their contributions to those of
magnetic pressure (see eqs. i.e., to the total pres-[2]È[5]) ;
sure gradient and the fast and slow wave speeds. In the
present case with weak Ðelds, even that has little impor-
tance. For example, the evolution of is almost the samebminfor cases 3 and 4, where stretching of the Ðeld in the plane is
dominant in case 3. For cases 6m and 7 the values of bminare always large, because neither the planar nor the trans-
verse Ðelds are very strong. But at qD 5 when the stretching
of the planar Ðeld is greatest, the values of are stillbminsimilar. So, our results indicate that for weak Ðelds the extra
degrees of freedom allowed in dimensions have no sig-212niÐcant e†ect on the KH instability. These Ñows are essen-
tially two-dimensional.

In one of the most striking Ðndings from these simula-
tions, we Ðnd two distinctive evolutionary behaviors for



0 10 20 30 40 50
.86

.88

.9

.92

.94

.96

.98

3

6m

6h

4

0 10 20 30 40 50
.01

.1

1

0 10 20 30 40 50
.0001

.001

.01

.1

0 10 20 30 40 50
.1

1

10

100

236 JONES ET AL. Vol. 482

FIG. 2.ÈTime evolution of the high-resolution simulations (cases 3, 4, 6h), plus the medium resolution simulation case 6m. Shown are the normalized
total thermal, kinetic, and magnetic energies, as well as the minimum value of the plasma b parameter at each time. To emphasize the minimal importance of
the transverse magnetic Ðeld component, ““ reduced ÏÏ energies are shown that excludeB

z
, B

z
.

weak Ðeld Ñows, depending on the Ðeld strength. When the
planar magnetic Ðelds are very weak, it turns out that the
evolution of the two-dimensional MHD KH instability is
qualitatively similar to the gasdynamic version of the insta-
bility. That is, the catÏs eye vortex continues to exist as long
as we extend the simulation. The magnetic Ðeld does,
through unsteady reconnection, substantially enhance
energy dissipation of the vortex over that from the gas-
dynamical case, however. This can be seen by comparing
case 5 in with case 6m or case 7(B

p
\ 0) Figure 3 (B

p
\

0.02). We will characterize such Ñows as having ““ very weak
Ðelds,ÏÏ and the role of the Ðeld as ““ dissipative.ÏÏ On the
other hand, if the initial Ðelds approach the critical Ðeld for
linear stabilization within a factor of a few, the catÏs eye is
disrupted and the Ðeld causes the Ñow to reorganize into a
laminar form (as in case 2). We call this simply the ““ weak-
Ðeld ÏÏ regime, and the Ðeld ““ disruptive.ÏÏ In either situation
the magnetic energy peaks about the time of the initial
reconnection instability. For the disruptive cases there is a
fairly prompt return of the magnetic energy near to its
initial value (see Figs. and In e†ect, the magnetic Ðeld2 3).
plays the role of a catalyst, storing energy temporarily and
through it modifying the plasma Ñow. That role is fairly
dramatic, since reconnection leads to dynamical alignment
and self-organization in the Ñow. For dissipative cases, the
magnetic energy declines much more slowly, and in the
high-resolution case 6h, seems mostly to oscillate. That
behavior results from the fact that the catÏs eye vortex con-
tinues to capture magnetic Ñux, amplifying it and thence
dissipating it.

The existence of two qualitatively distinct evolutionary
patterns is also quite apparent in the histories of the thermal
and kinetic energies displayed in Figures and The2 3.
kinetic energy decay in case 6 is almost exponential, with a
time constant that can be roughly estimated as Byq

d
D 104.

contrast, cases 3 and 4 show before qD 10 a sharp drop in
along with an accompanying increase in followed byE

k
@ E

t
@,

a slow, possibly exponential evolution similar to case 6. For
all cases in the magnetic energy is always smallTable 1
(although it can brieÑy increase by factors between 6 and 20
it never contributes more than a few percents to the total
energy), so on the face of it the magnetic energy would not
seem to be important. In fact, it can be crucial, as we have
already outlined and will discuss more fully, below. Figure

which shows a wider range of projected Ðeld strengths,3,
shows similar patterns with some variation in the abrupt-
ness of the early energy transition. We also conclude that as

the evolution of the two-dimensional MHD KHB
p
] 0

instability will smoothly approach that for ordinary gas-
dynamics.

