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Abstract: The introduction of collaborative robots in industrial environments reinforces the need to
provide these robots with better cognition to accomplish their tasks while fostering worker safety
without entering into safety shutdowns that reduce workflow and production times. This paper
presents a novel strategy that combines the execution of contact-rich tasks, namely disassembly, with
real-time collision avoidance through machine learning for safe human-robot interaction. Specifically,
a goal-conditioned reinforcement learning approach is proposed, in which the removal direction of a
peg, of varying friction, tolerance, and orientation, is subject to the location of a human collaborator
with respect to a 7-degree-of-freedom manipulator at each time step. For this purpose, the suitability
of three state-of-the-art actor-critic algorithms is evaluated, and results from simulation and real-
world experiments are presented. In reality, the policy’s deployment is achieved through a new
scalable multi-control framework that allows a direct transfer of the control policy to the robot and
reduces response times. The results show the effectiveness, generalization, and transferability of the
proposed approach with two collaborative robots against static and dynamic obstacles, leveraging the
set of available solutions in non-monotonic tasks to avoid a potential collision with the human worker.

Keywords: collaborative robots; machine learning; reinforcement learning; contact-rich tasks;
disassembly; collision avoidance

1. Introduction

In recent decades, technological advances and digitalization have driven economic
growth and improved everyday life in countless ways. However, the increasing reliance on
electronic products has caused an abundance of electronic waste. In fact, waste electrical
and electronic equipment (WEEE) represents the fastest growing type of waste in Europe [1],
despite policies adopted by several countries that oblige manufacturers to take back these
products from customers for treatment [2].

Notwithstanding, remanufacturing seems to shed light on this environmental concern
through disassembly, which allows the recovery of valuable components and materials from
these wastes for future reuse. While human labor still predominates in this process, over
time, many tasks have been automated through industrial robots that have improved the
cost-effectiveness of companies. However, robots cannot fully replace human operators in
many environments due to the high variability of the end-of-life (EoL) products received [3].

Therefore, human-robot interaction (HRI) offers a flexible solution that combines the
capabilities of a collaborative robot and a human co-worker. Although its applicability
is widening, the interaction between these two agents still causes productivity-reducing
obstacles e.g., the use of safety stops can slow workflow to ensure operator safety. In HRI
applications, such as disassembly plants, where the robot and operator share a workspace in
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an unstructured environment, this drawback makes it important to improve these systems’
perception and decision-making [4].

In this regard, artificial intelligence (AI) and, specifically, machine learning (ML)
emerge as promising solutions. Indeed, there has been a growing interest in applying these
techniques in multiple domains, such as healthcare [5], autonomous driving [6] or automa-
tion, and robotics [7], even in complex scenarios. In particular, reinforcement learning
(RL) enables a robot to discover optimal behavior through trial-and-error interactions with
its environment autonomously. However, conventional RL only addresses the case of a
single goal, specified by a single reward function [8]. This approach leads to limitations
such as long learning times, poor generalization, and performance drops when transferring
a policy learned in simulation to a real robot when the agent must learn multiple goals.
In addition, most current approaches use third-party libraries or communication tools, such
as Robot Operating System (ROS), to send the RL policy action commands to the robot.
This communication slows the robot’s response time, compromising the co-worker’s safety
in highly dynamic environments. Consequently, these difficulties continue to limit RL’s
potential and its deployment in realistic applications. Goal-conditioned RL formalizes the
problem of learning different goals in one environment [9]. Similar to conventional RL, the
main difference in goal-conditioned RL is that, in this case, the reward function depends on
the agent’s goals, which are represented by the states of the system. This approach may
lead to multiple sources of reward during learning. Most goal-oriented RL approaches
proposed in the literature include the goal as part of the observation, understood as a final
pose [10,11]. However, in this work, the goal is defined as task completion, giving the robot
the freedom to select available trajectories.

Thus, this paper presents an approach that simultaneously tackles disassembly and
collision avoidance with deep RL techniques in an HRI scenario in which the robot must
extract a peg while considering the co-worker’s position (Figure 1). This approach uses
a model-free algorithm, avoiding modeling collision forces in disassembly or co-worker
behavior. Specifically, the contributions of this paper are:

• A goal-conditioned RL approach that considers co-worker safety through real-time
collision avoidance during the performance of non-monotonic disassembly tasks.

• Improved agent generalization capabilities to extract parts of different frictions, toler-
ances, and orientations, and despite noisy image captures.

• A new scalable multi-control framework for direct transfer of RL policies between
robots and their control in reality independent of other software libraries.

Figure 1. HRI scenario in which the robot performs a contact-rich disassembly by extracting a peg to
the opposite side of the co-worker thereby avoiding a potential collision between the two agents.
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To the authors’ knowledge, the proposed approach is among the first examples that
simultaneously apply only deep RL techniques in contact-rich manipulation tasks and
collision avoidance.

