11,999 research outputs found

    Stability-Guaranteed Reinforcement Learning for Contact-rich Manipulation

    Full text link
    Reinforcement learning (RL) has had its fair share of success in contact-rich manipulation tasks but it still lags behind in benefiting from advances in robot control theory such as impedance control and stability guarantees. Recently, the concept of variable impedance control (VIC) was adopted into RL with encouraging results. However, the more important issue of stability remains unaddressed. To clarify the challenge in stable RL, we introduce the term all-the-time-stability that unambiguously means that every possible rollout will be stability certified. Our contribution is a model-free RL method that not only adopts VIC but also achieves all-the-time-stability. Building on a recently proposed stable VIC controller as the policy parameterization, we introduce a novel policy search algorithm that is inspired by Cross-Entropy Method and inherently guarantees stability. Our experimental studies confirm the feasibility and usefulness of stability guarantee and also features, to the best of our knowledge, the first successful application of RL with all-the-time-stability on the benchmark problem of peg-in-hole.Comment: Accepted at Robotics and Automation Letter

    Goal-Conditioned Reinforcement Learning within a Human-Robot Disassembly Environment

    Get PDF
    The introduction of collaborative robots in industrial environments reinforces the need to provide these robots with better cognition to accomplish their tasks while fostering worker safety without entering into safety shutdowns that reduce workflow and production times. This paper presents a novel strategy that combines the execution of contact-rich tasks, namely disassembly, with real-time collision avoidance through machine learning for safe human-robot interaction. Specifically, a goal-conditioned reinforcement learning approach is proposed, in which the removal direction of a peg, of varying friction, tolerance, and orientation, is subject to the location of a human collaborator with respect to a 7-degree-of-freedom manipulator at each time step. For this purpose, the suitability of three state-of-the-art actor-critic algorithms is evaluated, and results from simulation and real-world experiments are presented. In reality, the policy’s deployment is achieved through a new scalable multi-control framework that allows a direct transfer of the control policy to the robot and reduces response times. The results show the effectiveness, generalization, and transferability of the proposed approach with two collaborative robots against static and dynamic obstacles, leveraging the set of available solutions in non-monotonic tasks to avoid a potential collision with the human worker

    A survey of robot manipulation in contact

    Get PDF
    In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks
    • …
    corecore