3.1. Very Weak Fields : Dissipative
Let us now describe in more detail the characteristics of

the two weak-Ðeld regimes and also establish the physical
boundary between them. Case 6 and case 7 had the weakest
Ðnite planar Ðeld, that we considered, and they demon-B

po
,

strate very weak Ðeld patterns. summarizes ÑowFigure 4
properties for case 6h at times q\ 5 and 30. Figure 4a
shows the Ñow vorticity component out of the plane, u

z
\

while shows the magnetic Ðeld lines as($ Â u)
z
, Figure 4b
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FIG. 3.ÈSame as except for medium resolution simulations (cases 5, 6m 7, 8, 9)Fig. 2,

they project onto the plane. Except for minor Ðne structure
that aligns with the planar Ðeld, the vorticity at q\ 5 is the
same as for a Ñow with of case 5. It also is fairly closeB

p
\ 0

to that for all our simulations, except case 1 at this early
time. Primarily, this image illustrates the formation of the
catÏs eye and how that concentrates vorticity. Note that the
““ corners ÏÏ of adjacent catÏs eyes overlap, with a shear layer
between them. It is in that shear layer where magnetic Ðelds
are most strongly enhanced, as seen for this time in Figure

Extensions of that feature around the perimeter also4b.
contain concentrations of magnetic Ñux. These regions rep-
resent Ñows where gas is accelerated out of a stagnation
point midway between vortex centers. Frozen-in Ðelds are
thus pulled out or ““ stretched ÏÏ and ampliÐed. At q\ 30, the
catÏs eye vortex is still largely the same, except for some
complex, low-level vorticity structures outside the main
vortex. Their origins are made clearer by examination of the
magnetic Ðeld structure at this time. Those same regions
outside the catÏs eye also contain isolated magnetic Ñux
islands and Ðeld reversal regions. Such magnetic features
reveal an environment where magnetic reconnection is
active. The relationship is that reconnective processes not
only reorganize the magnetic Ðeld topology and release
magnetic energy, but they also accelerate the local plasma,
and that contributes to the local vorticity. By contrast to
case 2 (or as we shall see cases 3 and 4, as well), however,
magnetic stresses in cases 6 or 7 produce only small modiÐ-
cations to peripheral Ñows and are far too weak to disrupt
the catÏs eye.

The vortex interior shows initial signs in ofFigure 4b
magnetic Ñux expulsion by q\ 5, a well-known phenome-

non (e.g., At this early stage, just as the vortexWeiss 1966).
is fully formed, there is still some magnetic Ñux that threads
through the ““ eye.ÏÏ That does not seem to be the case at the
later time. In a close examination of Ðeld structures within
the vortex we can Ðnd no evidence after about q\ 10 that
any magnetic Ñux threads the vortex. Instead, the Ðeld
breaks into Ñux islands within the vortex, and those are
annihilated through mergers. This is, of course, just what
high Reynolds number (both kinetic and magnetic), nonlin-
ear resistive MHD Ñows are expected to do in response to
reconnection (e.g., Biskamp The Ðeld structure1993, 1994).
in the bottom panel of is qualitatively very similarFigure 4b
to that found by from a classic passive ÐeldWeiss (1966)
simulation in a steady vortex with magnetic Reynolds
number but very di†erent from that for smallR

m
\ 103,

magnetic Reynolds number Our own estimates(R
m

\ 20).
of e†ective magnetic Reynolds numbers in the case 6h simu-
lation give numbers in excess of 103 et al.(Ryu 1995 ; Frank
et al. so the comparison is very reasonable.1996),

We emphasize, however, that the Ðeld behaviors seen here,
and presumably by Weiss, result from localized, inherently
time-dependent reconnection, not simple Ñux di†usion. To
demonstrate that we compute in the the equi-Appendix
librium passive magnetic Ðelds for a simple vortex in a
resistive Ñuid. displays two examples of magneticFigure 5
Ðeld structures predicted by this steady state resistive MHD
theory. The velocity structure for this model vortex is
similar to that observed in the simulated Ñows for case 6.
The core, has a constant vorticity, A (seer \ r0/2, Fig. 4a),
while there is an outer Ñange in which the velocity decreases
to zero at Solutions depend only on the e†ectiver \ r0.
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FIG. 5.ÈMagnetic Ðeld lines from an analytical model to study di†u-
sive Ñux expulsion from a steady eddy with q \ 10 (top) and q \ 1000
(bottom). See the text for the deÐnition of q.