The content of the paper is organized as follows. Section 2 contains a brief description
of related works. In Section 3, a theoretical background on RL is provided and its basic
concepts are defined for the particular study. Section 4 describes the task to be performed
and presents the results obtained both in simulation and in reality and on different serial
manipulators. Section 5 provides an outline of the main headings to consider for future
research, providing points for discussion and reflection. Lastly, Section 6 concludes with a
summary of the knowledge gained.

2. Related Works
2.1. Contact-Rich Manipulation Tasks: Assembly and Disassembly

The effective resolution of complex manipulation tasks in an unstructured or highly
variable environment remains an active field of research. Current research focuses mainly
on grasping [12], picking and placing [13], and assembly tasks [14]. In particular, RL
methods have shown high robustness to uncertainties in the latter, leading more and more
researchers to focus on learning assembly skills.

Currently, the application of RL in assembly is focused on three lines of research:
improving performance, sample efficiency, and generalization capability and narrowing
the simulation-reality gap. Performance improvement spans different domains although
research generally focuses on accuracy [15], safety [16], robustness [17], and contact sta-
bility [18]. Other studies, such as [19,20], analyzed stability from a different perspective
considering that any state trajectory must be bounded and tend to the target position
required by the task. For this purpose, the authors shaped the exploration of the RL agent
with a Lyapunov function. This constrained exploration, in turn, guaranteed the manip-
ulator’s safe and predictable behavior. However, this approach had limitations, such as
the control policy being valid only for episodic tasks with a single goal position or that
stability was preserved only in passive environments where the robot’s behavior did not
depend on human users. In addition, many of these studies that focused on improving the
performance of RL policies in assembly reported long training periods [21]. This limitation
is a recurrent drawback mainly in high-dimensional tasks requiring extensive exploration.

Therefore, many studies also put their efforts into mitigating this limitation and
obtaining higher sampling efficiency. Two of the most explored lines of research in re-
cent years to increase sample efficiency have been the combination of RL with human
demonstrations [22] and meta-learning [23]. Lastly, generalization capability, as well as
the deployment of the policy from simulation to reality, are two of the main challenges
reported around RL at present. As such, many studies related to assembly focus their
concern directly on this issue. Both concepts, generalization, and deployment of learned
policy into reality, are closely related, as greater generalizability leads to robust policies that
are less susceptible to the simulation-to-reality gap. In this sense, one of the most widely
used approaches is based on domain randomization [24]. This technique allows uniformly
randomizing a distribution of actual data in predefined ranges in each training episode to
obtain more robust policies.

Nonetheless, unlike assembly, few papers in the literature deal with disassembly. For
instance, Kristensen et al. [25] proposed a Q-learning algorithm framework to train and test
agents in robotic unscrewing tasks. Simonič et al. [26] created a framework that mapped
the information obtained during disassembly tasks to assembly tasks. They implemented a
hierarchical RL algorithm and a graph representation under the criterion that disassembly is
the reverse of assembly broken down into multiple stages. However, the proposed approach
was only suitable for cases where the assembly task was reversible, which essentially limited
it to standardized disassembles. In turn, Herold et al. [27] proposed strategies to separate
fixed components into a slot. For this, the authors identified that adjusting the robot’s
position end-effector proportionally to the measured forces and including oscillating motion
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could be a suitable solution for the assignment. Nevertheless, they executed the task by
performing predefined actions, making it difficult to generalize to other scenarios. In this
sense, Serrano-Muñoz et al. [28] specifically analyzed the generalization capability of two
actor-critic algorithms in contact-rich disassembly tasks. For this purpose, they randomized
both the rotation and the position of a peg embedded in a base that the robot had to extract,
obtaining promising real-world results.

Indeed, generalization capability might play a key role in disassembly since, unlike in
assembly, the condition of an EoL product can be highly heterogeneous.
Therefore, disassembly through RL should consider agents dealing with the physical
uncertainties associated with the product condition, considering the large variety within
one product category, and complexities in process planning and operation.

2.2. Path Planning and Collision Avoidance

Collision avoidance of robotic manipulators is a hot topic in robot control research.
This technique finds a sequence of joint configurations that allows the robot to move from
an initial to a target point while avoiding potential obstacles along the way. Conventional
path planning methods like rapid-exploring random trees (RRT) [29] and artificial potential
fields (APF) [30] are well-researched techniques that can compute a trajectory with a lower
computational cost than RL. However, RRT is inefficient for fast, reactive, and dynamic
collision avoidance action [31], and APF tends to fall into local minima when attractive and
repulsive forces are similar.

Alternative solutions include predicting the motion or recognizing the operator’s in-
tentions. For instance, while Yasar and Iqbal [32] used recurrent neural networks to predict
the operator’s movement based on its position, velocity, and acceleration, Buerkle et al. [33]
used an electroencephalogram to detect the operator’s shift intentions before the movement
was performed. However, although the results were promising, in practice, it remains
challenging due to complex human behavior and background noise levels in many indus-
trial plants.