magnetic Reynolds number, within the vortex.q \ 2Ar02/g,
This parameter roughly measures the ratio of the timescale
for magnetic Ðeld di†usion to the rotation period of the
vortex. When q is a few (q \ 10 in the top panel of the
Ðgure), Ñux di†uses quickly enough to almost Ñatten out
Ðeld lines to their external pattern except in the vortex core.
At the center Ðeld lines are actually concentrated by rota-
tion into a quasi-dipole pattern. That dipole results because
reconnection into a simpler topology is not permitted.

The steady state pattern is very di†erent when q is large,
since Ðeld is almost frozen into the vortex. Above q D 102
the Ðeld forms a spiral pattern in the vortex core whose
pitch depends on q. Shear is greatest in the Ñange region of
this vortex and Ñux becomes concentrated increasingly into
the vortex perimeter. That particular behavior does resem-
ble case 6 in some ways. There are multiple Ðeld reversals in
the perimeter, with that number determined in the steady
state calculation by the balance between Ðeld di†usion and
addition of new turns to the Ðeld through rotation. The
bottom panel in shows the steady state solution forFigure 5
q \ 103. Despite some superÐcial similarities, there is an

obvious and essential di†erence between the truly steady
state solution in and the ““ quasi-steady ÏÏ Ðeld in theFigure 5
two time-dependent simulations (ours and WeissÏs). For the
steady solutions the Ðeld line that was originally through
the vortex center remains and is wrapped into a spiral
pattern within the core giving an almost constant Ðeld
strength there. In the time-dependent cases, reconnection
changes the Ðeld structure inside the vortex. The same state-
ment applies to WeissÏs simulation. If the e†ective magnetic
Reynolds number within the Ñow is large enough for topol-
ogies to develop that are tearing-mode unstable, Ðeld within
the vortex ““ breaks ÏÏ o† from the external Ðeld and is
destroyed. Thus, we Ðnd good agreement with Weiss in the
nature of eddy Ñux expulsion and see that it cannot be
viewed as a steady magnetic di†usion.

The value of never drops to zero inside the vortex ofB
pany of our very weak Ðeld cases, although it is as much as 2

orders of magnitude smaller than along the vortex perim-
eter. Action around the perimeter episodically injects new
magnetic Ñux into the vortex interior, so this process con-
tinues as long as we have followed the Ñow. Examination of
the magnetic energy, for case 6 in showsE

b
@ , Figure 2

related, episodic peaks on rough intervals, *qD 2.5È3. That
corresponds to about half a turn over time for the vortex,
and represents the interval on which Ðelds along the vortex
perimeter are stretched until they become ““ folded,ÏÏ so as to
make them subject to tearing mode reconnection. So, what-
ever Ñux is caught in this Ñow becomes ampliÐed, increasing
the magnetic energy, before reconnection rearranges the
Ðeld lines. Those lines outside the vortex are relaxed toward
the initial Ðeld conÐguration, often through multiple recon-
nection events, while those inside are isolated into closed
islands. Note that the total magnetic Ñux threading our box
is exactly conserved and exactly zero in these computations.
Thus, any Ðeld line entering on the left boundary must at all
times extend continuously to the right boundary or exit
again on the left. Closed Ñux islands can exist, but nothing
prevents them from being destroyed, since they contribute
no net Ñux.

Reconnection, and most obviously Ñux-island destruc-
tion, is irreversible, so that it must be accompanied by
entropy generation. That outcome is very apparent in
Figures and Recall that to Ðrst-order total thermal2 3.
energy changes in these, closed-system simulations reÑect
nonadiabatic processes. Compare Ðrst the evolution of
thermal energy in cases 6m, 7, and 5. We see that after some
viscous dissipation necessary to form the catÏs eye, the case
5 with has almost constant total thermal energy toB

p0 \ 0
the end of the simulation. By contrast cases 6m and 7 show
a steady rise in with small amplitude oscillations associ-E

t
,

ated with major reconnection events as described above.
Thus, the main dynamical impact of the Ðeld is enhanced
dissipation. The total magnetic energy remains small in all
cases, but for the dissipative cases that reÑects a near
balance between the rate at which kinetic energy is being
transferred to magnetic energy and the rate at which mag-
netic energy is being dissipated. For example, from initial
Ðeld energy evolution in we can crudely estimateFigure 3
for case 6m that magnetic energy is generated at a rate

which is very close to the mean slope ofdE
b
@ /dt D 3 ] 10~4,

the thermal energy curve, E
t
.