In this sense, RL allows adaptive control in dynamic environments due to its self-
learning capability when the working environment varies, making it an appealing solution
for unstructured environments such as HRI scenarios. Most research relies on actor-critic
algorithms [34]. For instance, Prianto et al. [35] proposed a path planning algorithm for a
multi-arm manipulator which they considered as a single-arm virtual manipulator steering
from an initial to a final configuration. In a similar case study, Zhou et al. presented
two-path planning methods using either residual RL [36] or curriculum RL [37] to find the
axis configuration that allowed the robot to perform a collision-free trajectory. However, all
these studies validated their methodology only with static obstacles.

In turn, El-Shamouty et al. [38] presented a framework that mapped HRI tasks and
safety requirements onto RL settings. However, the generated human motion in the col-
lision avoidance simulation was randomized without considering possible hazardous
scenarios. The same limitation can be noticed in the work of Prianto et al. [39] and Sangio-
vanni et al. [40,41]. In the former, the obstacles moved in limited trajectories periodically,
while in the latter a real-time model-free collision avoidance approach was introduced
and applied to robotic tasks where an unpredictable obstacle interfered with the robot’s
workspace. Xiong et al. [42] proposed a real-time robotic manipulator motion planning
framework which they tested with both static and dynamic obstacles. Nevertheless, the
negative reward given to the agent was only provided after a certain threshold was ex-
ceeded, which could increase training time and even affect convergence if the target was not
reached during exploration. To avoid a similar situation, Zhao et al. [43] included a balance
estimator in the reward function that compared worker safety with task performance effi-
ciency. In addition, in this study, the obstacle had a motion acquired from skeleton tracking.
Yet, as in the other studies, the methodologies were evaluated in via-point experiments,
where the robot only moved from an initial to a target point. This does not detract from
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the fact that in HRI tasks, despite ensuring co-worker safety, the robot should keep the
workflow efficient, and accomplish those tasks assigned to it.

In this regard, one of the few papers that addressed contact-rich manipulation tasks
while the robot agent avoided collision with its surroundings is Yamada et al. [44].
However, although the framework integrated the motion planner into the RL policy, colli-
sion avoidance for static obstacles was performed by RRT, and RL completed contact-rich
tasks, so the authors switched between the two techniques.

Unlike previous works, this study aims to evaluate whether the hypothesis “an RL
agent is capable of performing contact-rich disassembly tasks while avoiding potential collisions with
dynamic human movements” is valid. To this end, this paper proposes a model-free approach
using entirely deep RL techniques, which identifies that suitable policy for contact-rich
disassembly tasks in collision-free HRI environments. Having such a policy in place, we
can emphasize co-worker safety during the interaction with the robot. To the best of our
knowledge, the proposed method is the first model-free approach using deep RL techniques
that considers co-workers’ potential collisions during HRI. The use case is characterized
by a dual solution whose target position depends on the obstacle location instead of a
given initial and target position as in previous works. The robustness and performance
of the algorithm are then tested considering task- and human-related variables, such as
the position of the object to be disassembled in multiple rotations and under static and
dynamic obstacles, respectively.

3. Method
3.1. Markov Decision Process

The RL framework [45] relies on an agent learning autonomously how to interact
with its environment to perform a given task. This interaction between the agent and its
environment is formalized as a Markov Decision Process (MDP), which defines sequential
decision-making as a semi-random process according to which the agent acts. An MDP is
usually represented by the following tuple:

[S, A, P(st+1|st, at), R(st, st+1, at), γ] (1)

At any time step t, the agent observes its environment, represented by a given state
st ∈ S, where S represents the state space. Based on its behavior, denoted as policy, π(a|s),
the agent will take an action at ∈ A, where A is the space of actions. Depending on the
transition probability P(st+1|st, at), the action at will lead the agent to a new state st+1, and
it will receive a reward rt, a scalar representing how good the agent’s action was towards
the task at hand. The agent’s objective will be to maximize the cumulative rewards received
over the long run, Gt = ∑∞

k=0 γkrt+k+1, where γ is a predefined discount factor 0 ≤ γ ≤ 1
determining the present value of future rewards. The total amount of reward that an agent
expects to accumulate in the future, starting from a particular state st and following a
particular policy π(a|s), is called the value function.

3.1.1. State Space

The relevant observations for the training process are the position and rotation of
the base where the peg is inserted in the x-y plane, bx, y; the position and rotation of the
end-effector in the x-y plane, at the current time step, eex,y, as well as at the previous time
step, peex,y; and the collision forces between the end-effector and the base in the three
axes, Fx,y,z. The percentage of part extraction, pextr, is also measured, and the number of
timesteps completed is counted against the total, tep, which is later used in the reward to
speed up the disassembly process. Concerning the position of the obstacle in the x-y plane,
obsx,y, it is assumed to be known and provided by the cameras located in the workspace.
Thus, the state space S is defined as:

S = [bx,y, eex,y, peex,y, Fx,y,z, pextr, tep, obsx,y], (2)
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3.1.2. Action Space

The choice of action space significantly impacts the robustness and performance of
the learned policy. A common approach is to work in the joint space of the robot [46].
However, in this approach, each action requires approximating the Jacobian of each pose.
In addition, erroneous Jacobian modeling may prevent an optimal transfer of learning
to reality. Instead, working in task space allows sending the pose commands in Carte-
sian space to the robot’s internal controller, which uses the internally encoded Jacobian.
Thus, specifying actions in task space can improve robustness and even accelerate the
learning rate by improving sample efficiency [47]. Moreover, learning a policy in task space
can ease its transferability to different robots with a varying number of joints, as long as
the policy respects the joint boundaries of each robot while working in Cartesian space.
Therefore, the action space A is defined as:

A = [∆x, ∆y], (3)

where ∆x and ∆y are translational and rotational motions along the Cartesian x and y
axes, respectively.