Looking next at the case 6m,h plots in we seeE
t

Figure 2,
that energy dissipation is greater in the higher resolution
case 6h. That results despite a smaller numerical resistivity
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for the higher resolution simulation. This is because in case
6h a larger amount of Ñux is caught in the vortex, so more
reconnection sites develop. We estimate that D10% of the
total magnetic Ñux is attached to the vortex at the end of the
calculation (q\ 50) in case 6h, while only D3% is attached
at the end of the calculation (q\ 30) in case 6m. As the
e†ective magnetic Reynolds number increases there is a ten-
dency for decreased resistivity to be countered by an
increase in the number of reconnection sites, as our earlier
discussion of reconnection theory would suggest. If we
compare simple estimates for rates of magnetic energy gen-
eration for cases 6m and 6h to the rates of thermal energy
increase, we see that they are consistent, as we found earlier
for case 6m, alone. The increased dissipation for the higher
resolution simulation is relatively modest, however. Some
studies of resistive MHD turbulence suggest, in fact, that at
very large Reynolds numbers total reconnection rate in a
complex Ñow will be insensitive to the value of the resis-
tivity (Biskamp If conÐrmed more generally,1993, 1994).
that could provide a practical measure of convergence in
studies of the present kind.

3.2. Weak Fields : Disruptive
Looking again at thermal energy evolution in Figures 2

and we can see a clear behavioral transformation in the3,
sequence : case 5] 6(7)] 8 ] 9 ] 3(4). This grouping is
arranged in order of increased There is a sharp riseB

p0.through the sequence in the amount of dissipation associ-
ated with the initial formation of the catÏs eye vortex, as well
as a more modest increased slope to the subsequent long-
term dissipation rate. The physical character of this trans-
formation is apparent if one compares withFigure 4b

The latter shows for case 3 the magnetic pressureFigure 6.
distribution at three times, q\ 5, 10, and 30. Behaviors for
this simulation are qualitatively similar to case 2, as dis-
cussed in detail in and outlined in Here wePaper I ° 2.3.
note that, while the Ðeld appears wrapped around the
vortex at q\ 5, it has a laminar appearance at q\ 30. The
velocity Ðeld undergoes a similar transition ; i.e., the vortex
is completely disrupted. The magnetic Ðeld at the interme-
diate time, q\ 10, shows aspects of both the other times.
Curiously, however, the Ñow in the dominant vortex
pattern there has the opposite vorticity to the original Ñow.
That feature is short-lived. We can understand this Ñow
transition from rotational to laminar by examining Figures

and also relating to case 3. In we show the7, 8, 9, Figure 7
log of with magnetic Ðeld lines overlaid at q\ 5.b \ p/p

bThe minimum b \ 0.55 in the strong Ñux tube connecting
vortices, but the magnetic Ðeld is dynamically signiÐcant
most of the way around the perimeter of the vortex. The
maximum b D 106 in small regions where magnetic recon-
nection has begun and the Ðeld strength has decreased to
very small values.

To understand how the magnetic Ðeld disrupts the vortex
consider the forces involved. The centripetal force associ-
ated with motion around the catÏs eye is ouÕ2/RD 12oU02D

since we observe that and RD 1 for the12, uÕD 1/21@2
vortex. Indeed, we also conÐrm that when the pres-B

p0 \ 0,
sure gradient force within the vortex Ô$p B 0.5 and is
directed toward the vortex center, so that it supplies the
necessary force. On the other hand, in we displayFigure 8
the magnetic Ðeld lines along with vectors representing the
magnetic tension force ; i.e.,

FIG. 6.ÈGray-scale snapshots of the magnetic pressure distributions
for case 3 at q\ 5, 10, and 30, showing the stages in disruption of the catÏs
eye vortex by the magnetic Ðeld. High values take high tones.