3.1.3. Reward Function

The agent must perform the disassembly of the peg considering the location of the
co-worker. Hence, two objectives can be distinguished; one related to the disassembly task
itself and the second one that minimizes the robot’s collision risk with the human operator.
Therefore, the complete reward function can be defined as follows:

r = rdisassembly + rrisk, (4)

rdisassembly is a continuous reward provided at each timestep t and is defined by the
displacement of the peg with respect to the base, d, and penalized by the number of
timesteps required to perform the task.

rdisassembly = 5 · elog(d)+4 − w1 ·
timestep

timestepmax
, (5)

As shown in Figure 2, the resulting function increases as the extraction is performed in
fewer timesteps while it decreases as the timesteps elapse and the robot has not displaced
the peg.

Figure 2. Representation of the disassembly reward function and how it depends on the displacement
of the peg with respect to the base and the number of time steps spent for it.
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rrisk only takes a value if the robot approaches the obstacle. For this purpose, a compar-
ison is made between the previous and current timestep Euclidean distance. This function
penalizes the agent according to whether its displacement, d, is greater and, therefore, its
Euclidean distance to the obstacle is smaller.

rrisk = −w2 · d, (6)

In addition, if certain conditions are met, a series of sparse rewards are provided to
the agent and the episode is ended.

rdisassembly =


+200 if d > disth
−100 if F > Fth
−100 if rot > rotth
−100 if timestep > timestepmax

, (7)

rrisk =
{
−100 if d(eex,y, obsx,y) > sa f etyth , (8)

where disth is the disassembly threshold, F is the resultant force applied on the base, Fth is
the maximum force threshold that can be exerted, rot and rotth are the rotation of the peg in
its longitudinal axis at each timestep and the maximum rotation threshold, respectively,
d(eex,y, obsx,y) is the Euclidean distance between the end-effector and the obstacle, and
sa f etyth is a set safety distance.

3.2. Reinforcement Learning Agents

Depending on the selected agent, the policy π(a|s) may be represented either as a
simple function or as a deterministic or stochastic function requiring further computation.

Model-free RL algorithms are classified into policy-based, value-based, and actor-critic
methods, where the actor represents the policy, and the critic represents the value function.

Policy-based methods typically work with parameterized functions that directly em-
ploy optimization procedures. These functions allow them to generate a continuous
spectrum of actions, albeit with high variance. Value-based methods, on the other hand,
use temporal difference learning. This type of learning reduces the variance in the esti-
mates of expected returns, although it implies an optimization procedure in each state
encountered to find the action that leads to an optimal value. This can be computationally
expensive, especially if the task is continuous. Therefore, these methods generally deal with
discrete action spaces. Actor-critic algorithms combine the advantages of policy-based and
value-based methods. While the parameterized actor estimates continuous actions without
the need for optimization over a value function, the critic provides the actor with low-
variance knowledge about performance. More precisely, the critic’s estimation of expected
performance allows the actor to update with lower variance gradients, thus speeding up
the learning process.

In this research, three state-of-the-art actor-critic algorithms have been considered:
Proximal Policy Optimization (PPO) [48], Deep Deterministic Policy Gradient (DDPG) [49],
and Soft Actor-Critic (SAC) [50]. All of them are model-free algorithms. PPO is an on-policy
algorithm that tries to compute an update at each step that minimizes the cost function
while ensuring that the deviation from the previous policy is relatively small. DDPG and
SAC, in turn, are off-policy algorithms, that use a replay buffer memory to store experiences
and reuse the most valuable information for efficient training. DDPG is a deterministic
algorithm that uses deep function approximators to learn the policy and estimate the value
function in continuous, high-dimensional action spaces. Lastly, SAC aims to optimize the
maximum entropy. This optimization enhances the exploration and provides the agent
with higher generalization capability by visiting states representing extensive learning.
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4. Experiments and Results
4.1. Task Description

To prove whether the proposed goal-conditioned RL method, based on state-of-the-art
actor-critic algorithms, performs consistently, it was evaluated based on a real use case,
namely, the removal of the magnetic gasket attached to refrigerator doors, which allows
the doors to close hermetically. This task is currently performed manually. Workers use a
screwdriver to pry a corner of the gasket and pull it out (Figure 3a). However, this task can
be hazardous and even lead to long-term musculoskeletal injuries, so automating it would
improve labor conditions.