T \ (B Æ $)B , (7)

at q\ 7.5 for case 3. It is apparent that magnetic tension
forces are concentrated where the Ðeld has been pulled into
loops by the Ñow and that they are directed toward the
center of the vortex. The peak value of o T o\ 1.85. At
q\ 7.5 in case 3, however, the total pressure gradient is
small and actually of the wrong sign to e†ect signiÐcantly
the motion of the plasma. The total force vector Ðeld is very
similar to the tension force Ðeld shown in At theFigure 8.
same time ““ X-points ÏÏ in the Ðeld topology show that
reconnection is underway that will isolate the associated
Ðeld lines. Subsequently, Ñux islands are formed along the
““ axis ÏÏ of the catÏs eye, and the magnetic tension pulls the
plasma frozen into those loops toward the original center of
the vortex, disrupting its rotation. Field line segments
reconnecting outside the vortex core will tend to relax
toward the original Ðeld topology.

These observations allow us to estimate simply what
minimum initial Ðeld, should lead to vortex disruption.B

p0Since the early evolution of a weak Ðeld is self-similar, we



No. 1, 1997 MHD KELVIN-HELMHOLTZ INSTABILITY. II. 241

FIG. 7.ÈInverted gray-scale image for case 3 at q\ 5. Projected magnetic Ðeld lines are overlaid. The minimum b D 0.55 in the strong Ñuxof log b \ p/p
btube between vortices, while the maximum b D 106 near the center of the catÏs eye.

can use the behavior from case 3 to estimate o T oB
at the time of the Ðrst major reconnection in1.85(B

p0/0.14)2
all weak-Ðeld cases. Our earlier discussion requires o T oº

for disruption, leading to the constraint12U02 o \ 12 B
p0 º

0.05, or alternately, where is the critical ÐeldB
p0 º 0.1B

c
, B

cfor stabilization of original instability. Indeed, as Figure 3
demonstrates, the transformation between dissipative and
disruptive evolution occurs for conditions between those of
cases 8 and 9 ; i.e., for initial Ðeld values between 0.04 and
0.07.

illustrates why the vortex disruption process isFigure 9
also highly dissipative. The top panel shows at q\ 7.5 in
case 3 the gas entropy distribution, while the lower panel
displays the electric current density, o j o with the Ðeld lines
overlaid. From this we can see that excess entropy is con-
centrated into regions where reconnection is currently
active (highlighted by o j o ) or recently active. Ohmic heating
(Pj2) is partly responsible for the irreversible energy
exchange. The remainder should be viscous dissipation of
small-scale, disordered motions. As we discussed in Paper I,
the Ðnal laminar Ñow that results in this class of Ñow
includes a central sheet of hot gas containing most of the
excess entropy produced through the self-organization of
the Ñow.

4. SUMMARY AND CONCLUSION

We have carried out a series of high-resolution MHD
simulations of Kelvin-Helmholtz unstable Ñows in 212dimensions. All of these simulations involve magnetic Ðelds
initially too weak to stabilize the Ñows in the linear regime ;
i.e., Thus, since simulations are performed on aB

p0 \B
c
.

periodic space, Ñows all begin formation of a single ““ catÏs
eye ÏÏ vortex. If the Ðeld lying in the computational plane is
absent or ““ very weak ÏÏ the catÏs eye structure becomes a
persistent, stable feature that represents a ““ quasi-steady ÏÏ
equilibrium. When there are ““ very weak ÏÏ magnetic Ðelds in
the plane they become wrapped into the vortex and ampli-
Ðed by stretching. However, within a single turn of the
vortex they are subject to tearing mode instabilities leading
to magnetic reconnection. That reconnection isolates some
magnetic Ñux within the vortex, which is eventually annihi-
lated. This is the process through which Ñux is e†ectively
expelled from a vortex. As long as the vortex persists this
process will repeat. Since reconnection is irreversible, this
process is also dissipative and leads to an increase over
viscous e†ects in conversion from kinetic to thermal energy.
We Ðnd in this regime that as the initial magnetic Ðeld
within the computational plane is increased the dissipation

FIG. 8.ÈMagnetic Ðeld structure for case 3 at q\ 7.5, just as substantial magnetic reconnection is underway. Projected Ðeld lines are shown, along with
arrows that represent magnetic tension forces. The maximum magnetic tension force is 1.74.
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FIG. 9.ÈInverted gray-scale image of the gas entropy (top) and electrical current (bottom) distributions for case 3 at q\ 7.5. Magnetic Ðeld lines are also
laid on top of the current distribution to emphasize the relationships. High values take low tones.