Figure 3. (a) Magnetic gasket extraction in an actual disassembly plant. Since the inner magnet of
the gaskets cannot be recycled, the gaskets need to be removed from the doors. To do so, the worker
uses a screwdriver to pry the magnetic gasket slightly and then pull it out. (b) Simplified simulation
environment for RL agent learning.

This study sought to perform a proof-of-concept to test the feasibility of RL in contact-rich
tasks and collision avoidance simultaneously rather than to solve a real industrial challenge.
Therefore, to simplify the complexity of removal, two rigid parts were designed, a fixed slotted
base attached to the table and a peg inserted into the slot and gripped by the robot’s end-effector.
The base and slot dimensions are 0.1 × 0.1 × 0.03 and 0.1 × 0.02 × 0.01 m, respectively. The
slot was centered 0.01 m deep with respect to the top face of the base.

The robot should extract the peg towards the opposite side where the co-worker is
located, as shown in Figure 3b. For the sake of simplicity, only the worker’s hand was
modeled, whose position was randomized around a 0.35 m radius circumference after each
training episode, and a perturbation was introduced to acquire a more robust policy to deal
with image capture noise. This perturbation was a ±0.05 m random noise in the x and y
components of the hand added at each time step to the original position of the obstacle in
the episode. Thus, the x and y components of the co-worker’s hand could range from 0.3
to 0.4 m at each time step. Similarly, the friction between the base and the peg and their
rotation was also randomized, ranging from 0 to 0.05 and rotating up to a maximum of
20°, respectively.
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To carry out the training and evaluations, the physical environment of the training
process was reproduced using the NVIDIA Isaac Gym (https://developer.nvidia.com/
isaac-gym, accessed on 14 September 2022) simulator through the skrl library [51]. All
training and evaluations were performed on a workstation with a 3.00 GHz Intel Xeon
W-2295 CPU, 126 GB of RAM, and an NVIDIA RTX 6000 GPU with 24 GB VRAM.

4.2. Agent Training
4.2.1. Hyperparameters Selection

Within this case study, a distinction was made between those hyperparameters related
to the reward function and those related to the agents employed, namely, PPO, DDPG, and
SAC. Tables 1 and 2 show the selected values in both cases.

Table 1. Choice of parameters for reward function.

Parameters Value

timestepmax 500
w1 50
w2 1000

disassemblyth 0.1 m
Fth 2 N

rotth 7.5°
sa f etyth 0.2 m

Table 2. Choice of parameters for agents.

Agent Parameters Value

PPO
Memory size 16

Rollouts 16
Learning epochs 8
Discount factor γ 0.99

DDPG

Memory size 50,000
Batch size 512

Discount factor γ 0.99
Learning rate η 10−3

Noise type Ornstein-Uhlenbeck
θ 0.15
σ 0.2

Base scale 0.1

SAC

Memory size 50,000
Batch size 512

Discount factor γ 0.99
Learning rate η 10−3

Initial entropy value 0.2

4.2.2. Training

Figure 4 shows the mean and standard deviation of reward received for the three
agents in 10 training sessions each. To reduce training times and enrich agent exploration,
each training session was run for 1024 environments with different settings, which took
about 45 min per session. As can be seen, although PPO is the agent that stabilizes first,
eventually all three algorithms converge to a similar value.

https://developer.nvidia.com/isaac-gym
https://developer.nvidia.com/isaac-gym
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Figure 4. Mean reward and standard deviation of the reward perceived by each of the agents during
simulation training.

4.3. Simulation Results

The policies learned were then evaluated with static and dynamic obstacles.
Instead of generating dynamic obstacles with a random or linear motion in a single plane,
which may underrepresent hazardous situations, actual human movements related to the
task to be performed were used. Specifically, three movements were generated through a
virtual reality system. The movements envisaged the robot removing the magnetic gasket
so that the worker would have to open the refrigerator door, extract the items inside and
close the door. For this purpose, two types of refrigerators were considered:

• A refrigerator with two doors, one being the refrigerator and the other the freezer,
where the co-worker would open one door, remove drawers and shelves from inside,
put them aside, close the door and do the same with the second door.

• A second refrigerator with a single door on which the co-worker could work either to
the robot’s left or right (Figure 5).