rate increases in a similar manner. Likewise, as we use a
Ðner numerical grid, thus reducing the e†ective numerical
resistivity and viscosity, the dissipation rate increases, reÑec-
ting the increased ability of our code to capture small-scale
reconnection events. This trend is backward from what one
would expect if simple magnetic di†usion were primarily
responsible for the reconnection. It suggests, perhaps that if
we had been able to extend these calculations to even higher
resolution the energy dissipation rate might have converged
to a value independent of the e†ective resistivity, just as
some studies of resistive MHD turbulence Ðnd. The recon-
nection and expulsion of Ñux within vortices in our simula-
tions are similar to those in a classic study by Weiss of
vortex Ñux expulsion in large-magnetic-Reynolds-number
Ñows.

If the initial magnetic Ðeld is strong enough that within a
single turn of the vortex it is ampliÐed around the vortex
perimeter to ““ dynamical ÏÏ strength (B2D oU2), then the
reconnection described in the previous paragraph releases
stresses that are capable of disrupting the vortex entirely.
This can happen in a single event or, if the Ðeld is only
marginally strong enough through a suc-[B

p0 D (1/10)B
c
],

cession of dynamical realignment events. In either case the

net result is a laminar but marginally stable Ñow in which
the original shear layer is greatly broadened. Thus, as we
discussed fully in such Ðelds can have a remarkablePaper I,
stabilizing inÑuence. This is despite the fact that their total
energy content is a minor fraction of the total, so that they
are nominally too weak to be important, according to the
usual criteria.

We considered cases in which the magnetic Ðeld was
entirely within the Ñow plane and others in which the Ðeld
was oblique to that plane, in order to examine the role in
nonlinear Ñows of the component out of the plane. For the

Ñows we have studied, only the Ðeld com-212-dimensional
ponents in the Ñow plane have any dynamical signiÐcance.
In fully three-dimensional Ñows, however, we expect further
evolution of the ““ quasi-steady relaxed states ÏÏ of both very
weak Ðeld (or dissipative) cases and weak Ðeld (disruptive)
cases. The catÏs eye vortex of very weak Ðeld cases is subject
to a three-dimensional instability known as the elliptical
instability unless the Ñow(Pierrehumbert 1986 ; Bayly 1986)
lines around the vortex follow perfect circles. The planar
shear Ñow of weak Ðeld cases is stable against linear pertur-
bations but unstable to three-dimensional Ðnite-amplitude
perturbations Orszag, & Herbert Thus, it will(Bayly, 1988).
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be important to extend the present study to the fully three-
dimensional regime, and we are preparing to do that.
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Seoam Scholarship Foundation. We are grateful to B. I. Jun
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APPENDIX A

DIFFUSIVE FLUX EXPULSION FROM A STEADY VORTEX

In order to show that the Ñux expulsion from vortex shown in requires localized, unsteady reconnection, not justFigure 4b
di†usion, here we study the steady state passive Ðeld solutions of resistive MHD. Under two- and symmetries,212-dimensional
the planar magnetic Ðeld can be written as where t is the magnetic Ñux function. Then, the induction equation inB \ zü Â $t,

with constant resistivity becomes(5)

Lt
Lt

] u Æ $t\ g$2t . (A1)

We consider the evolution of an initially uniform magnetic Ðeld, or within a vortex. We approximateB \ B0 xü t\ B0 reiÕ,
that the vortex has azimuthal velocity

vÕ\
72Ar ,
2A(r0[ r) ,
0 ,

for 0\ r \ r0/2 ,
for r0/2 \ r \ r0 ,
for r [ r0 ,

(A2)

and zero radial velocity. A equals the (constant) vorticity within the vortex core. This is roughly the velocity Ðeld of the vortex
in Then, the evolution of the magnetic Ðeld is described by with the boundary conditionsFigure 4. equation (A1) t(r0) \and at In a steady state, we can set t\ F(r)einÕ since the coefficients of the equation do notB0 r0 eiÕ dt(r0)/dr \ B0 eiÕ r \ r0.depend explicitly on /. Note that with the given initial magnetic Ðeld and boundary conditions, only the solution with n \ 1 is
allowed. Then, the equation for F is given as

dF
dr2] 1

r
dF
dr

[ 1
r2 F[i

Q
r02

F\ 0 , (A3)

where

Q\
7q ,
q(r0/r [ 1) ,
0 ,

for 0\ r \ r0/2
for r0/2 \ r \ r0
for r [ r0

(A4)

with Here, q is the magnetic Reynolds number within a factor of 2.q \ 2Ar02/g.
We solve for F numerically. In we plot the resulting magnetic Ðeld lines for the case with q \ 10equation (A3) Figure 5,

(highly di†usive case) and for the case with q \ 103 (quasi-adiabatic case). From dissipation tests we estimate the magnetic
Reynolds number of the vortex in our time-dependent simulations to be larger than 103 (see Jones, & FrankRyu, 1995 ; Paper

Indeed, the Ðelds in resemble those in a vortex simulation with magnetic Reynolds number 103 reported inI). Figure 4b Weiss
The steady state solution we just described allows only for di†usion of magnetic Ñux, since no change in the Ðeld(1966).

topology is permitted. It allows us to see that such a steady state, di†usive description does not account for Ñux expulsion
from the vortex. If that were the case the magnetic Ðeld lines in should have a structure like those in the bottom ofFigure 4b

Actually, their topologies are fundamentally di†erent in the sense that Ðeld in threads completely throughFigure 5. Figure 5
the vortex, while it does not in (or any similar Ðgure showing additional Ðeld lines for this simulation). The reason isFigure 4b
that the Ðeld in the time-dependent simulation is subjected to reconnective instabilities that isolate and then destroy magnetic
Ñux in the interior of the vortex.

REFERENCES

S., & Hawley, J. 1991, ApJ, 376,Balbus, 214
B. J. 1986, Phys. Rev. Lett., 57,Bayly, 2160
B. J., Orszag, S. A., & Herbert, T. 1988, Ann. Rev. Fluid Mech., 20,Bayly,

359
D. 1993, Nonlinear Magnetohydrodynamics (Cambridge :Biskamp,

Cambridge Univ. Press)
1994, Phys. Rep., 237,ÈÈÈ. 179

D., & Welter, H. 1989, Phys. Fluids B, 1,Biskamp, 1964
F., & Vainstein, S. I. 1991, ApJ, 376,Cattaneo, L21

S. 1961, Hydrodynamic and Hydromagnetic StabilityChandrasekhar,
(New York : Oxford Univ. Press)

G. M., & Sherman, F. S. 1984, J. Fluid Mech., 139,Corcos, 29
A., Jones, T. W., Ryu, D., & Gaalaas, J. B. 1996, ApJ, 460, 777Frank,

(Paper I)
A. 1983, J. Comp. Phys., 49,Harten, 357

B. I., Norman, M. L., & Stone, J. M. 1995, ApJ, 453,Jun, 332
L. D., Lifshitz, E. M., & Pitaevskii, L. P. 1984, Electrodynamics ofLandau,

Continuous Medium (Oxford : Pergamon)



244 JONES ET AL.

A., Bodo, G., & Rosner, R. 1996, ApJ, 456, 708Malagoli, (MBR)
A. 1984, J. Geophys. Res., 89,Miura, 801
1990, Geophys. Res. Lett., 17,ÈÈÈ. 749
A., & Pritchett, P. L. 1982, J. Geophys. Res., 87,Miura, 7431

H. K. 1978, Magnetic Field Generation in Electrically Conduct-Mo†att,
ing Fluids (Cambridge : Cambridge Univ. Press)

et al. 1992, ApJ, 392,Nordlund, A� ., 647
E. N. 1994, Spontaneous Current Sheets in Magnetic FieldsParker,

(New York : Oxford Univ. Press

J. A., & Woodward, P. R. 1991, J. Fluid Mech., 225,Pedelty, 101
S. 1986, Phys. Rev. Lett., 57,Pierrehumbert, 2157

D. H., & Woodward, P. R. 1994, ApJS, 93,Porter, 309
E. R. 1984, Solar Magnetohydrodynamics (Dordrecht :Priest, Reidel)

D., & Jones, T. W. 1995, ApJ, 442,Ryu, 228
D., Jones, T. W., & Frank, A. 1995, ApJ, 452,Ryu, 785

N. O. 1966, Proc. R. Soc. Lond. A, 293,Weiss, 310
F., Lesch, H., & Birk, G. T. 1997, A&A, inZimmer, press