10 evaluations were performed with the best neural weights from each agent training
curve. Regarding the evaluations with static obstacles, the three agents executed the task
successfully with average success rates of 87.82%, 77.10%, and 84.43% for PPO, DDPG, and
SAC, respectively. The violation of the rotation threshold conditioned all those episodes
that failed to perform a successful disassembly. Figure 6 shows the position of the obstacle
with respect to the rotation of the part in all episodes sampled in a single evaluation for
each agent, as well as the box and whiskers chart of the 10 evaluations performed with each
agent. These statistics are represented according to the scores obtained by each agent in
30° intervals. The violations occurred mostly when the obstacle was close to the y-axis (60–
90°, 90–120°, 240–270° and 270–300°), in a neutral standoff position, where the extraction
of the part did not pose a risk. This may be due to the uncertainty of the neural networks
and the exploration during learning. Nevertheless, the proportion of completed tasks for
all the agents could reach a higher value with static, but more realistic positions, placing
the obstacle partially to one side of the workpiece. In addition, PPO was the agent with
the least variability in scores across the 10 evaluations, with a mean standard deviation of
±3.76. In contrast, SAC and DDPG obtained more distributed values around the means,
with mean standard deviations of ±7.74 and ±20.41, respectively.
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Figure 5. Hand movements acquired from virtual reality system to evaluate the learned policies. In
the two-door refrigerator (bottom left), the black and yellow lines represent the opening and closing
of the doors, respectively, the red line represents the transition of the worker from the refrigerator
to the freezer behind the robot, and the pink, blue and green lines show the removal of shelves
and drawers inside the refrigerator and freezer. In the single-door refrigerator (bottom right), the
operator can work either to the robot’s left or right. The black and yellow lines on the left again
represent the opening and closing of the refrigerator door, respectively, while the pink and blue lines
depict the removal of two drawers or shelves. The orange and gray lines on the right also represent
the opening and closing of the door, respectively, while the red and green lines indicate the extraction
of drawers or shelves.

On the other hand, when it comes to the evaluations with dynamic obstacles, the
performance of the three agents dropped significantly, with success rates of 76.31%, 72.64%,
and 75.14% for PPO, DDPG, and SAC, respectively. This is primarily due to the design
of the reward function and how the continuous movement of the worker’s hand causes
multiple switches between the disassembly and risk-penalty functions. Nevertheless, the
co-worker’s safety was almost completely assured during disassembly. In about 97% of
the cases in which the episode was considered failed, regardless of the agent, it was the
removal of the peg that failed to execute, while the agent was able to direct the removal to
the opposite side of the co-worker. In less than 3% of the failed episodes, the extraction
was performed correctly, albeit to the co-worker’s side.
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Figure 6. Successful (green points) and incomplete (red points) disassembly trials for each agent
in a single evaluation, considering the angle between the co-worker’s hand position and the peg’s
frame at the end of the episode and their respective box and whiskers plots with the averages of the
10 evaluations performed per agent.

4.4. Experiments on the Real System
4.4.1. Simulation to Reality Deployment

ROS is the standard communication infrastructure for software interoperability in
robotics and the exchange of data among different applications through a common channel.
However, in the field of robot control and ML, there are techniques and/or applications
that demand direct or low latency control [52]. This is the case of RL where, at times,
the response latency of the robot must be low due to the interaction of an agent with
unstructured environments. Due to the communication structure proposed by ROS, its
application in RL may be limited by higher response times [53]. Therefore, it is advisable to
rely on direct control leading to lower response times in industrial applications where the
robot has to act quickly.

Hence, for KUKA LBR Iiwa robot control, a framework was developed that provided
a communication interface that not only allowed the development of robotic applications
on the robot’s own hardware and software, but also allowed external manipulation both
via ROS and directly with an Application Programming Interface (API) in Python. For
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further information, check the framework’s documentation (https://libiiwa.readthedocs.io,
accessed on 19 September 2022). For Franka Emika Panda robot control, frankx (https:
//github.com/pantor/frankx, accessed on 19 September 2022) library was employed.

For safe disassembly and as a safety measure against potential collisions with the
co-worker, a compliance controller that operated in end-effector position space was set up.
When a threshold of Fmax = 3 N was exceeded, the robot entered a safety stop.

To monitor the co-worker’s position in the workspace, a Logitech V-U0028 webcam
was placed on the ceiling of the laboratory which, through openpose (https://github.com/
CMU-Perceptual-Computing-Lab/openpose, accessed on 19 September 2022), tracked the
human’s motion. As in the simulation training, only the data from the co-worker’s right
hand was used as part of the observation.

4.4.2. Policy Transferability

The performance of the learned policy was evaluated with different robots (Figure 7).
In theory, policies learned in task space can transfer with a higher success rate, abstracting
from the kinematics and dynamics of each specific robot model [54]. For this purpose,
a zero-shot transfer was performed between the KUKA LBR Iiwa robot, which was used
for learning, to the Franka Emika Panda robot. The evaluations were performed with three
pairs of disassembly parts, of 10−3, 5 × 10−4 and 2 × 10−4 m tolerance, which affected
the friction during the extraction. Specifically, 40 extractions were conducted at every
5° rotation, between−10° and 10° (see Figure 6), of the base and peg. Half of the extractions
were carried out with the worker’s hand statically positioned near the part and the other
half executing a motion similar to that performed on the disassembly plant next to the
robot. Static hand evaluations were performed by positioning the hand to the right or left
side of the workpiece. All the experiments, in reality, were performed with the neural
weights of PPO as it was the agent with the best simulation results. Table 3 gathers the
results of the evaluations done with each robot.

Figure 7. Real-world experiments with two collaborative robots: KUKA LBR Iiwa (top) and Franka
Emika Panda (bottom).

https://libiiwa.readthedocs.io
https://github.com/pantor/frankx
https://github.com/pantor/frankx
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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The results showed how the policies learned in the task space can be transferred
directly between robots. However, depending on the dimensions of the workspace, the
kinematic constraints of each of the robots should be considered.

The KUKA LBR Iiwa robot achieved a disassembly success rate of 95% while avoiding
obstacles, 100% with static obstacles, and 90% with dynamic obstacles, when the tolerance
between parts was 10−3 m. The Franka Emika Panda, in turn, succeeded 93% of the time
in disassembly, 94% with static obstacles, and 92% with moving obstacles. In no case
was there a collision with the co-worker. The high-efficiency rates of both robots were
due to the linear movements executed by both manipulators in reality. It is also worth
noting that in evaluating the disassembly with static obstacles in simulation, all failed
episodes were caused by the violation of the rotation threshold set as part of the reward.
This terminal reward was established since the peg penetrated slightly into the base owing
to the simulator’s physics, which in reality does not occur.

As the tolerance between parts was reduced, both robots’ disassembly success rates
dropped significantly. However, the results hardly changed between 5× 10−4 and 2 × 10−4

tolerances. The KUKA LBR Iiwa achieved success rates of 84.5% and 85% for 5 × 10−4 and
2 × 10−4 tolerances, respectively, while the Franka Emika Panda achieved results of 83%
and 82.5%. A plausible explanation for this drop in performance may be related to the
fact that the range of actual friction between the two parts due to their tolerances was not
completely randomized during simulation learning. Nevertheless, in none of these cases
was a collision with the co-worker. Both simulation and experimental results can be found
at https://www.youtube.com/watch?v=Sb5sv4PWzhA (accessed on 29 September 2022).

Table 3. Real system evaluations with disassembly parts of different tolerances, and orientations and
with both static and dynamic obstacles.

Robot
10−3 m Tolerance Parts Disassembly

−10◦ −5◦ 0◦ 5◦ 10◦

S 1 D 2 S D S D S D S D

KUKA
LBR
Iiwa

20/20
(100%)

17/20
(85%)

20/20
(100%)

19/20
(95%)

20/20
(100%)

19/20
(95%)

20/20
(100%)

18/20
(90%)

20/20
(100%)

17/20
(85%)

Franka
Emika
Panda

17/20
(85%)

18/20
(90%)

20/20
(100%)

19/20
(95%)

20/20
(100%)

20/20
(100%)

18/20
(90%)

18/20
(90%)

19/20
(95%)

17/20
(85%)

Robot
5 × 10−4 m Tolerance Parts Disassembly

−10◦ −5◦ 0◦ 5◦ 10◦

S D S D S D S D S D

KUKA
LBR
Iiwa

15/20
(75%)

14/20
(70%)

19/20
(95%)

17/20
(85%)

18/20
(90%)

16/20
(80%)

20/20
(100%)

17/20
(85%)

19/20
(95%)

14/20
(70%)

Franka
Emika
Panda

14/20
(70%)

14/20
(70%)

19/20
(95%)

17/20
(85%)

18/20
(90%)

17/20
(85%)

19/20
(95%)

16/20
(80%)

17/20
(85%)

15/20
(75%)

https://www.youtube.com/watch?v=Sb5sv4PWzhA
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Table 3. Cont.

Robot
2 × 10−4 m Tolerance Parts Disassembly

−10◦ −5◦ 0◦ 5◦ 10◦

S D S D S D S D S D

KUKA
LBR
Iiwa

15/20
(75%)

15/20
(75%)

20/20
(100%)

17/20
(85%)

19/20
(95%)

14/20
(70%)

20/20
(100%)

17/20
(85%)

20/20
(100%)

13/20
(65%)

Franka
Emika
Panda

14/20
(70%)

14/20
(70%)

18/20
(90%)

16/20
(80%)

18/20
(90%)

17/20
(85%)

20/20
(100%)

15/20
(75%)

19/20
(95%)

14/20
(70%)

1 Static obstacle (S). 2 Dynamic obstacle (D).

4.4.3. Baseline Comparison

The proposed approach is an extension of previous research conducted on RL and
disassembly [28]. This previous study focused only on disassembly and evaluated the per-
formance of DDPG and Twin Delayed DDPG (TD3) actor-critic algorithms in disassembly
parts with different rotations and initial locations both in simulation and in reality. In the
experiments, success average disassembly rates of 87.29% and 35.35% were obtained in sim-
ulation for DDPG and TD3, respectively, and 94.73% and 36.86% in reality. The improved
success rate in performing the task in the real world with respect to the simulation was due
to the critical force threshold minor differences used in the environments. Due to the poor
performance of TD3, the proposed new approach evaluates and compares DDPG with PPO
and SAC, two other agents highly employed in state-of-the-art, for both contact-rich tasks
and path planning. In addition, co-worker safety in a shared workspace is included in
the agent’s reward function, the extraction is generalized to parts with different tolerances
and frictions, and the transferability of the policy to two collaborative manipulators is
evaluated. Even with all these further considerations, the successful disassembly rate in
reality with parts with tolerances of 10−3 m using the same robot as in the previous study
was 95%, close to the 96% obtained previously, in the disassembly of the same parts.

5. Discussion

The research and application of RL in robotics have exploded over the past few years.
However, its potential is still far from reaching, and certain limitations still hinder its use in
industrial applications.

The results of this paper show that RL alone can execute contact-rich manipulation
tasks while avoiding potential collisions with a co-worker in an HRI scenario and has
significant benefits over other current approaches.

A significant benefit is the observed safe performance without the need to model
human behavior. Refs. [55,56] addressed controller safety by considering data-driven,
such as RL, and model-based control theories. Data-driven approaches attempt to manage
uncertainties and reduce the conservatism of the safe controller. Despite the uncertainty
introduced by human behavior, the results show that accurate reward shaping and compli-
ant robot behavior that halts its motion in case of collision are sufficient to ensure a safe
HRI environment.

Moreover, the proposed approach tries to avoid the activation of safety constraints,
such as the safety stops established by the ISO/TS 15066:2016 [57] standard in collaborative
robotics in the case, in any of the four collaboration modes defined by the standard, any
requirement is violated. By executing the disassembly to the opposite side of the worker,
due to the adaptive behavior of the agent to dynamic obstacles, the likelihood of a potential
collision is reduced and, therefore, the need to execute a safety stop and stop the workflow.

Another benefit is the agent’s ability to generalize. The experiments carried out in
reality not only show how the agent can generalize the disassembly to parts with different
orientations but also the randomization of the friction between the parts in the learning
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process and the introduction of artifacts on the obstacle position measurements, favor the
extraction of parts with different tolerances and the achievement of a robust policy in the
face of noisy measurements in reality.

The last aspect worth noting is creating the multi-control framework for the direct
transfer of actions to the robot exploited by the proposed approach. Since ROS does
not satisfy real-time requirements [53], a framework allowing direct control through an
API developed in Python was proposed. The low latency in the system’s communication
infrastructure enables a shorter reaction time for the robot, being able to modify its trajectory
to avoid a potential collision in a shorter time range.

A natural concern of the research is related to the complexity of reward shaping.
While many authors provide only sparse rewards during learning [35,39], these are not
usually successful when learning involves multiple goals. However, this does not neces-
sarily imply the definition of multiple reward sources, each associated with a single goal.
Silver et al. [58] suggested that an agent that maximizes reward to achieve its goal might
implicitly produce skills that are orthogonal to the agent’s main goal and are directed to
multiple other pragmatic goals of the agent’s intelligence.

On the other hand, to build intelligent collaborative disassembly cells that can be
used in real plants, disassembly effectiveness needs to be increased. This will not always
be possible, especially when the disassembled parts include flexible elements and time-
varying adhesion forces, such as real magnetic gaskets. Therefore, in such situations, the
co-worker would have to help the robot to perform the removal. A possible line of research
could include the semantics of the co-worker’s motion in the observation of the RL agent.
By being aware of the human’s action, the robot could identify at which point the co-worker
also participates in the extraction of the part and let itself be manually guided to finish the
disassembly in case it cannot do it by itself.

6. Conclusions

This paper investigates the applicability of deep RL in simultaneous disassembly and
collision avoidance tasks in an HRI workspace. For this purpose, the performance of three
state-of-the-art model-free agents with both static and dynamic obstacles constrained by the
task to be performed by the co-worker is evaluated in simulation and reality with different
collaborative robots.

Although the results show a promising avenue of research, and even the proposed
approach outperforms the previous study on disassembly, this paper has certain limitations.
Among them, the most noteworthy is simplifying the actual use case considered. Although
this study aims to analyze the feasibility of the RL as a tool to simultaneously perform
contact-rich manipulation and collision avoidance, the control policy has been evaluated
in an environment far from reality. On the other hand, the robot is currently agnostic to
the task undertaken by the co-worker. Having richer observation input could lead to more
intelligent agents whose decision-making would not be based solely on collision avoidance.
Therefore, as future lines of research, it would be desirable to train the robot to perform
the disassembly of real magnetic gaskets or even other contact-rich tasks and to be aware
of its environment. This latter line of research may involve the robot identifying the task
being performed by the co-worker at all times and letting itself be assisted in case the
manipulator is unable to perform the disassembly by itself, resulting in a higher success
rate in gasket removal. This approach would also entail employing skeleton tracking to
identify the human operator’s gestures. This information could also be used to increase the
safety of the system by considering the entire body of the co-worker. Lastly, considering the
GPU’s power consumption, it is suggested to explore the use of neuromorphic computing,
which can be more energy-efficient [59].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app122211610/s1, Video S1 (available online at https://www.youtube.com/watch?v=Sb5sv4
PWzhA, (accessed on 29 September 2022)).

https://www.mdpi.com/article/10.3390/app122211610/s1
https://www.mdpi.com/article/10.3390/app122211610/s1
https://www.youtube.com/watch?v=Sb5sv4PWzhA
https://www.youtube.com/watch?v=Sb5sv4PWzhA
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